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This paper includes the following. (1) A general opinion on the study of the possible composite-
ness of leptons and quarks. Practices as to set many specific standards of naturalness before the
understanding of the dynamics are pondered. (2) Two composite models with scalar preons [all
preons are dyous of s hidden U(1),] are introduced. We concentrate on one with six preons T', T,
T' and V', V, V', where a, b, and e are three different U(1)g dyon charges carried by preons.
Their values are not arbitrary in order to match their fundamentalness. T and V are differentiated

by a mass difference. Leptons and quarks consist of three preons; vector bosons and Higgs bosons
consist of six preons due to a force similar to the covalent bound between hydrogen atoms in an H2

molecule. Possible multiplets are given in a table. The symmetry of the composite system is

SU(40XSU(2)L, XSU(2)gXU(1)F. (3) The symmetry-breaking pattern of the model is basically
Axed by requiring that exact degeneracies and symmetry survive to the maximal extent. (4) The
sloe rate of proton decay and e, p, universality are reached. The Kobayashi-Maskawa matrix is dis-

cussed. (5) Vector bosons other than gauge bosons are predicted. O'L, and Wq interact with leptons
3 times stronger than with quarks. (6) Problems and uncertainties in the models, once met, are ex-

plicitly discussed.

I. INTRODUCTION

To seek for the ultimate and universal is one of the
most profound pursuits of human beings, especially of
physicists. It is a long march to reach this aim and in this
long march we have already passed many milestones,
many layers: objects (e.g. stones, trees, etc.)~chemically
classified substances (e.g. NaC1, H20, etc.)~atoms
~nuclei~nucleons~quarks and leptons. In this way we
have explored deeper and deeper structures of matter. A
long-lasting controversy about this exploration is whether
there is a last stop, or a fundamental layer. If there is one,
have we already reached this layer? In particular, the
question we now face is whether quarks and leptons are
fundamental point particles. And, if there is no such last
stop, do we feel confident falling from one layer to anoth-
er deeper one without an end? Now again we are in a dif-
ficult time: although there is no evidence which favors
the compositeness of leptons and quarks, it seems, to
many physicists, that the present stan-
dard quark-lepton picture with 3 + 2 + 1 [i.e.,
SU(3) XSU(2) X U(1) gauge] interactions is far from satis-
factory. Many problems are not even questioned within
the standard framework. ' For example, why are there
spin-O, - —,', and -1 fund'amental particles rather than only
one or two different spins'? Why are there three different
kinds of interactions, gauge interactions, Yukawa interac-
tions, and Higgs self-interactions'? Why are there specific
representations of gauge groups (singlets, doublets, and
triplets)? Why are there specific symmetry-breaking pat-
terns [SU(3) unbroken, SU(2)XU(1)~U(1)]? Why are
there some global symmetries [e.g., possible U(1)„]'?
~y are there masses and mixing angles and other cou-

pling constants taking specific values? Why are there gen-
erations? And so on. While grand-unification theories
intend to answer a few of these problems, composite
theories are aimed to solve most of them. In this sense,
the latter is much more ambitious. From the history of
the quark model, one may believe that the two ap-
proaches might be cooperative.

Though we are not sure if quarks and leptons are com-
posites, much work on their possible compositeness has
appeared. ' Many interesting opinions on the philoso-
phy in the study of the possible compositeness of leptons
and quarks have been raised. It is almost agreed that the
characteristic of a lepton or quark, comparing it to the
other composite systems studied, is expressed by the fol-
lowing inequality:

m/A &&1,

where rn is the mass of a lepton or quark and A ' its size.
The most naive (also model-independent) way of measur-
ing the sizes of leptons or quarks is to measure their form
factors, which typically give the lower limit of the A
bound by the maximal energies of accelerators:

A&100 GeV .

Some more sophisticated but sometimes model-dependent
estimates give A ~ 1 TeV. Howsoever, there are quite dif-
ferent opinions on the sizes of gauge and Higgs bosons: if
they are composites, they might be either smaller or larger
than leptons and quarks. Excited leptons and quarks, or
gauge bosons, if discovered (e.g., spin- —', leptons and spin-
2 bosons), may yield important information about their
compositeness, yet may not help to specify the value of A.
The energy difference between the excited and ground
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states hk may be of the same order as A in the
hydrogen-atom case (where &&~q ') or unrelated as in
the oscillator case [where &&=(kjm)'~, A=(km)'~ ]
While the inequality for leptons and quarks is agreeable
among physirists, how to realize it is qucte arguable. '

Without an understanding of a strong binding system,
such as a lepton or quark (if it is a composite), it is
perhaps not wise to set a specific standard for naturalness
in getting the inequality, although physicists have useful
ambiguous common sense about what is natural. Since we
have always been getting simpler pictures of nature when
we go to deeper layers of structure, it is difficult to imag-
ine that the next layer, the preon layer, is more complicat-
ed than the present known leptons and quarks, except that
the presently discovered leptons and quarks are just a
negligible part of their entire spo:trum. Electrons and
photons have so far survived as point particles from a few
previous composite studies {e.g., the studies of atoms, nu-
clei, and nucleons). This fact naturally leads people to
wonder whether it is possible that Higgs bosons only or
gauge bosons only are composites while the others are not
at this stage. Of course, there are also some other possible
choices. An interesting hint might be obtained from the
following comparison. In the early 1960s, bootstrap
theories and the eightfold way were modestly successful.
However, in these theories all hadrons were relevant, but
not leptons and photons. Then it turned out that the
quark model was a composite model of hadrons. Now, in
the 3 + 2 + 1 unified gauge theory, all leptons and
quarks, all gauge bosons, and at least one Higgs doublet
boson are indispensable parts. Perhaps their scales of fun-
damentalness (or compositeness) should not be so dif-
ferent. However, the role of gravity is still ambiguous in
this hint. A quite subtle question on compositeness is
whether it is possible to make the effective interactions of
a composite systeill satisfy gallge principles. Pllttillg it
another way, the question would be whether gauge princi-
ples are immortal —therefore we must reserve all the
3 + 2+ 1 gauge interactions at the lepton-quark layer to
the preon layer —wr they are just special phenomena
which appear at this layer (the lepton-quark layer)—
therefore we may need not do so. '3 A related question is,
then, whether the non-Abelian gauge binding for the had-
rons should be reputed for the binding of leptons and
quarks if the latter are composites of preons. At last, a
technical question is as follows: Once a composite model
is set, which among the problems listed in the first para-
graph are the easiest to solve %'e doubt that the mass
problem could be included in the list of easy problems.

