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We present one-dimensional, relativistic, viscid hydrodynamic calculations for central collisions of
2381 ions at center-of-mass energies up to 100 GeV/nucleon. We find that while the hydrodynamic
evolution is very sensitive to the formation and thermalization time and to the models of the source
terms, the effects of changing the viscosity and the equation of state are small.

I. INTRODUCTION

The possibility of creating a quark-gluon plasma in the
laboratory has aroused much interest in high-energy
heavy-ion collisions.! An important ingredient in a theory
of ultrarelativistic heavy-ion collisions is the understand-
ing of the dynamics of the process, and hydrodynamics
serves as both a plausible and a convenient framework for
such a description.

Many authors have considered different aspects of the
hydrodynamics of high-energy heavy-ion collisions.?~®
Most of these calculations adopt a scaling picture? for the
longitudinal expansion of the energetic volume produced
in the collisions, which allows a simple analytic solution.
However, Ref. 7 shows that while a one-dimensional ap-
proximation is not bad, finite-size effects may significant-
ly modify the scaling behavior of quark-gluon plasma.
Kajantie and co-workers,? on the other hand, showed that
a consistent treatment of the source terms is a necessary
refinement of earlier estimates of the initial conditions.
Moreover, recent studies suggest that nuclei seem to be
not as transparent as they were once thought.” This may
indicate deviations from the inside-outside cascade
model,'® which was used by most of the hydrodynamic
calculations. It is also important to investigate the sensi-
tivity of the hydrodynamics to viscosity, the equation of
state, and the formation and thermalization time 7, of the
plasma, not only because these parameters are essential in-
gredients in a study of the properties of quark-gluon plas-
ma, but also because the very existence of the plasma in
heavy-ion collisions may depend on the actual values of
these parameters.

In this paper we present a one-dimensional, viscid, rela-
tivistic hydrodynamic model of high-energy heavy-ion
collisions. Our purpose is twofold: we want to make
what we believe to be necessary modifications to the ear-
lier calculations, and to probe the importance of several
other uncertain parameters. This paper is organized as
follows. In Sec. II we derive the hydrodynamic equations.
The source terms are then derived in Sec. III from two
“benchmark” models: the inside-outside cascade and the
multiple collision model. Section IV presents the method
of solution and the results. Implications from this work
are then discussed in Sec. V, which concludes the paper.
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II. HYDRODYNAMIC EQUATIONS

We start with the stress-energy tensor, T**'=T}§" + T4,
where

T8 =(e+Putu”+ Pgh” (1a)
is the ideal part and
T = —m(3*u "+ 0"u* +utu®d,u” +u u“d,ut)
—(E—Fm)(g* +utu")d,u’ (1b)
is the dissipative part.!! Here, € and P are the local ener-
gy density and pressure, respectively, and u* is the four-
velocity (y,yv). We use the metric g'¥=diag(—1,1,1,1).
In writing down Egs. (1), we follow the Landau-Lifshitz
definition and retain only terms of first order in gradients.

7 and £ are the shear and bulk viscosity coefficients.
We also consider the net-baryon-number current:

J=ngut4v#,

where njp is the proper net-baryon-number density and v#
is the heat-transport term. In a plasma with zero baryon

-chemical potential, v# vanishes because it involves trans-

port of heat with respect to the baryons.!>!* In the bulk
of a quark-gluon plasma created in heavy-ion collisions at
energies considered here, the baryon chemical potential
and the net baryon density are both small; therefore it is
safe to ignore v¥. After all the heat transport term
represents a small correction to the baryon-number
current which we shall treat approximately only (by con-
sidering equations of state not depending on the baryon
chemical potential).

We shall consider a central collision along the z axis in
the center-of-mass frame with time ¢ (¢ =0 when the first
collisions occur). We will also restrict our calculations to
collisions of identical nuclei, so that the system is sym-
metric with respect to the z =0 plane [see Fig. 1(a)]. Hy-
drodynamic equations can be derived from energy-
momentum conservation, aﬂT‘“’= 3%, and net-baryon-
number conservation, d,J§=0p, with ¥ and op source
terms that describe how energy momentum and net
baryon number are created in heavy-ion collisions.> In the
following we shall ignore the transverse degree of freedom
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and only consider the longitudinal (z) flow of the plasma.
A natural choice of coordinates for one-dimensional rela-
tivistic hydrodynamics is (e,e, ), where e; and elv are the
unit vectors along the s =In(r/7), 7=(t*—2%)!"? being
the proper time, and

