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Contrary to the expmtation of the naive spectator model, D ~/K decay has recently been ob-
served with an apreciable branching ratio. In this paper, it is however pointed out that the sizable
rate of D ~PE decay is, in fact, uo surprise in the newly developed algebraic approach to uonlep-

tonic weak interactions and it can be estimated from the well-known rate of Kq~2m decays. The
value of I"(D ~$17". } thus obtained is in good agreement with experiments. The approach uses a
hard-pseudoscalar-meson extrapolation instead of a soft one and deals with iong-distance physics in

earnest, by using the algebraic method developed in the framework of asymptotic flavor symmetry
which nevertheless maintains a close connection with quark-line diagrams.

I. INTRODUCTION

According to recent experiments, ' the decay D ~PE,
which proceeds only through the W-exchange diagram2 in
the naive quark model, has a sizable decay rate. In the
traditional QCD-inspired approach, this fact implies that
the color suppression expected in the perturbative ap-
proach3 does not work in quasi-two-body decay as well as
for the Do~E usro and the 8'-exchange diagram (Fig. I)
has to play a significant role. However, the naive W-

exchange diagram without nonperturbative gluon correc-
tions will undergo helicity suppression as in the m ~ev de-
cay. Therefore, it seems that nonleptonic decays of had-
rons (at least of D ) have to be treated in a nonperturba-
tive way. On the other hand, the experimental fact ' that
the D E E decay, which can occur also predominant-
ly through the W-exchange diagram, is suppressed rela-
tive to the D ~X+K decay although both of them are
Cabibbo-angle-suppressed decays suggests that the cancel-
lation of the amphtudes expected under SUf(3) symmetry
works in the former decay. However, if this is the case, it
is not easy to explain the experimental data,
PD ~E+E )II (D ~sr+sr )=4, a well-known puzzle

in the Cabibbo-angle-suppressed decays of the D meson.
In all, the understanding of nonleptonic D decays from
the conventional approach is at best in confusion. It is,
therefore, useful to add a fresh point of view towards the
unified description of nonleptonic weak decays of had-
rons. In this paper, we discuss the newly observed
D ~/K decay, continuing our previous studies which

use an algebraic approach with a hard-pseudoscalar-
meson extrapolation. The method can be partly viewed as
an innovation of the old current algebra which is marred
by the serious ambiguity associated with the use of the
soft-meson approximation. We have replaced the soft-
meson approximation by the much milder hard-meson ex-
trapolation which is executed in the infinite-momentum
frame (IMF). The asymptotic hadron matrix elements of
H~ appearing in the amplitudes thus obtained are then
severely constrained by the sum rules obtained in the alge-
braic approach developed in QGD and electroweak
theory. In this theoretical framework, though still ap
proximate, a reasonable unified description of Ks~2n.
and D ~En. decays has previously been obtained. In this
paper, we show that the D ~PE can also be accommo-
dated well in the same scheme.

II. BRIEF REVIE%' OF THEORETICAL
FRAME%'ORK AND METHOD

FIG 1. The D ~PE decay through the W-exchange dia-
gram. The intermediate states are ordinary (gg) meson states.

We briefly explain the theoretical framework and the
method by which asymptotic constraints on the relevant
matrix elements of H~ are derived. First of all, the alge-
bras (equal-time commutation relations) involving the
generators of underlying symmetry groups of QCD (i.e.,
the vector charges Va and axial-vector charges A ) are re-
garded as the constraints upon the world of observable
hadrons which we solely deal. [Recall in this connection
the successful current-algebra calculation of g„(0).] It is
also important to note that these algebras are valid in bro-
ken symmetries. For V we introduce the mell-tested con-

34 2778 Oc 1986 The American Physical Society



Do~PE DECAY IN THE ALGEBRAIC APPROACH TO. . .