After these general discussions, we turn to describing
specific composite models' with spinless dyons as
constituents. Previous results are revimved in Secs. II and
N to make the paper self-contained. The simplest com-
posites are discussed arith small changes, corrections and
new understandings. Two different models are introduced
in parallel. Starting from Sec. III, we concentrate on one
model which is defined in Sec. 11 as the A model. After
the discussion of the symmetry property of the model in
Sec. III, we discuss the possible covalent force to explain
how gauge bosons and Higgs bosons are bound in Sec. IV.
%'e prove that no gauge or Higgs bosons can mediate pro-

ton decay; therefore we slow down the proton decay rate
by allowing only decay forbidden by the Okubo-Zweig-
Iizuku rule. Possible Higgs multiplets and non-gauge-
vector particles are given in a table (Table II). Section V
addresses the possible generation mechanism of the
model. Universality, ehmination of flavor-changed neu-
tral currents, and Kobayashi-Maskawa (KM) mixings are
discussed. We shaH find that this A model corresponds to
reahstic physics in many aspects. However, we would
rather cail the A model a toy model which is useful for at
least presenting our tendency in respect to questions and
problems raised before. At the same time, we shall not
overlook the chance of the model becoming a realistic one.
We shall state it explicitly whenever (in the paper) we
meet a problem or uncertainty. Section VI is especially
devoted to some problems in the model.

IE. THE SPENLESS-DYGN MODELS

Using the strong U(1) magnetic force as the binding
force for preons to make composite leptons and quarks
and bosons was first suggested by Pati. " Pati then sug-
gested that this U(1) should be a hidden U(1) different
from electromagnetism. ' For our further convenience,
we shall call this U(1) "sound U(1)" and its quantum a
"phonon, " with electriclike and magneticlike charges. '

The purpose of introducing U(1), binding is, first, to min-
imize the number of preons and gauge bosons at the con-
stituent level and, second, to guarantee fewer low-energy
exotic leptons and quarks. ' It was argued, 'i from the
zero-energy solution of the Dirac equation in a a=i
Coulomb potential, that we may get light composites
from heavy constituents by U(1) binding and build up the
chiral symmetry from none. The inverse size of the zero-
energy solution is about A-10m„where m, is the mass
of the charged fermion. Koh, Pati, and Rodriguez' have
also found that the U(1) binding seems to work well for
both the Harari-Shupe-type model' and the Pati-Salam
model. '6 In general, we refer to composite models which
have fewer properties of composites built into constituents
as arithmetic models (or A models) and those with many
properties of composites built into constituents, block
models (or 8 models). The atomic model is an example of
an A model in which one cannot read out the periodic
table of elements from the electron. The quark model is
an example of a 8 model in which properties of hadrons
have obvious marks of the flavors of quarks. We do not
know whether a composite lepton or quark (if it is com-
posite) should belong to the A or 8 model. It is obvious
that the Harari-Shupe model' looks like an A model and
the Pati-Salam model ' like a 8 model. Using the U(1)
sound binding, these models should be read as the follow-
ing. 16 17

Preons in the A model.

T', T~, T' (masses=MT),

V', V", V' (masses=lv),

(~T tv) .

Preons in the 8 model:
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a+6+c =O. (3)

C), 5', 8 2„C2, C3, C4,

(masses of Ci, C2, and C& are equal), where the indices a,
b, and c are the sound charges (aH nonzero) of the preons
which satisfy the condition

b
/

/ l
/ /

x
/ /

l /

0'

a+b =-c, spin=i q I

a Xb =—alb2 —a2b) ——4', (4)

where q is an integer or half-integer. It is also proved that
the system gains a spin

~ q ~

in addition to possible con-
ventional angular momenta of the system. Figure 1

shows how a system with static electrically and rnagneti-
cally charged particles gets a spin diagramatically. The
preons might be fermions or scalars, but for reason of
economy we assume they are scalars since the sound field
can serve the necessary spin —, when

~ q ~

= —,. Inciden-
tally, this minimizes the degrees of freedom of preons.
The spin-statistics theorem should guarantee automatical-
ly that composite spin- —, particles satisfy the Fermi-Dirac
statistics. ' lt is argued that for a neutral three-
spinless-dyon system the spin of the ground state is —,', if

~

a &&b
~

=2m. Spin- —, bound states must involve orbital
angular momentum excitations; therefore, they are very

The magnitude of the masses of preons will be discussed
later. In many cases they are very heavy. Note there are
some features in models (1) and (2) which compare with
their original forms. ' ' They are (1) the introduction of
a hidden U(l} sound force between preons, (2) preons are
scalars (see later) instead of fermions, and (3) there are no
electromagnetic interactions at the preon level, neither are
there any weak or color interactions.

As we have mentioned, in general, these U(1) sound
charges a, b, and c may have two components, electric
and magnetic chars~, and thus may b dyons. 2425 For
these dyon charges, the Dirac quantization condition must
be met; that is, for two particles with a =(ai, a2) and
b =(b &,b2) charges, respectively,

HG. 2. The spin of the three-dyon system in the ground state,
~hen a+& = —c, equals the spin of the t~o-dyon subsystem a
and b, which has spin

~ q ~
and total charge —c. This subsys-

tem and the third charge c together make a pure Coulomb bind-
ing system.

yaTa TbTb TcTc
b b.—

~ -(spin parity —0++ )
l

T'V' T V T'V',
VaT a VbT'b Vcy c

Trions in the 8 model are

IV C;S (spin —,
'

) (a=1,2, i =1,2, 3,4) .