t+z
t—z

y=—In

1
2
axes. But we shall use a new set of coordinates 1,V de-

fined as

N
u

i—(aes +Be,) ,
(2)
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v

il

L (Be, +ae, ),
a

in terms of which the hydrodynamic equations are simpli-
fied. Here a=sinh(8—y), f=cosh(0—y), §=arccoshy
being the local fluid rapidity, and a=(a’*+8%!/2. The
set of curves along the i and ¥ directions are similar to
the characteristics of the flow, except that we use the fluid
velocity as seen from a scaling frame, tanh(6—y), instead
of the velocity of signal propagation.>'* Note that if scal-
ing holds, 6=y, then the i and ¥ axes coincide with the
»,s axes. The directional derivatives along G and ¥ are

The hydrodynamic equations thus obtained are
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FIG. 1. Central collision of two identical heavy ions in (a) the
center-of-mass frame, (b) the target’s rest frame.
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with S| =3%coshf—=!sinhf, S,=3='coshd—=’sinh6,
and

avnB +n38u9:td03 . (3C)

Here, X=£+ 57 and t;=7/a.

We also need an equation of state to supplement Egs.
(3). We will only consider cases where P =P(¢), and in-
vestigate the sensitivity of the hydrodynamic evolution to
the existence of a phase transition.

III. SOURCE TERMS

We shall assume that heavy-ion collisions are made up
of nucleon-nucleon collisions. Immediately after a
nucleon-nucleon collision, the quanta produced undergo
free streaming. At some proper time 7, later, they materi-
alize, establish local thermal equilibrium, and thus begin
the hydrodynamic era. Then, as shown in Ref. 3, the
source terms can be built up as a direct summation of
contributions from individual nucleon-nucleon collisions:

oS m; x* dN]"

S(r—my) ,

collisions i =m,N x4 T()Z dy
1 dNg"
op= S(r—m1g) .
collisions o To d,V

Here, dNg"/dy and dN7"/dy are the baryon- and pion-
number densities per unit rapidity produced in nucleon-
nucleon collisions, m, and my are the transverse pion
and nucleon mass, 27 is the transverse area of the collid-
ing ions, and x*=(t,z). We have neglected the contribu-
tions to the source terms of heavier mesons and reso-
nances. The inside-outside cascade (IOC) model says that
most of 7 is due to formation time during which the pro-
duced quanta do not interact. Therefore, at high enough
energies, a nucleon in the beam after a collision will ma-
terialize outside the volume of the colliding nuclide and
will not make another collision with the target nucleons.
The total number of primary nucleon-nucleon collisions is
then equal to the total number of nucleon in each nucleus.
Assuming uniform density distribution we can therefore
replace the summation over all collisions by

nosinhy, [ o dt

in the center-of-mass frame, with y, being the rapidity
and ng the average proper density of each colliding ion.
The source terms thus obtained are



2766
m; dN™
30y,s)=n, sinhyoz——i —(y")0(,s) , (4a)
i To dy
(9.5) ng sinhy, dN},"'(
og\y,s)= o dy y
1
X o(,s) , (4b)
(eZsinhly +1)172 = *
and
s 'nhy
Siy,s)= e st 3%y,s) . (4c)
P e sinhly + 1)1 2

Here, y'=arcsinh[e®sinh(y)], and © is a step function
representing the source region’® (discussed below).

At the other extreme is the multiple-collision
model'*~!7 (MCM). In this model, most of 7, is due to a
thermalization time during which the produced particles
interact but have not yet established local thermal equili-
brium. A nucleon in the beam can therefore make many
collisions within the volume of the target nucleus, the
probability of making a collision at transverse coordinate
b being Pg(b)=Tpg(b)o,, Where o, is the total nucleon-
nucleon cross section =~30 mb, and Tz(b) is the normal-
ized thickness function'® for a nucleus

Ta(b)= [ p(b,zp)dzp

with p(b,zp) being the density (normalized to unity) at
transverse and longitudinal coordinates b and zp, respec-
tively, with the origin at the center of the nucleus. We
will use a Wood-Saxon form for p with a diffuseness of
0.5 fm and radius R =7 fm for 23%U.