cept of asymptotic flavor symmetry —the creation and an-
nihilation operators of physical (i.e., "in" or "out") had-
rons do transform linearly under flavor-SUf(X) transfor-
mation generated by V~ but only in the infinite-
momentum liinit of the SUf(X) multiplet where multiplet
masses do not play a role, The inevitable and important
effect of symmetry breaking, i.e., flavor particle mixing is
taken into account in this asymptotic limit. Vacuum an-
nihilation by V~ is used only among the states of flavor
multiplets with infinite momenta (vacuum annihilation by
lightlike charges). For the algebras involving the charge
V, the application of asymptotic flavor symmetry im-
mediately yields broken-flavor-symmetry sum rules,
where physical masses and mixing parameters of hadrons
play a crucial role. Our asymptotic sum rules are then
shown to be explicitly compatible with the Gell-
Mann —Okubo multiplet mass splittings including flavor
particle mixing (see Ref. 8). For the algebras involving
axial-vector charges [the safest charge to be dealt with is
of course the SU(2) charge such as A + =Ai+iA2, etc.],
only asymptotic flavor-symmetry contents of the algebra
are requested to be realized levelwise or blockwise. This
ansatz which synthesizes, at the observable hadronic level,
the two distinct but equally important aspects of quarks,
i.e, current and constituent quarks, has also been success-
ful in producing dynamical constraints which are in
agreement with many important experiments. A
comprehensive review on the above algebraic approach
has recently been given in Ref. 8. We stress the fact that
we always deal only with the physical "in" or "out" had-
rons. No virtual particles are involved in the computa-
tion.

III. CONSTRAINTS ON THE ASYMPTOTIC
MATRIX ELEMENTS OF H

We start by briefly recapitulating the derivation of im-
portant constraints ' upon the asymptotic single-particle
ground-state-meson matrix elements of the weak Hamil-
tonian H =H +H . We pick out, for example, the
algebras

[[H(o,—) A ] A ]=[[H(0,—) V ] V ],
[[H(0,—),A, ],A ]=[[H(0,—), V .],V ],

[Hpv(pc) A ] [Hpc(pv)

with a=ir+-', where H(0, —) denotes the effective weak
Hamiltonian (in the limit of infinite IV-boson mass)
describing the (charm-conserving and strangeness-
changing) process with b,C=O and bS= —1. In broken
SUf(3), we then insert these algebras between physical
ground-state-meson states (M(a, p, A. )

~

and
~
M(P, p', I, ) ),

where ct=n.+,rt, rt'p+, P, co and 13=K+,K*+ with
p=p'~m and helicity A, . Then, the right-hand side
(RHS) of these equations involving vector changes V
takes definite expressions which contain only asymptotic
single-particle ground-state-meson matrix elements of 8
with the use of asymptotic SUf(3} symmetry. On the
left-hand side (LHS) we insert a complete set of single-

particle meson states with proc between the operators
(H and A 's) and group them into blocks (i.e., QQ and
possibly Q Q Q Q meson states labeled by levels). We then
require that asymptotic flavor-symmetry contents of the
algebra expressed on the RHS of these equations should
be realized on the LHS in a simple manner, i.e., blockwise
(or levelwise). Note that no saturation assumption is in-
troduced. We have found that this procedure can, in fact,
explain many important dynamical relations of hadrons
which include almost all the successful SU(6) result. For
the present problem, the realization requirement for the
ground-state QQ-meson sector yields, s among others,

~2(1T'(p) ~H (E'(p'))+(7r+(p) ~H ~E+(p')) =0

~2(p (p) i
H

i

K' (p') )

+(p+(p) (H."tK*+(p )), ,=0,

with p =p'~ oo, which demonstrate that the ground-
state-meson matrix elements of H(0, —) do satisfy the
asymptotic

~

A, I
~

= —,
' rule. We also obtain SU(6)-type

asymptotic constraints such as

(~ (p)
i
H iK (p')) =+(ir (p)

i

H
i

K" (p', A. =O))

and

&~+(p)
~
H."