Duons in the 8 model are

(6a)

(6b)

heavy. The spin formation of a three-dyon system is illus-
trated ~n Fjg. 2.

Since the values of sound charges a, b, and c are very
big, in the normal case only sound-neutral systems can be
seen. The simplest sound-neutral composites may consist
of two or three preons and are called duons and trions,
respectively.

Trions in the A model are

ray by c VaVbVc

T'VbV' TbV'V', T'V'V (spin= —, ),
Vay by.c VbTcTa VCTay b

Duons in the A model are

(8a)

C;C; (spin parity =0++),

SS .

(8b)

(8c}

g
I
I
l

I
I
I
1

I

1

l

l
I

FIG. 1. Separate infinitely massive magnetic monopole g and
electrically charged particle e have a spin from the electromag-
netic field. Dashed lines are magnetic-field lines and dotted
lines are electric-field lines. The direction of the momentum of
the field S=(l/4m)EXB is perpendicular to the axis through e
and g. The direction of the angular momentum is from e to g.

Those exotics such as TTT, etc., in the A model or 8'8'S,
etc., in the 8 model are not sound neutral; therefore, they
must be very heavy. We see that the U(l) binding is much
more efficient than a non-Abelian binding in eliminating
unwanted bound states such as spin- —', light ferrnions and
exotics.

Of course, the sound charges a, b, and c are the most
fundamental quantities in such kinds of composite models
with U(1) sound binding. If these models are taken seri-
ously, there should be no arbitrariness in the assignment
of the values of a, b, and c. Then the only natural way of
fixing these fundamental charges under the condition, Eq.
(3), is"
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v3a=go(1,o» b=go ——, c=go ———2' 2
' 2' 2

In the electric and magnetic charge plane (Fig. 3), the
three charges form an equilateral triangle. As we know,
calling the U(1) charges electric or magnetic is subject to
an uncertainty owing to the dual rotation invariance of
the U(1) gauge theory. Therefore the positions of the
three dyon charges a, b, and c are absolutely equal. In
addition, owing to the Dirac quantization condition, Eq.
(4), go is fixed as (when q = —,

'
)

go ——(4ir/v 3)'~

There are no free parameters in the assignment of these
fundamental quantities, which is what we expected. The
inner products of any pairs of these charges measure the
strength of the Coulomb interactions within the pairs.
They are

a a=b b =c.c =4m/v 3,
a b=b c=c a= —2ir/v 3.

Therefore the "binding strength" between a preon and an
antiprtxin is twice that between two differently charged
preons which resemble the ratio of binding strengths be-
tween qq and qq in the quark model. Incidentally, the
critical value a of the Coulomb potential for the loein-
Gordon equation is —,'. The difference between 1/v 3 (and
1/2v 3}in the dyon models here and —,

'
might have some-

thing to do with the additional spin
~ q ~. Perhaps it is

also due to the fact that in the IQein-Gordon equation
with a Coulomb potential the source of the potential is
static, while for the composite system in the dyon model
the source itself is moved. The dynamics of the three-
dyon system is very difficult to solve because of two
reasons: (1) the U(1) theory with a magnetic monopole (in
general, dyons) is nonlocal; there is a string2425 between
particles with charges a gb&0; (2) the three-body prob-
lem itself is notoriously difficult. Instead, we make the
following assumption.

Assumption 1. Ground-state neutral three-dyon com-

electric charge

FIG. 4. Binding diagrams of (a) duon and (b) trion. Number
of lines between preons indicates the strength of Coulomb in-

teraction. The single lines in trion (b) can also be understood as
topological strings.

p,„„=(n
~
p(a, b,c)

~

n'} =(a +b +c)i)„5„„, (12)

where n denotes states in different representations of
S3(S,Mi, M2, and 3, see Appendix 8). rt„ is a constant
depending on the dynamics. Combining with Eq. (4), we
have p„„=0. It is argued'9 (see Sec. V) that it might hap-
pen that the difference between e, p, and ~ is due to the
difference in Si properties. In that case, Eq. (12}means

p-+e +phonon

posites (trions) are massless, and their inverse sizes are
about A-10M where M is the typical mass of preons.

The binding diagrams for trions and duons are
separately given in Fig. 4. The binding lines in a trion can
also be seen as strings due to the topological property of
the magnetic charge. The low-lying composite systems
made of dyons are sound neutral, which is extremely im-
portant for avoiding potentially serious contradictions be-
tween the model and real physics. Still, contradictions
may arise owing to possible sound dipole moments. Of
course, the dipole moments are two-component quantities.
Fortunately, it is easy to prove, in the equally massive
three-dyon case, that the dipole moments are strictly zero.
The point is, when the dyons are equally massive, the
Hamiltoman operator H(a, b, c) of the three-dyon system
must be symmetric under S&, the permutations of the
three charges a, b, and c. Therefore, the bound states of
the three dyons must be in a pure representation of Si.
On the other hand, the operator of the dipole moment of
the three-dyon system must also be S& symmetric, in ad-
dition to being hnear in respect to the three charges; there-
fore, we have

/
/

/
/

/
/

/

C 3 b

magnetic
charge

FIG. 3. In the two-dimensional charge plane, the three
charges a, b, and e form an equilateral triangle.

is forbidden at the tree level (e.g., in the A model). For
trions which consist of differently massive preons, Eq.
(12) is not valid; however, p„„should be very small,
perhaps proportional to (bM/M)(mF/A ) where hM/M
is the mass difference over the average mass of preons,
which is due to Eq. (12); and mF /A is the mass of trions
(fermions) over the square of the binding scale, which is
due to the suppression of anomalous moments caused by
the extremely relativistic binding. Therefore, it is very
difficult for phonons to scatter from leptons and quarks,
once the preons are heavy enough.
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III. SYMMETRY PROPERTIES OF THE A MODEL
(REPS. 21 AND 22)