We formulate our version of the MCM in the target’s
rest frame where the beam ion is very much Lorentz con-
tracted. It is therefore reasonable to make the approxima-
tion that all collisions between a nucleon in the target and
the tube of beam nucleons at the same transverse coordi-
nates occur at the same time and same place, which corre-
spond to the overlap of the coordinates of the center of
the projectile tube with those of the target nucleon. In the
system of coordinates defined in Fig. 1(b), z¢ =1¢ tanhy,,
where z¢,tc are the space and time coordinates where the
collisions occur. The average probability for a nucleon in
a strip of the target of length Az to make n collisions
with the projectile nucleons is then

A
AP™(zc)=Azc

o | J dbp(d,zc)[Py(b)]”

X[1=Pg(b)]4~",

where A is the total number of nucleons in each colliding

nucleus.
|

_ O(yo +y )0()’0 —,V)

2sinh
DM(y)= {e’ In | 2300

Yo

2sinhyg(n —1)!

e?—e

D(O)(y)=

1
V2ro, 2

[ l —[exp(—y +yo)—1]?
exp
20,

(n—1)

exp(y —yo)+exp
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From the observation that a nucleon is scattered into
the entire range of possible Feynman x with approximate-
ly uniform distribution, and assuming Feynman scaling,'®
Wong!? obtained the rapidity distribution of target
baryons after n collisions:

(n) e’ 1
D = ——
) 2sinhyy (n —1)!

X6(2yo—y)O(y), n>1,

(5)
DO(y)=8(y) .

We can then sum D.™(y) weighted by AP™ over.n to ob-
tain the contributions of the slab at z- to the target net
baryon rapidity density:

dN3e®

Ady

A
=4 3 DMy AP™(z.) . (6)

n=0

Equation (6) is then summed over all slabs in the target to
get the contributions of the target to the baryon-number
current source term

dNElab 1

t

= A ——
98 2 dy Tod(lc )

slabs

5(7’—7’0) ’

with &/ (z¢)=m(2R |zc | —z¢?) being the transverse area
of the target nucleus at zc. We can now go back to the
center-of-mass frame and add together the contributions
from the target and the projectile nucleus, the latter being
just the mirror image of the former with respect to y =0:

sinh 4
UB(}’»S)= Yo 2 D(n)(yl)G(n)(zC=atO)
70 n=0
O(y,s)
, (7a)
(e¥sinh?y +1)172 a
where
(n) 4 n
G"zc)= |, | [ dbpb)[T(bloy]
X[ =T (b)) —"—2 8)
B tot J{(ZC) ’
with

to=Tocoshyg[e® coshy —(e*sinh®y +1)'/?]

the time at which collisions occur (in the rest frame of the
target, but expressed in center-of-mass y), and

(n—1)
] ] n>1,

—[exp(—y —yo)—17]?
2

2sinhy,
In | —————
%o

e Ve

exp(—y —yo)

20,
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Note that we have smeared out D©(y) with 0, ~0.1 be-
cause of Fermi motion, which has only a small effect on
n=0 terms. If uniform density distribution in each of the
colliding 238U jons is assumed, this model predicts that a
nucleon in either ions will suffer 3.5 collisions in average.

The treatment of the produced pions is only slightly
different. In this case, we have to sum up contributions
from all collisions:

dNSEe 4
=3 Gi(zc)Azcpy
dy n=1
with
n dNnn
pr=3 —(Vs;p) .

=1 ¥

Here \/s_jsz cosh(yy—j 1) is the center-of-mass en-
ergy of a nucleon just before its jth collision, and the elas-
tic term (n =0) is excluded. Note that Eq. (5) implies
that a nucleon in the beam losses in average one unit of
rapidity per collision!” (except for the first one, which just
smears out the rapidity distribution), and we have down-
graded its energy accordingly. G (W s the same as G
except that the inelastic cross section ¢;, should be used in
place of o, in Eq. (8). We thus have, in the center-of-
mass frame,

sinh A
S%y,s)= Ty" m, S G atg)p"(V/5;,")
0 n=1
A
+my 2 D(")(y,)G(")(ato)
n=0
X< O(y,s) (7b)
and
L
Sl ps) = —— S0 5o, ) (7¢)

"~ (e¥sinh?y +1)!72

The boundaries of the source region for the IOC are
given in Ref. 3, and we just summarize their results here.
The hydrodynamic source terms should be turned off (1)
before the products of the first collisions and after those
from the last collisions have thermalized,

s<0,
or
2
sinh?y +1

To

172
R

with d, =2R /sinhy being the time it takes the two col-
liding ions to pass through each other, and (2) after all the
momentum of a nucleon is lost:

d,
s >In {—-coshy +
To

| ¥ | <arcsinh(e ~*sinhyg) .