~

K+(p ) & =+ &~+(p)
~
H."~K'+(p, ~=o))

with p=p'~ oo. Charm counterparts of these constraints
in broken SUf(4) have also been obtained. Here we list
only the constraints which will be used in this paper.

(i) The asymptotic
~

b,I
~

= —,
' rule and its charm coun-

terpart:

(~+ iH."iK+)+vZ(~'iH„"iK') =0,
(~+ [(H."[K'+)+v 2( '[H."]K")=0, (3.1b)

(E'i(H."(D'&+(~+
i H."

i
F+)=0,

&K'iH."~D"&+& + IH„"~~ +&=0.
(3.1c)

(ii) The SU(6)- and SU(8)-like asymptotic constraints:

(~+ I,H."~(K+ &=+(~+
~
H."

~

K'+),
(K'iH."iD') =+(K') H."iD"') .

(3.2a)

(3.2b)

(iii} Asymptotic SUf(4) parametrization for the matrix
elements of H:

&KO~H.PC~DO&= —cote, &~+ ~H."~K+&. (3.3)

Here 8c denotes the Cabibbo angle and all the above ma-
trix elements are evaluated in the infinite-momentum
frame (IMF). H~ denotes H( —,—) with b,C=b,S=—1.

IV. COMPUTATION AND NUMERICAL EVALUATION

In order to write the amplitude in terms of the matrix
elements of H~ taken between two hadron states with in-
finite momenta such as given by Eqs. (3.1)—(3.3), we have
developed a hard-pseudoscalar- (PS) meson technique in
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+Ms(PI ~PIPI ) . (4.2)

the IMF (Ref. 8). Using this extrapolation which is much
milder compared with the old soft-pion approximation,
wc call describe the amplitude (whlcll ls symmctrlzcd wltll

respect to the two final PS mesons) for

Pf(p) )~P2(PI)+PI(q)

approximately as

M(P, P,P, )=METc(P, P,P, )

%e have evaluated the amplitude in the limit q~O and

p) ——pq~af) which effectiuely achieves the limit q„~O
(p, =0,1,2,3), without assuming the masslessness of the PS
meson. However, it should be noted that terms such as
(q.pf ) can now remain finite after the above limiting pro-
cedure. Therefore the equal-time-commutator (ETC) part
and the surface term, which was set to be zero in the old
soft-meson limit but now suruiues in the present hard-
meson extrapolation, are given by Eqs. (4.3) and (4.4)
below,

METc(PI PIPs)= —I[(2fp, ) '&Pl
I l. Vp, H"] IPI &+(2fp, ) '&PI

I [Vp,»"]IPI&I . (4.3)

METc is the usual equal-time-commutator part which now has to be evaluated in the IMP, enabling us to use asymptotic
fiavor symmetry:

Ms(P, ~PIP, )= lim [i(2fp ) 'q„T„''+i(2fp, ) 'q„T„]
q~O, pl~ cc

=I(2fp, )
' g[(mI' —m f')/(m. '—m I')]&PI

I ~p, I
n & &n

I
Hw'I P) &

+g[(mI —m) )/(mf —ms )]&PI IH II&&I IAp IPI &

I

+i(2fp ' gf(mz —m) )/(mn —mf )]&PI I "p, I"&&" IH~ IP) &

n

+g[(mz m) —)/(mI —mz )]&PI IH~ ll'&&I'I Ap I
PI &

1'
(4.4)

Here

Tp' ——i x Pk p2 T Ap' x,H„O P) p) e

(j=2,k=3 and j=3,k =2). Ap'(x) denotes the axial-vector current which transforms like PJ, and fp the decay con-

stant of the pseudoscalar meson P;. The summation g is extended over all the possible single-particle states. In Eq.
(4.3) we have used the well-known commutation relation