It has been pointed out that the exact symmetry of the
A model, Eq. (1), is

[U(1)]'xS', ,

where six U(1)'s correspond to the separate conservations
of the numbers of each kind of preon N (a=T or V,
o=a, b, or c). These conservation laws are due to the
property of the U(1) gauge interaction between preons.
The S& group is all of the permutations among the three
kinds of charge discussed before. This symmetry is due to
both the symmetric charge assignment and the equal mas-
siveness of three T's and that of three V's. When we
only consider neutral composites, we have ¹'=¹~=¹
(where N =NT+Nv) owing to Eq. (3). Two conserva-
tion laws become trivial and only four nontrivial ones
need to be considered. We can choose these four nontrivi-
al U(1)'s as

where [SU(2)] has operators in Eq. (18) as its Cartan
operators. The trions in Eq. (5) are in (2,2,2) representa-
tion of [SU(2)] and duons in Eq. (6) are in
(1+3,1,1) + (1,1+ 3,1}+(1,1,1+ 3). Since [SU(2)] has
nothing to do with the physics, we hope this group will be
dynamically broken. If this happens (the difficulty here,
see Sec. VI), the duons in Eq. (6b) will become Goldstone
bosons. Fortunately [SU(2)] is not an exact symmetry
owing to Mz.+M&., Higgs bosons in Eq. (61) should be
pseudo-Goldstone bosons with a mass proportional to

~
MT —Mz ~. The quantum numbers of trions and duons

in respect to operators defined in Eqs. (14)—(17) are given
in Table I. In this table we also show quantum number

Q, which is

g—=N+-,'(a —L, )=-,'N, —= —,
' gN, . (19)

We have chosen a specific set of eight trions to work with
in Table I. Actually there are 2 ' possible choices of
making a set of eight. The set in Table I is the only
choice which satisfies the condition

N= —,
' gN— Tr¹=0, Tr¹0~02——0, (20)

8 I.= —', (I—i+Ii+Ii },

Ts —— (2I i Ii Ii },— —a a

2 3

(16)

where Oi and 02 are any operators in Eqs. (15)—(17) and
(19). The philosophy is, according to assumption 1, that
the trions are massless; therefore, they are chiral sym-
metric, if their interactions with duons respect the sym-
metry. In order to have interactions which respect the
chiral symmetry, the only possibility is to suppose that the
original vectorlike global symmetry N becomes chiral;

¹~¹L+¹g. (21)

Ii = , (NT Nv—) . — (18)

In the limit when MT —Mq 0, the global symmetry
of the constituents is actually [SU(2)] X [U(1)] XSi NL —Na ——0 (for—duons} . (22)

because only for the quantum number N, a consistent
way to define the chiral transformation of duons exists;
that is

Structure

TABLE I. Simplest composites: trions and duons.

A3

v'v'v'

f aPbPc

vu Tbrc

T avbrc

T'Tbv'

y aVbVc

Vay bVc

VNVbrc

1

2

1

2

2
3

2
3

1

3

1

3

1

3

c

3

1

3

1

3

1

3

1

2

1

2

1

2

1

2

1

2

1

2

T T
vcr v cr

V'T'
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After the chiralization of the global symmetry Eq
will prevent the symmetry from being broken by triangle
anomalies. Since the eight trions in Table I are in two dif-
ferent irreducible representations of [SU(2)], to work
with this set means to break [SU(2)] dynamically.

It is worth noting that strict degeneraries appear in the
following three triplets:

T'V'V', TbV'V', T'V'V',

V'T T', V T'T' V'T'T

ya yb yc (yo' TcrVn)

(24)

(25)

IV. COVALENT SOUND STATES:
GAUGE SOSONS AND HIGGS SOSONS

(RaFS. 21 AwD 22)

To discuss gauge bosons, there are two possibilities.
One possibility easily to be thought of is that the vector
bosons are p-wave states of duons. However, the binding
force between a pair of preons in a duon is exactly the
Coulomb type. As we discussed at the beginning, the ex-
citations in the Coulomb potential have the energy about
the binding scale A, which is too large for the standard
gauge bosons. Therefore we must appeal for the other
possibihty, i.e., to make gauge bosons by a multipreon sys-
tem. We think the best choice is to suppose that vector
bosons are a six-valence-preon system' (sixions). How
can one make a sixion that can be divided into neutral
subsystems such as trions or duons'? At a first glance, this
seems impossible. However, it night be possible. Com-
paring to the covalent bond between hydrogen atoms in a
hydrogen molecule, we may get some hint. Let us denote
the positions of the atoms by numbers and the spins of
electrons belonging to the atoms by arrows, then we can
write the formula for the molecule as

[H'(1 }H'(2)—H'{ l )H'(2}]=H2 .

The other possible state

1 [H'(1}H'(2)+H'(1}H'(2)]

is dissociated or unbound, so is H'{1}H'(2). Note here
that both hydrogen atoms are neutral systems. The ener-
gy needed to hit an electron off an Hq is almost the same

This fact is guaranteed by the Si symmetry.
The global symmetry of the composites might be larger

than U(1}and Sq, since, at least, there are three exact trip-
lets. If this is so (which is very difficult to prove, see Sec.
VI), the maximal symmetry of the composites cannot be
larger than

6, =SU(4) X SU(2), XSU(2)„XU(1) factors,

because the duons cannot be put into larger groups. If 6,
is the global symmetry of the composites, then fermions
will be in (4,2,1) + (4,1,2) representation of
SU(4)XSU(2)XSU(2), and {{) and p will be in (6,1,1).
We shall discuss duons T T and V V later on. Of
course, 6, is not an exact symmetry of the model, since
there is a mass difference between T and V preons.

as that from an H atom. The binding energy of the mole-
cule is of the order of,~ of that of the atom. That
means the atom is a relatively stable component in the
molecule, though an electron of one atom has a certain
chance to be shared by the other atom.