As formulated above, the MCM shares the same source
boundaries as in the IOC.

For the numerical calculations presented below, we as-
sume central collisions of 2*®U ions with R =7 fm and
ny=0.166 fm 3. We will use the following parametriza-
tion of experimental nucleon-nucleon data:>'°
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dN7"
(»,Vs;)=(0.831nV/5; —0.39)
dy
3
1 s coshy (9a)
X - »
V's)
dNnn
B . coshy (9b)

dy = sinhy,

We will also take the transverse pion mass m,=0.5 GeV
and my =1 GeV.

IV. NUMERICAL METHOD AND RESULTS

The system of Egs. (3a)—(3c) with the source terms
given by (4a)—(4c) for IOC and (7a)—(7c) for MCM using
(9a) and (9b) can be solved by straightforward discretiza-
tion of the (1i,V) plane, which is related to the (y,s) plane
through Eq. (2). The initial conditions, i.e., ng=0,
€e=P =0, and 6=y are implemented on the s =0 axis,
which coincides with ¥=0. The finite difference equation
corresponding to (3a) is then used to evolve € in the ¥
direction, while that corresponding to (3b) evolves 6. We
use a simple forward scheme to calculate finite differences
in the ¥ direction while centering all finite differences in
the U direction. These difference equations are given in
the Appendix. We first solve (3a) and (3b) for € and 6,
and then feed 6 into (3c) to obtain ng at each iteration in
V. Typical step size used is Au=0.02 and Av =0.002.
At beam energy of 14 GeV/nucleon, assuming 7o=1 fm,
pion plateau height of 2.4, and with the viscosity turned
off, our results agree with those in Ref. 3.

Samples of the results of our calculations are shown in
Figs. 2—10. We now discuss the dependence of the hy-
drodynamic evolution on 7, the viscosity, the equation of
state, beam energy, and the model of source terms.

(i) Dependence on 1o First we consider the effects of
changing 79. As shown in Figs. 2(a), 3(a), and 4, the max-

(a) € (GeV/fm®) (b)
10C, 50 GeV/A, ro= 1 fm

ng (fm~=3)
10C, 50 GeV/A, r,=1{m

FIG. 2. Contour plots for (a) energy density in GeV/fm?, and
(b) net-baryon-number density in fm~? for a central collision of
238U ions at 50 GeV/nucleon each. An inside-outside cascade is
assumed, with 7o=1 fm. The coefficient of shear viscosity 7 is
taken from Ref. 13, assuming a relaxation time of 1 fm, and the
coefficient of bulk viscosity £ is ignored here. The bag-model
equation of state is used [Eq. (10) in text]. Contours are drawn
in steps of (a) 0.4 GeV/fm?, from 0.4 to 2.8 GeV/fm?, and (b)
0.05 fm 3, from 0.05 to 0.35 fm 3.
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(a) € (GeV/tm®) (b) ne (™)
10C, 50 GeV/A, ro= 0.5 fm 10C, 50 GeV/A, ro= 0.5 fm
3.0 T 3.0
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2 e
00 0.0
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y y

FIG. 3. Same as Fig. 2 except that 70=0.5 fm. Contours are
drawn in steps of (a) 1.2 GeV/fm?, from 0.8 to 4.4 GeV/fm’,
and (b) 0.05 fm 3, from 0.05 to 0.55 fm 3.
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FIG. 4. 7, dependence of (a) maximum energy density €, and
(b) plasma lifetime 7;. Collisions of 30 and 100 GeV/nucleon
(pluses with holes and crosses, respectively) are shown for the
inside-outside cascade (IOC) model, and 50 GeV/nucleon for
both IOC (squares) and the multiple-collision model (MCM, cir-
cles). In (a) the dashed lines correspond to the boundaries of the
mixed phase for the bag-model equation of state used. In (b) the
plasma lifetime is defined as the proper-time duration for which
the energy density at z =0 is higher than 0.8 GeV/fm3. The
solid lines are drawn to guide the eyes.
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BARYON PEAK RAPIDITY VS T
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e - 1
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25 e -
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05 075 1 125 15 175 2

To (frm)