HPcfpv)] [V HPV(Pc)] (4 5)

The surviving surface term Eq. (4.4) corresponds to the diagrams drawn in Fig. 2 and involves only asymptotic single-
particle meson matrix elements of H and axial-vector charges A

Now, we apply the same technique also to the quasi-two-body decay:

Pf(PI)~ V(PI)+P2(q),

where V denotes a vector meson. Then the amplitude is written as [using the method which led to Eq. (4.2)]

M(P) -+ VPI )=Mac(P) ~VPI )+Ms(PI ~VPI ),
where

VPI)= —II(2fp, ) '& VI [Vp, ,H"] IP) &
—(2fp, ) '& VI [Vp, H'"] IPI&I

(4.6)

(4.7)

(4.8)

Ms(P, VPI)=i(2fp )
' g[(m —mf )/(m„m, )]&VIAp—In&&n IH IP) &

+g[(mv' —ml')/(ml' —mv')1& V
I
H~"

I
I & &I

I ~p, I P) &

—i(2fp, )
' Q[(mv' —m2')/(m. '—mI')& V

I ~p, ln &&n IH" IPI &

PR

+g[(mv —mls)/(ml —mv )]& V IH~ l1 &&I I Ap, IPI &

I
(4.9)
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,
'

P) P
/ M„,(K,'-~+~ )-= l—(~ZI. )-'&,~'

~
H."

~

K+) .

(4.13b)

,
'

P3 .' P3

P2

FIG. 2. Single-hadron intermediate state contribution to the
surface term Ms(P~ ~P2+P3 } in Eq. (4.4). 8 denotes the weak

vertex.

In Eqs. (4.8} we have again used the commutation rela-
tion, Eq. (4.5).

In the expression of Eq. (4.9), the amplitude is antisym-
metrized'o with respect to the exchange of two PS-meson
momenta —q~p& in the crossed channel, in anticipation
of the use of asymptotic SUf(4) symmetry. Recall that
our key constraint Eq. (3.3) was obtained ' from the
equal-time commutator [H( —,—), VDO] =cotHcH(0, —)

wtth V&0= V~& —iV~3, using asymptotic SUf(4). Our am-
plitude can then smoothly reach its flavor-symmetry lim-

it, when all the quark masses are set to be equal or equal
to zero.

We now choose to relate the D ~/K to the
Ks~n+n decay. We think that this procedure is least
ambiguous compared with other dynamical comparisons
between the processes involving b,C =bS = —1 and
b,C=O and b,S=—1, because of reasons which will be
clarified later. For this purpose, we first rewrite Eq. (4.2)

P2P3 ) =Ms(P] P3P3 )/METC(P] P2P3 ),
(4.11)

and provides a measure of the importance of the contribu-
tion of the surface term relative to the ETC term. Keep-
ing only the ground-state QQ-meson contribution in the
surface term Ms, we have obtained the following result in
Ref. 8. Substituting Eqs. (3.la)—(3.2b) into Eq. (4.10}to-
gether with Eqs. (4.3), (4.4), and (4.11), and using asymp-

totic (not exact) SUf(4) symmetry for the matrix elements
of the charges A and A», we obtain'

M(D ~K n' ) METC(D ~K —rr+ )( 1 +0.5), (4.12a)

M(K,'~~+~ }= MET(c,K'-~~ ~+-)( 1+0 2), .(4.12b)

M(P) ~P3P3)=METc(P) ~P3P3)[1+r(Pt ~P2P3)] .