Now, in our composite model, the trions are very stable
because of strings and strong bindings between differently
charged preons. A huge amount of energy transfer must
be involved in a process involving the breaking down of a
string. Based on the analysis of the hydrogen molecule,
we suggest the following rules for the covalent binding be-
tween two trions (temporarily, we consider only one gen-
eration).

(1) There must be more than one possible choice of
pairs of trions, which have the same net preon content.

(2) These pairs of trions must have the same quantum
number in respect to the symmetries discussed.

(3) If the above two conditions are satisfied, at least one
linear combination of trion pairs is a bound state and at
least one other is not.

These three rules are the contents of our assumption 2.
Although the assumption does not give a rule to choose
one when there are many possible linear combinations of
trion pairs, to aquire the bound states being in a multiplet
of 6, will settle down the uncertainties in most cases.
According to these rules, we would be able to write gauge
bosons by formulas in which only leptons and quarks ap-
pear, similar to Eq. (27). Here, two trions may have little
chance to share their constituents. We shall identify
gauge bosons in the 6, gauge model as the following:
The left-handed W bosons are

~L» g u L Y»dL +vL7»eL
O

r

Wf » — ~ g (9 I 7»QL d? $»dl )2~2

(28}

X» = ~ (ep»Q +v}'»d ) .
V4 (3O)

The B —L, gauge boson is

F» = g (tl }»u +d 7'»d ) —3(e1»e+v7'»&)4S

(31)

It is amusing that in these expressions the interactions of
these vector bosons with fermions are explicitly fixed and
are exactly in the gauge way; i.e., for non-Abelian interac-
tions, there is only one coupling constant in respect to dif-

and the formulas for right-handed W bosons are similar.
Gluons are

g, =-,'(u'y»u +d'y»d } (a&b), etc.

(Note here, left and right chiralities are equally entering,
the normalization constant is 1/v 4 instead of 1/~2. )
Leptoquarks are
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(u'ds —used')+(u e —vd'), (32)

may be a bound state, had we not considered the global
symmetry SU(4) of composites. However, even without
the restriction of SU(4), Eq. (32) could not be a bound
state because, under the a~ exchange, the first term is
antisymmetric while the second symmetric. This is a
beautiful feature of the model. The dissociation of the
binding formula, Eq. (32), means that the model does not
enjoy SU(5) and larger grand-unification symmetries. As
we know, Eq (32) is a necessary bound member, if com-
posites possess SU(5) symmetry. Instead of (32}, the al-
lowed bound state is a (6,1,1) scalar multiplet with the fol-
10%'ing components:

(u'd —u d'), (u'e —vd'} .
&4 4

(33)

( ) sixion

S~

FIG. 5. Interaction between trions and sixion bosons can be
expressed by Zmeig diagrams with wavy double lines. In each
vertex, leptons and quarks may or may not change Aavor or
colors.

ferent fermion multiplets. For example, there are four
SU(2)L triplets in the 8'q+ formula of Eq. (28). This hap-
pens because all of them have essentially the same
V V VTTT of preon contents, and also because we require
IVL to be a singlet of SU(4). However, to show that the
gauge-boson self-couplings (both cubic and quartet terms)
are also controlled by the same coupling constant and the
masslessness of gauge bosons needs to be done; this work
has not yet bren done and must be done to prove that
those vector bosons are effective gauge bosons. We would
think that the gauge behavior of the vector bosons is
perhaps possible. Nature seems to have a "feedback sys-
tem" to adjust the coupling constants of vector bosons in
order to have them behave well in all ranges of energy
from zero to the binding scale A, of the covalent bond
which is much above the masses of these vector bosons. 29

The interactions of sixions and leptons and quarks can be
represented by "rubber diagrams" (Fig. 5). To remind us
of the difference of interactions between leptons and
quarks and covalent bond bosons from that among had-
rons, we use a wavy double line when two leptons and
quarks meet and make a fundamental boson (which is
bound by covalent force), instead of a hadronic meson
(which is bound by gluons). Similar diagrams have been
used in QCD where the gluon is represented by a double
quark line. '

There are many scalar bosons which we are not going
to discuss in detail. Most of them are in representations
of bilinear forms of (4,2, 1) and (4,1,2). One thing worth
noting is related to a potential proton decay mediator and
rule 2. One would perhaps think that the linear combina-
tions, such as (y matrices are omitted)

S)

FIG. 6. P mediate the Okuba-Zweig-Iizuku-rule-forbidden

processes.

This multiplet does not contribute to proton decay; there-
fore it need not be extremely heavy. Actually, there are
no sixions which may contribute to proton decay. The
only proton-decay mediator is the duon multiplet (P,P }
(see Fig. 6). However, this process is forbidden by the
Okuba-Zweig-Iizuku rule, because to couple P with
trions we must break the string. The coupling constant A,

between P and fermions becomes very small: )t, -mF/A.
The corresponding proton decay rate is suppressed by
both A,

' and m, '/m~', i.e.,
4

(34)
f72 y

which is extremely small, if we also have mz ~~m~.
Phenomenology of this proton-decay process is analyzed
in Ref. 31 in a general context.

All possible covalent bound states, sixions, are listed in
Table II. Multiplets above double lines are divided into
two parts by a dotted line. The first part are linear com-
binations of lepton and quark pairs with different fiavors
[i.e., SU(3) XSU(2)L X SU(2)a quantum numbers]. At
least one component in each multiplet in the second part
is not made of different flavor pairs, but different spin
pairs, e.g., e ~r eg, etc. The gauge boson (1,1,1) couples
to fermion numbers. The I.orentz structure of each co-
valent bound state is given in the last column of the table.
Readers who are interested in how to make light compos-
ites from chiral fermions should consult Ref. 11. Since
different bound states may have different binding energies
and zero-point wave functions, ete. , it does not seem wise
to calculate the relative strength of their coupling con-
stants before solving the dynamical problems. However,
if one accepts the arbitrary assumption that "at the bind-
ing scale A, of sixions, all coupling constants are equal, "
he will obtain sin Hii

——-', at A, . Of course this number
cannot be taken seriously. Perhaps the differences among
coupling constants are no larger than an order of magni-
tude. It is difficult to understand why there are very dif-
ferent Yukawa coupling constants (e.g., G, /G, &6X10 )

by simple argument, except perhaps serious dynamical
calculations. The Higgs bosons in Table II may give the
following symmetry-breaking pattern:

SU(4), XSU(2)L, XSU(2)a XU(1)F

&O" GeV

SU(3), X SU(2)L, XU(1)

SU(3), XU(1), . (35)
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TABLE II. Possible sixion boson multiplets.