FIG. 5. 7 dependence of the,baryon peak rapidity in IOC,
shown for E =30 (pluses), 50 (squares), 70 (diamonds), and 100
(crosses) GeV/nucleon. The solid lines are drawn to guide the
eyes.

imum energy density reached e,, is strongly affected by
7o. Bjorken’s estimation for the 7, dependence of the ini-
tial energy density, €,, ~1/7¢ is slightly modified. As a
result of the difference in energy density, the proper life-
time of the plasma 7; also changes as a function of 7, al-
though not as fast as €,,. Assuming IOC, if 7, is as long
as 2 fm, this study shows that even at 100 GeV/nucleon,
the energy density created in a heavy-ion collision will not
be high enough to reach the pure quark-gluon phase (€ >2
GeV/fm?), while if 7, is only 0.5 fm, 30 GeV/nucleon is
sufficient. Both €,, and 7; given here are lower than ear-
lier estimates; this reflects the diluting effect of hydro-
dynamics when the source term is effective for finite
duration. Figures 2(b), 3(b), and 5 also shows that the de-
gradation of the rapidity of the outgoing fragments in
IOC increases as 7, decreases. This can be understood in
the following way: the baryons lose some of their mo-
menta when thermalized with the slower moving plasma;
if 7¢ is smaller, the baryons materialize at smaller y in
average, and thus they suffer more rapidity degradation.
This additional rapidity loss of the fragmentation region
in heavy-ion collisions when compared to that of

€ (GeV/fm®)

np (fm=3)
. (@) o, 50 GeV/A, rp= 1 fm 2o(b) 10C, 50 GeV/A, ro= 1 fm
.0 T

i

1.0 1.0
) n
05 ﬂ 05 0.1
9
0.4 0.05
0.0 0.0 S S s ——
0.0 1.0 2.0 3.0 4.0 0.0 1.0 2.0 3.0 4.0

FIG. 6. Same as Fig. 2 except that § is equal to  when the
energy density falls to below 2 GeV/fm’. Contours are drawn
in steps of (a) 0.4 GeV/fm®, from 0.4 to 2.8 GeV/fm’, and (b)
0.05 fm 3, from 0.05 to 0.3 fm 3.
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(@) € (GeV /fm®) (b) ng (tm~%)
a 10C, 50 GeV/A, r,= 1 fm 10C, 50 GeV/A, r,= 1 fm

. L

1.0 1.0
“ @
05 05 0.1
0.4
0.05
0.0 0.0 —
0.0 1.0 20 3.0 4.0 0.0 10 20 3.0 4.0

FIG. 7. Same as Fig. 2 except that the ideal gas equation of
state with no phase transition, P =€/3 is used. Contours are
drawn in steps of (a) 0.4 GeV/fm’, from 0.4 to 2.4 GeV/fm?,
and (b) 0.05 fm 3, from 0.05 to 0.35 fm 3.

MAXIMUM ENERGY DENSITY VS In E
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PLASMA  LIPETIME VS C.M. BEAM ENERGY

66—

T

(tm) [ .

40 60 80 100
E (GeV/A)

FIG. 8. Beam energy (in center-of-mass frame) dependence
of (a) maximum energy density, and (b) plasma lifetime. 7,=0.5
and 2 fm are shown for IOC (crosses and squares), and 7o=1 fm
is shown for both IOC (circles) and MCM (pluses). In (a) the
dashed lines correspond to the boundaries of the mixed phase
for the bag-model equation of state used. The solid lines are fit
to €, =c InE +d, c and d being constants. In (b) the solid lines
are drawn to guide the eyes.

2769

¢ (GeV/tm?)
(¢} 10C, 100 GeV/A, 1= 1 tm (bi

ng (fm™*)

10C, 100 GeV/A, rp= 1 fm

/’/\\\\ \

/@\f\
e

05 0. [

.1
0.05

PO
\\

05

0.0

00 10 20 30 40 50
y y

FIG. 9. Same as Fig. 2 except that the collision energy is 100
GeV/nucleon for each ion. Contours are drawn in steps of (a)
0.4 GeV/fm?, from 0.4 to 3.8 GeV/fm?, and (b) 0.05 fm >, from
0.05 t0 0.3 fm 3.

nucleon-nucleon data, can be regarded as a signature of
collective effects. Unfortunately, this effect is swamped
by the much larger rapidity downshifting inherent in
MCM.