(4.10)
Here r(Pt ~P2P3) is defined by

Here, we have chosen the positive sign in Eqs. (3.2a) and
(3.2b), and used" (n+

~

A + ~p )=+ 1.0. It should be

noted that in Eqs. (4.12a) and (4.12b), the ETC term is
larger than the surface term where only the ground-state-
meson contribution is retained. Later we find that the
same trend persists also for the D ~PK decay. From
Eqs. (4.12a) and (4.12b) with Eqs. (4.13a), (4.13b), and
(3.3), we obtain I (D ~K n.+)/I (Ks~rr+rr )=4.4
by using' f„=f». Although it is smaller by a factor
=2 than the observed ratio' I (D ~K n+)/
&(Ks~n+rr )

.
~,„~,=10, this result may be considered

reasonable in view of the approximation made. Namely
the contribution of higher excited states to the surface
term of the D ~K n. + decay is expected to be substan-
tial (while it is not to that of the K~2m decays) and will
explain the above-mentioned discrepancy. Next, we make
a crude estimate on the ratio of the amplitudes given by
(in the same approximation)

RM(D' yK') =M(DO yK O}/M(K,' ~+~ )-
=RETc(D' 0K')+Rs(D' yK')

(4.14)

where RETc and Rs are defined, respectively, by

RETc(D ~/K )=METC(D ~PK )/M(Ks +n+rr )—, .

(4.15)

Rs(D +/K )=Ms(D —~PK )/M(Ks~rr+rr ) . (4.16)

The term in METc (D +/K ), —

i(2fD) '(pi VDoiD" )lD' iH iKo),

ts dropped stnce '(4
~ VDo ~

D (p) ) wtth p~ oo vanishes
in the ideal ro-p mixing limit. (Our theoretical framework
predicts without any other assumption that the 1 no-
net is very close to the ideal limit. ) Thus we find

METC(D 4K ) = l(2f ) '(K *o—
~

H
~

Do)

tn the ideal ro &mixing lim-it. Since the ETC term does
exist, in the present approach there is no reason to suspect
that D ~/K decay is suppressed.

The ground-state-meson contribution to Ms(D
~PK ), which corresponds to the diagrams drawn in
Fig. 3, is given by

METc(D ~K rr+ ) = i(2f» ) (K
~
H~

~

D )

(4.13a)
FIG. 3. Ground-state-meson contribution to the surface term

Mq(D ~PE ). S denotes the weak vertex
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M,' ="(O' PK')=i(2f ) '[(m&' —m ')/(m ' —~ ')]&Pi&„.~K'&&K'~&' ~D'& . (4.17)

Again Ms
= '(D ~PE ) does not contain the term pro-

portional to (2') ' in the ideal co-P mixing limit, since
the asymptotic matrix element (P ~ ADO ~

D & vanishes in

the limit. Neglecting contributions of higher excited
states to the surface term (for justification, see the remark
below), choosing the same positive sign in Eqs. (3.2a) and
(3.2b) as used in Eqs. (4.12a) and (4.12b), assuming

f =fx and using Eqs. (3.3), (4.12b), and (4.13b), we esti-
mate RETc(D ~PE )=2.6 and Rs(D ~PK )=1.2 and
hence RM(D ~pKo)=3.8. Thus we obtain the decay
rate I'(D ~pE }=1.9X10' sec '

by using as an input
the well-known value I (Es~m+m ),„~,=0.7689X 10'o

sec '. Our result reproduces well the recently measured
branching ratio' 8(D ~/K )-1%, which corresponds
to the decay rate I (D ~/K )-2X10' sec ' with the
use of the world average' of the lifetime of the D
meson, r(D ) = (4.35+0.32) X 10 's sec.

We may remark here about the accuracy of the above
result which is based on asymptotic fiavor symmetry,
where the mixings between ground-state mesons and their
excited states are neglected for simplicity. The SUf(4)
mass formula for the ground-state mesons under con-
sideration, obtained using the same asymptotic SUf(4)
symmetry and neglecting intermultiplet flavor mixings,
contain only about 10% error when compared with ex-

periments. As mentioned in Ref. 12, we obtain f =fx in

the same approximation,
So far, we have neglected higher excited-state contribu-

tions to the surface term. Here we show qualitatively that
the approximation is reasonable as far as the cases of
Ks~n+mand .D ~. PE under consideration are con-
cerned. As for the two-body decays of the K meson, the
ETC term MErc contributes dominantly while the surface
term Ms is minor, i.e, ,