Multiplets

(1,1,1)

(15,1,1)

(1,3,1)

(1,1,3)

{1,2,2)

(6,1,1)

(6,2,2)'

(10,3,1)

{10,1,3)

(6,3,1)

(6,1,3)

Typical
component

vv+ee+X(2 d +u u )

Eqs. (29)—(31)

Eq. (28)

Eq. (28)

ud+Te, etc.

Eq. (33)

Eq. (33)

Eq. (33)

Eq. (33)

Lorentz
structure

Apl —PL}p4L +4) y4
v)'~4

VL}pitl.

4 Yp6
PL@ and 44L,

A }',0L

FerInion
number

WL, triplet

8'g triplet

Eqs. (37) and (38)

Eqs. (37) and {38)

Ungauged vector bosons owing to being in representations other than adjoint ones. Compare Ref. 34.
(6,2,2) should be easily dissociated.

A, & 10' GeV (36)

and this scale also fixes the scale for the first symmetry
breaking in Eq. (35). If we only had one restriction (e.g. ,
a/a, ), we would be able to suppose this scale much small-
er. Of course, A-10M is much larger than A, . The
symmetry breaking (35} seems intended to break all ap-
proximate symmetry of the composite model while reserv-
ing strict degeneracies Eqs. (23)—(25) untouched, and as
many exact symmetries [Eq. (13)] of the composite model
as possible. The breaking down of the exact symmetry
8 I. (e.g., Ni co—nservatian) is really a "tragedy" in this
hierarchy. This phenomenon needs further investigation.
The composite model somehow (as shown) fixes leptons
and quarks, gauge bosons, Higgs bosons, and the
symmetry-breaking pattern (including the direction of the
vacuum, e.g., Q =0, color-singlet components but no oth-
ers get a VEV). Then one can work with an effective
grand-unified gauge theory and analyze possible
phenomenology with less arbitrarines.

In Table II, we also hst two possible vector-boson mul-
tiplets which cannot be filled in the group 6,. The for-
mula of the vector-boson multiplets are (y matrices are
omitted)

The first breaking is realized by a nonzero vacuum expec-
tation value (VEV) of the (10,1,3) multiplet, the second by
(1,2,2). In order to get the measured Weinberg angle
sin 8ii and perhaps also known a/a, at low energies,
the scale A, of covalent binding (or the inverse size of the
covalent bound states) must be large enough, perhaps

WL = gd L ul —3ei vi v 12. (38)

V. GENERATIONS AND MIXINGS
{REPS.19 AND 21)

We are not going to repeat the formula for right-handed
ones. Equation (37) is similar to Eq. (31} in respect to
preon constituents; this is the reason why we guess that it
perhaps is a new vector boson. 8'L and W& cannot be
put into SU(4) representations; still they might be bound
states. That can happen in two cases. One case is if in-
stead of SU(4}, SU(3))&U(1) is the symmetry of the com-
posites. In this case, all other sixion multiplets will
decompase into SU(3) XU(1) representations. i Another
possibility is that only the lowest-lying compasites can
fully fill a representation of the graup; the higher-lying
multiplets are not complete because some members are
not bound at all. Symmetry breaking of SU(4) becomes
clearer, for higher-lying states. In any case, W' couples to
leptons thro: times stronger than to quarks; it is a wrong
component under SU(4) transformation; therefore, it is
impossible to be gauged. 8" must be fatter than other
vector bosons and before its bad behavior appears at a cer-
tain high energy (much smaller than A, ), it dissociates
and the SU(4) symmetry recovers to some extent, i.e., no
incomplete multiplets, and no wrong components.

There are perhaps also five prean composites and other
composite systems. %e are not going to give details here
because they are relatively complex.

g(u LuL —d, dL) 3(v, v, e,ei )— —

and, according to SU(2)1 symmetry

(37)

Although masses and mixings can be formally dis-
cussed in an effective gauge theory, it is more interesting
to discuss them from the composite point of view. The
former may only give some restrictions on possibilities;
the 1atter should be able to fix all arbitrary parameters in
principle, though it is difficult in practice. Here we



would like to present an example of getting hierarchy and
mixings. Of course, as we warned before, this is just a toy
model.

In Ref. 19, we classify the splittings in the spectrum of
a three-body system into three classes (e.g. the equally
massive three-body linear oscillator). The first is
governed by the main quantum numbers (e.g., X for the
oscillator system). The second, which is also smaller, is
governed by the angular momentum number with the
same main quantum number (e.g., when introducing I.
dependent forces into the oscillator system). The third,
the smallest, is governed by SI quantum numbers with
the same main and angular momentum numbers (e.g.,
when introducing mass differences in the oscillator sys-
tem). It might be that the third type of splitting in the
three-dyon system is responsible for the generation
phenomenon. That is, the lowest-lying three states of the
trion have the same main„angular, and parity quantum
numbers but different SI properties: One is in the sym-
metric representation and the other two are in the mixed
representation. If the three dyons are equally massive, the

I

mixed representation (a doublet) will be degenerate. Now
the problem is whether the symmetric representation is
the lowest state or the mixed. In Ref. 19 we suppose that
the symmetric is the lowest. Now let us try the other pos-
sibility: the mixed is the lowest. Then our first-order lep-
ton mass matrix (e.g., of e, p, and v) is

'0 0 0
0 0 0 (39)
0 0 A

The familiar example of the comphcated systems, whose
ground state does not enjoy the lowest degeneracy, is the
iron magnet. A three-body spin system with the Hamil-
toman

H= QS,"S, (40)
i&j

is another example, whose ground state is in the SI doub-
let instead of singlet.