Another feature associated with a smaller 7, is the in-
crease in sharpness of the baryon peak. This is obviously
a result of the smaller space-time region in which the
baryons materialize if 7 is small.

One last remark on 7,: scaling is violated more severely
for smaller 7, Scaling is exact in the limit of an infinitely
long plasma tube. The smaller 7 is, the shorter the plas-
ma tube is, and hence the larger deviations from scaling.
This, together with the opening up of the low-baryon-
number region, makes Bjorken’s scaling picture a better
approximation for large 7.

(ii) Dependence on viscosity. The coefficients of viscosi-
ty of the quark-gluon plasma have been studied with a
relaxation-time method"® and with QCD phenomenology.®
The results of these two calculations cannot be compared
directly with each other because of the unknown tempera-
ture dependence of the relaxation time 7,. Near the phase
transition temperature, the coefficients of viscosity may
be greatly suppressed due to large nonperturbative effects
and, as a result, there are large uncertainties in the estima-
tion of the transport coefficients. We shall use the results
from Ref. 13 with a relaxation time of 1 fm, which gives

€ (GeV/fm®)

ng (fm~3%)

MCM, 50 GeV/A, ro= 1 fm

MCM, 50 GeV/A, r,= 1 fm b
20 20

05

FIG. 10. Same as Fig. 2 except that the MCM is assumed.
Contours are drawn in steps of (a) 1.2 GeV/fm?, from 0.8 to 4.4
GeV/fm?, and (b) 0.05 fm 3, from 0.05 to 0.2 fm —>.
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values of 7=~1.1 GeVfm~2 at T =300 MeV, decreasing
to n=0.2 GeVfm~? at T=200 MeV. Assuming a
characteristic length of 10 fm, the classical Reynold num-
ber of the system is typically about 40.

We have done calculations using coefficients from both
Refs. 6 and 13, finding no significant difference in the re-
sults. We have also tried two values of 7, (0.5, 1.0 fm),
again finding that the results are little affected. The coef-
ficient of bulk viscosity & is very small in the plasma
phase, but may become comparable to 7 in the mixed and
the hadronic phase.® We show in Fig. 6 results of our cal-
culations assuming £=17 for € <2 GeV/fm®. Comparing
with Fig. 2, we find that the hydrodynamic behavior for
£=0 and for £=m does not differ very much. The only
effect of the viscosity we observe is a slight increase of 7,
(=~10% for the case shown in Figs. 2 and 6) and €, (just
a few percent) if larger coefficients of viscosity are used.
This is simply explained in terms of a slower flow rate
when the fluid is more viscous. The effects of the viscosi-
ty on the lifetime of the plasma as measured in the
center-of-mass frame will be even smaller due to the fact
that slower plasma flow means less time dilation, which
compensates the small gain in proper lifetime. Overall,
viscosity does not seem to be an important ingredient of
the (one-dimensional) hydrodynamics of high-energy
heavy-ion collisions.

(iii) Equation of state. Lattice gauge calculations?
show that a pure gluon plasma behaves like an ideal
Stefan-Boltzmann gas for temperatures not too close to
the critical point of the deconfinement transition. We
therefore use two extreme equations of state in this calcu-
lation: that of an ideal relativistic gas (1) with no phase
transition, P =€/3, and (2) with a first-order phase transi-
tion motivated by the bag model:*!

0

€/3, O0<e<e,
P=1¢€/3, €<€e<e,, (10)
(e—e,+€)/3, €>¢€, .

Here, €; and ¢, are the lower and upper boundaries of the
mixed phase, chosen to be 0.8 and 2 GeV fm~3, respec-
tively, for the results presented here. Changing the nu-
merical values of € and €,, or using a pion'gas equation
of state with finite pion mass for the hadronic phase does
not change the results significantly.

A comparison of the results for the two equations of
state used shows that while the lifetime of the plasma is
longer for a bag-model equation of state (by about 15%
for the case shown in Figs. 2 and 7), most other features
of the hydrodynamic flow are insensitive to the equation
of state (cf. Figs. 2 and 7). This is in accord with the
findings of Ref. 22 for Landau hydrodynamics. The
small difference in the plasma lifetime can be explained
by the fact that at the mixed-phase region the speed of
sound becomes zero, and therefore the expansion is slower
than if there were no phase transitions. We should re-
mark that we have treated the first-order phase transition
within the framework of mean-field theory (and for nu-
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merical reason, we have also introduced a small smearing
of the equation of state so that the slope is not discontinu-
ous at € and €,). It is quite possible that we miss some
drastic phenomena®’ due to the phase transition.