~

r' = '(Es~~+m )
~

=0.2 as
shown in Eq. (4.12b) and the contributions of higher ex-
cited states are kinematically suppressed due to the mass-
dependent factors in Eq. (4.4). Thus we can safely neglect
the contributions of higher excited states, as long as we do
not treat small effects such as, for example, the deviations
from the

~

b,I~ = —,
' rule. In the case of D ~/K, we

choose to discuss from a diagrammatical viewpoint.
There is, in fact, a nice intimate correspondence between
the result of present algebraic approach and the simple
quark-line diagrams. For details, see Ref. 14. The s
channel of the D ~PE decay proceeds only through the

where I. denotes the level to which the relevant (sd)
mesons belong. The matrix element of Eq. (4.18} corre-
sponds to the diagram in Fig. 4 in which all the flavors of
quarks participating in the weak vertex are different. In
this case the matrix element of Eq. (4.18) can be written
as

((sd )I
~
H~ i

D & —
~
+I (0)VD(0)

~

(4.19)

in the nonrelativistic quark model. Here %L (0) and
qlD(0) denote the values of the wave functions of the
(sd )L meson and D meson at the origin. When L &0, the
RHS of Eq. (4.19) vanishes since VL, (0)=0 in the nonrela-
tivistic limit. Hence the matrix element of Eq. (4.18}will
be small in general if I.+0. One can also produce a simi-
lar result from the realization involving higher 1. states.
The ETC term METc, of course, does not include any
higher excited states. Therefore, we could neglect, in ef-
fect, the contributions of higher excited states to the de-
cays of Es~m+rr and D ~PE . In other quasi-two-
body decays of the Do meson, the situation is different;
i.e., multiquark hadron states, if they exist, can take part
in Ms through the so-called spectator diagram and can
give sizable contributions. A measure of the exotic reso-
nance contribution may be estimated crudely from
I (F+~tI}m+ ),„z,. The reason is simple. Multiquark
mesons can contribute to the amplitude for the process
through the first term on the RHS of Eq. (4.9), which will
be enhanced by the mass-dependent factor since the mass
of the possible exotic (i.e., u s d g meson is expected to be
close to the F+ meson mass. On the contrary, because of
the Okubo-Zweig-Iizuka rule, ', ordinary (QQ) mesons
contribute to the surface term of the amplitude only
through the third term on the RHS of Eq. (4.9), which is
relatively suppressed by the mass-dependent factor.

W-exchange diagram (Fig. 1), as is well known. Although
the crossed channels can involve multiquark (for example,

Q Q Q Q ) meson states as the intermediate states, the
crossed-channel contributions will be sxna11 due to the
mass factors in Eq. (4.4), since the square of the
multiquark-meson masses are much larger than those of
ground-state-meson masses. Therefore, the important
contribution to the surface term Ms(D ~PK ) will come
from the W-exchange diagram (Fig. 1), in which the ef-
fective weak vertex is given by'

(4.18)

V. CONCLUSION

(Sd)L

FIG. 4. Quark-line diagram corresponding to the matrix ele-

ment ((sd}i iH iD )

We conclude the following. (i) The predicted value of
the decay rate for D ~PK is sizable and is reasonably
consistent with present experiment, and the ratio of the
rates of Ks~2m and D ~PE decays can be understood
rather unambiguously. (ii) A unified general description
of K~2m, D~Em, and other quasi-two-body decays of
D mesons seems feasible in the present approach which
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deals with long-distance physics in earnest. As shown in
this paper it is indeed possible to obtain a rather unambi-
guous unified description of the D ~PK and Es~2rr
decays. However, contributions of multiquark hadron
states to Mq have to be estimated for other processes.
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