The wave functions of the three generations in the
equally massive case {e.g., TTT or VVV) are (Appendix
A}

U = [F'(12,3)( —,', )'~ (bca —cba acb +ca—b 2abc+—2bac)+ F"(12,3)(—,
' )'~I(bca +eba acb —eab}],— (41)

[—F'(12,3)(—„' )' I(bea —cba +acb —cab)+ F"(12,3)(—„)'~ (bca +cba +cab +acb 2abc —2b—ac)j, (42)

W =( —,
' )'~ F(12„3}(abc+bae +bea +cba +cab +acb},

( 8vq +p v~ ) + 'I/Tv~ ~ (44)

Only q is arbitrary &~use the third term itself is sym-
metric under 53. %'e must put q=1 in order to get a
good behavior of the vector particle up to higher energies
of about 10' GCV. Since leptons are in pure SS represen-
tations, there are no mixings axnong leptons; in addition,
the first two leptonic generations are massless; therefore
the e,p universality is perfect. It is interesting that in Eq.
(44), potentially "maybe" terms like ev„, etc. are forbid-
den to enter into W'+ due to the SI symmetry. The same

where wave functions are factorized into space parts Y,
F', and F", and particle name parts (e.g., abc, etc.). We
name the dyons by their dyon charges. The positions of
the names in each tenn are very important because they
corrcspond to thc pfcoIl s coordinates fl, fI, of fi, whlcli
are simplified in Fs by 1, 2, and 3. 12=(1/~2)(rl —ri).
Y(12,3) is symmetric under pelmutations of the three
coordinates. Y'(12,3) and F"{12,3) make a mixed rep-
resentation of SI, F'(12,3) = —Y'(21,3), F"(12,3)
= F"(21,3). All three wave functions are symmetric
under the simultaneous permutation of a,b,c and 1,2,3 for
the sake of bosonic statistics of the preons. U is antisym-
metric under a~b exchange, while V is symmetric. It is
worth noting that both U +V and UU+VV are sym-
metric under SI. Therefore, when entering the formula
of, say IV+, they should appear in combination as

rulc app»cs «ncu«al currents and thus forbids flavor-
changed neutral-current interactions.

Now, let us turn to the quark se:tor. To discuss masses
and ml»ngs, we should stick to one color of quafks, say
those with color c, i.e., T'TSV' for up quarks and
V P T' for down quarks. In both cases, a and b quafks
afe equally massive. The Hamiltonian of the composite
quark»s symme«c under the exchange a b, though not
symmetric under S3,

Hq(a b c)=Hq(b a c) (45)

The eigenfunctions of Eq. (45) are not in the pure repre-
sentation of SI because S& is not the symmetry of the
Hamiltoman. However, in order to get W+ boson purely
symmetric under SI (because the "leptonic part" of W is
so) the quarks entering the formula of W+ must be writ-
ten in the "ideal" wave function corresponding to the
MI —My llnllt, which ls dcllotcd by thc subllldcx 0

doIIo+soco+boio . (46)

From the physical states to the ideal states, there is a
transformation; this is where the mixing comes in. Once
the transformation is unitary, the neutral current of
quarks will keep the original diagonal form. Therefore
the Glashow-Iliopolous-Maiani (GIM) me:hanism15
works. The same mixings happen in the interactions of
X [Eq. (30)] but not in g, and F„. The mass matrix on
the bases of SI elgenstates is
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e) 0 0
0 ei P

pO

.=(n
I
H (a,b, c}

I
n') (n, n'=U, V, IV) .

(47}

(48)

FIG. 7. The mixing diagram for neutral duons. At least t~o
phonons are involved.

We have lyl » IPI 1&ii i&el
reason b that causes the splitting between A and X . If it
happens that 0-

I
e'i

I & I e2
I

for down quarks, then there
—1&ii & leil «rupquar

cases, the a,b preons have a different relationship with the
c preon in respect to the masses. For example, if
Mr&Mi, there are two light preons m down quarks,
while there are two heavy preons in up quarks.

In the above discussion of quark mixings, we did not
consider that the physical states for unequal-mass preons
may not be expanded completely in the bases of the
lowest-lying pure S3 states. A formal calculation includ-
ing this consideration is given in Appendix B. When ex-
cited states other than the lowest-lying three are energeti-
cally located far away, their contribution should be very
small. However, since ei and ei are very small, the KM
matrix is very sensitive to the corrections to the first
2 X2 block of the mass matrix.

VI. SUMMARY AND DISCUSSIONS

Two years ago it seemed impossible to seriously work
with such a compact model as the A model discussed in
the preceding sections. ' There were too many problems:
the hydrogen atom would collapse since all six net preon
numbers in it are zero; there were no consistent rules for
writing down sixions'„ there was no way to reproduce the
GIM mechanism, etc. Now we find, as discussed in this
article, that the model itself has some features which may
hint at the possible, consistent solutions of these difficul-
ties. However, as we have pointed out many times, most
of our ideas argued are not well supported. The main
reason for this situation is that we cannot solve the
dynamical problem of a three-dyon bound system.