(iv) Dependence on beam energies. Since the pion pla-
teau height in nucleon-nucleon collisions increases as InE
for increasing collision energy E up to 100 GeV/nucleon
(Ref. 17), we expect that the maximum energy density
achieved in heavy-ion collisions also goes as
€n=cInE +d, c and d being constants. In Fig. 8(a) we
show this fit to our results for energies up to 100
GeV/nucleon. In both models of the source, the lifetime
of the plasma, however, does not increase significantly as
we raise E from 30 to 100 GeV/nucleon [see Fig. 8(b)].
While collisions with higher energies create plasma with
higher energy density, the speed of the hydrodynamic
flow is also higher. The duration it takes the plasma to
cool down to the critical temperature is thus quite insensi-
tive to the collision energy (cf. Figs. 2 and 9). Another
feature associated with increasing E is the opening up of
the low-baryon-number region in the IOC. The MCM, on
the other hand, does not give such a gap in the range of
energies considered here.

(v) Source terms. The two models of source terms we
use here are very different, and indeed they lead to drasti-
cally different results (cf. Figs. 2 and 10 ). As expected,
the baryons in the MCM dissipate more energies and mo-
menta than in IOC. Therefore, in the MCM the max-
imum energy density is higher, while the baryon rapidity
is lower than in IOC. As a consequent, the plasma life-
time in MCM is longer than that in IOC. Another obvi-
ous signature of the MCM as compared to the IOC is the
large rapidity smearing of the baryon peaks. In fact, for
the MCM, our calculations show that the net baryon
number is distributed almost uniformly in the final states.

V. CONCLUSION

From the calculations presented above, we can draw the
following conclusions.

(1) Viscosity is not essential for a qualitative under-
standing of the hydrodynamics of ultrarelativistic heavy-
ion collision.

(2) Neither is the equation of state.

(3) The hadronization time 7, is an important parame-
ter. Before pinning down this parameter more accurately,
we cannot even say at what beam energies quark-gluon
plasma should be produced. In the IOC, the rapidity loss
of the baryon peaks may provide a clue to the magnitude
of 7y (smaller rapidity loss for larger 7).

(4) The chances for creating a quark-gluon plasma
(€ >2 GeV/fm?) increase only as the logarithm of the
beam energies.

(5) Results for the MCM and the I0C differ so much
that one cannot with confidence say that either approxi-
mates reality well. But we do expect that reality lies
somewhere between these two models.

It is clear, then, that a better understanding of ¢ and
the source terms is urgently needed for further theoretical
investigation of the physics of ultrarelativistic heavy-ion
collisions.
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APPENDIX

To solve Egs. (3), we first locate the (u,v) grid points
on the (y,s) plane by discretizing Eq. (2):

J+1_ )
Yy Y i i
—1j+—1—§:tanh(9{—y{) , (A1)
S —S§;
and

j+1 Jj+1 Jj+1 J+1
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where the lower (upper) index labels positions on U (¥).
These equations represent the curves along ¥,1 directions,
and their intersections are the grid points. Examples of
these curves on the y-s plane are shown in Fig. 11. Notice
that the curves in the 1 direction start out from the y =0
axis initially perpendicular to the s axis. The viscosity
slows down the flow resulting in a slight diving of the u
curves towards the y axis, but the huge pressure gradient
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We have used the following notations:
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FIG. 11. Sample (u,v) grid points on the y-s plane. The
dashed lines mark the boundaries of the source region.

at the end of the source region accelerates the plasma
causing the curves to bend up after passing through the
source region. If perfect scaling holds, these curves just
form rectangular grids.

We then solve the difference equations corresponding to
Egs. (3) on the grid points generated with Eq. (A1) and
Eq. (A2):

’ (A3a)

) (A3b)

2aB _

a,=
2 ? 2
a

a

2
2L 41
a

1=

For stability reason, in the second terms of both Eq. (3a)
and Eq. (3c), 9,0 is evaluated at v =(j+1)Av, while
(e+P) in (3a) and np in (3¢c) are calculated at v =jAv.
Without the viscosity term, this scheme is stable as long
as the rapidity gradient does not become negative. We ex-
pect that the viscosity term will improve the numerical
stability even if a shock front is developed.
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