One of these arguments is worth putting special atten-
tion to. We have supposed that the symmetry of the
preons [SU(2)] X[U(1)] XS'i goes through a "magic"
dynamical process atid becomes the symmetry of compos-
ites, G, =SU{4)XSU(2)XSU{2)XU(1). G, seems to be a
good symmetry if only lowest-lying trions and sixions are
considered. SU(5) and larger symmetries are not suitable.
However, when we consider the six flavor neutral duons,
the symmetry 6, is also in question. Let us consider
these duons in the equal-mass limit (Mr ——Mv). They are

q& =( ,
', )'"—(r'r'+r"rb+v'v

8

+ V V 2r'r—'—2vcVc)

=-'(r'r' —v'v' —r'r b+ VbV b},

=( ')'"(r—'r' vv —+rbr b
I3A,8

VbVb 2rcre+2vcvc)

(53)

(54)

gq, =o, (55)

we find, considering the interaction of all rl; with duons
(Fig. 8), they cannot split P . They cannot split the

other degeneracies [including those, when Mr ——Mi, in
the SU(2)n multiplets] either. This might have some-
thing to do with the following equation:

QH ~I . (56)

That is, the summation of all squared Cartan operators in
a fundamental representation of an SU(n) algebra is pro-

It is easy to prove that, including all order of sound in-
teractions, i)0 is heavier than the other five and the latter
five are always degenerate (see Appendix C and Figs. 7
and 8) therefore one can choose any linear combinations
of the five as physical eigenstates. The trouble is that
they are members of SU(2} triplet, SU(3) octet and
SU(2)XSU(3) (3X8)-piet, however, with all charges van-
ishing. Since they make incomplete representations of
SU{3) and SU(2)n, it becomes suspect that SU(3), and
SU(2)n. (not yet even chiralized) are good symmetries of
the composites. However, it is equaBy suspect that these
i)'s break SU(3) or SU(2} symmetry. Writirig them in the
orm

' 1/2

g ( r ITr ll + v0' v &7
)

6
(49)

g(rr —vv),
6

(
& )i/2(rara+ Vava rbrb VbVb)

FIG. 8. Duons can also interact among themselves by this di-
agraHl.
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portional to unity. Besides, these particles interact with
quarks and leptons and sixion bosons very weakly as we
argued before. It becomes very difficult to find any phys-
ical effects of their existence.
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APPENDIX A: GENERATIONS FOR THE
EQUAL-MASS PREON CASE

In Ref. 19 we have discussed a possible mechanim to
produce generations. The main idea is described in Sec.
V. We are now going to reproduce wave functions for
different generations in order to give details of the calcu-
lation and make some corrections on coefficients appear-
ing in the final formulas of Ref. 19.

The equal-miss three-dyon neutral system might have a
ground state, which is in the mixed representation of the
S& group, the permutation group of three coordinates:

YE, ~q ~~(riz, R&)
(doublet of Si) .

Eo~q ~m rii» 3
(Al)

Near this ground state, there might be an Si symme«c
"S3 excitation"

U = [Y'(12,3)M'+ 1"'(12,3}M ],
2

V= [Y'(12,3}N'+ Y"(12,3)N ],
2

W = Y(12,3)S .

Their explicit forms are given in the text. The energies of
states U and V are exactly the same as Eo. It is not cer-
tain, hke the generation mechanism itself, whether
E»EO ——0 or Eo&Ei ——0. The latter possibility was tak-
en in Ref. 19, while here we suppose Eo ——0.

APPENDIX B: GENERATIONS AND MIXINGS
FOR THE INEQUALLY MASSIVE PREON SYSTEMS

Let us make the following wave functions by equal-
mass preon bound-states solutions:

~ +As'[Ys ~q~~(12, 3)M'+Yg~q
~

(12,3)M ],
2

(Bl}

where the summation is over all possible states with the
same parity, spin

~ q ~, its z component m, and Si prop-
erties. Coefficients Az' are chosen to minimize the value

E i = & 1t'1 I H(Mr Mv )
I yi & =mi»mum.

where H is that in Eq. (45). Similarly,

(82)

To meet the bosonic statistics of preons, we must have

space part X name part=symmetric.

There are three ways to meet the statistics condition for
space wave functions (A 1) and (A2):

YE& ~q ~M(r12~R3) ~ (A2) g Az [YE ~q ~

pg(12, 3) N'+Ys'(q ~~(12,3)N2]q m

wh~re Eo and Ei are energies
~ q ~

and rn denote the
spin and its z component of the s stem, respectively.

ri2 ——(1/~2)(ri —r2) and Ri ——(1/ 6)(ri+r2 —2ri} are
the relative coordinates. Except the space part (Al) or
(A2), the total wave function also has a particle name

part, similar to the flavor part in the quark modeL Since

S& is a good symmetry for the three-body system, the
name part wave function should be able to be classified
according to S3 representations:

and

Ei = & &2 I H(Mr, Mv) lent 2) =mimmum

1 3 g +E YE
~ q ~

ns S ~

(83)

1
(abc +bac +bca +cba +cab +acb) .

6 The mass matrix for down quarks is

E', 0 0

0 E02 p
() Pe Eo

For M:

( —,', )' (bca cba acb +cab —2abc —+2bac):M-', —
(A4)

( , )'~ (bca +cba —acb cab) =M— —

(B6)

(B7)

A =(—,
' )'~ (abc bac+bca cba—+cab acb)—. —(A6)

For ¹

—( , )' (bca cba +acb—cab—) =N', —
(A5)

(+, )' (bca +cba +cab +acb 2abc —2bac}=—Ni;—

that for up quarks is

EO' Pi

P»
' Eo'

(88)
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M(i —(lb;
~
H(Mr, My) ( fg)

As discussed in the text,

APPENDIX C: MASSES OF NEUTRAL DUONS

The mass matrix can be written as (in the Mz ——Mi
limit, n =6)

(IEi I
—IEz I)(I&i I

—IEz I) &0.

The way quarks enter the formula of W'+ should be

(810)
X+X

F X+X
J+ P e ~ ~

(n Xn matrix) . (Cl)

0 0
id ju . (811

After diagonalization, it becomes

Both (88) and (89) can be diagonalized by unitary ma-

trices and the KM matrix may be obtained by the stan-
dard way, 3 although not a realistic one.

diag[X+(n —1)F,X,X, . . . ], (C2)

where X is exactly the mass of T'V', if one does not con-
sider the possibility that T'V' may become Goldstone bo-
SOBS.
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