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Jets in expanding quark-gluon plasmas
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%'e study the transverse-momentum imbalance I,'acoplanarity) of a gluon jet propagating in an ex-

panding quark-gluon plasma. Under reasonable assumptions for the gluon cross section for interac-
tion with a quark-gluon plasma, and with a hadron gas, and a proper space-time picture of the time
evolution of matter produced in nuclear collisions, a simple formula is established relating the aco-
planarity distribution to the jet emission angle, the total multiplicity of produced particles, and the
nuclear radius. We find that for reasonable values of the jet-plasma cross section, the acoplanarity
distribution stands out significantly beyond experimental cuts.

I. INTRODUCTION

Heavy-ion collisions at ultrarelativistic energies offer us
the prospect of studying new states of matter. In particu-
lar one expects that if the energy density achieved in such
collisions is high enough, a deconfinement transition lead-
ing to the formation of a quark-gluon plasma could be ob-
served. An important issue in this field is to pin down ob-
servables which could provide unambiguous information
on the state of matter produced during a collision. Owing
to the complexity of heavy-ion systems, it is likely that no
single probe will yield definite conclusions. It is therefore
important to investigate as many observables as possible
and correlate their predictions.

It has been suggested that the study of the propagation
of jets through the plasma could give information on the
quark and gluon mean free paths in the plasma, and hence
on the properties of the plasma itself. Jets are produced
at the very beginning of the reaction by hard collisions of
the nucleon's constituents. The typical jet energy is
greater than 10 GeV, much more than typical energies of
the plasma constituents at the temperatures of interest.
Thus they may be expected to escape the plasma as well-
identified objects.

In a recent paper, Appel has studied the momentum
imbalance of jet pairs which results from the interaction
of the jets with the plasma constituents. ' Appel's analysis
strongly suggests that such momentum imbalance or aco-
planarity may be quite sensitive to the physical conditions
which prevail in the plasma which the jets traverse. The
purpose of this paper is to extend Appel's investigation,
using a more realistic model for the plasma. In particular
we shall take into account the longitudinal expansion of
the plasma. %'e shall also investigate the effects of ex-
perimental cuts on the produced particle's momenta along
the jet axis. %e also allow for a combination of hard and
soft scattering of the jet from the surrounding matter.
The soft component is phenomenologically parametrized
in terms of a total jet matter cross section and an ex-
ponential slope typical of soft processes. The hard cross

section is taken from perturbative @CD. We determine
the relative magnitude of the effects of these two contri-
butions to jet scattering and discuss the prospects for
measuring these quantities experimentally.

This paper is organized as follows. In Sec. II we recall
the main formulas which allow us to calculate the jet aco-
planarity arising from the soft-glue emission prior to the
collision. This is the standard bremsstrahlung which
takes place already in free space. In Sec. III we describe
the model we use for the plasma and the infiuence of the
plasma on the jet propagation. We also implement the ef-
fect of experimental cuts which must be made on the
momentum of particles along the jet axis in order that an
identification of a jet may be made. Section IV contains a
presentation of our numerical results. Section V summa-
rizes the conclusions, and discusses what is required of an
experiment which might attempt to measure this aco-
planarity.

II. JET ACOPLANARITY

For simplicity of our analysis, we assume that the jets
are produced in the plane z =0, that is, in the center-of-
mass frame of the colliding constituents. The more gen-
eral situation is treated along the lines we present here.
For the situation of interest, the central region of head-on
nucleus-nucleus collisions, we expect that the rapidity dis-
tribution of produced particles is approximately boost in-
variant, and therefore the jet distribution when expressed
in terms of jet mass, transverse momentum, and rapidity
is invariant under longitudinal boosts. Since the jet mass

Q is very large, and the formation time of the leading par-
ticles in the jet is of order 1/Q, we shall assume that the
leading particles in the jet form at t =O. In terms of the
space-time rapidity y and proper time ~, we are assuming
that z=y =0 are the initial space-time coordinates of the
jet.

The geometry of the problem is illustrated in Figs. 1(a)
and 1(b). We assume head-on collisions, and therefore
cylindrical symmetry of the collision. The two jets ori-

34 2739 1986 The American Physical Society



J. P. BLAIZOT AND LARRY D. McLERRAN 34

where Q is the invariant mass of the pair of jets and P, is
the transverse momentum of one jet.

The situation described so far is somewhat idealized. In
fact, several effects contribute to give to the jet momenta
some nonvanishing component along an axis q perpendic-
ular to the ideal scattering plane defined above. As a re-
sult, the two jets do not lie in this ideal scattering plane.
The total component k,„of the momenta of the two jets
along the axis rl, referred to as the acoplanarity, may be
generated by production of particles in the initial state
which are not included in the jet distribution, or by the
production of or scattering from low-transverse-
momentum particles which are not included in the jet. '

Of course, the ideal scattering plane defined above is not
observable, nor is the production point I'. However, as
discussed by Appel, it can be determined, to within an er-
ror in angie of order h, /Q, by minimizing over aii possi-
ble planes the quantity, . k,z, , where i runs over all the
particles in the fioat state. '

I.et 8 (k, ) be the probability density for the leading par-
ticle of one jet to acquire transverse momentum k, due to
a single gluon bremsstrahlung prior to the collision. Then
the probability dP/dk, „density to observe a total momen-
turn imbalance k, &

is given by

dP/kt, „=g, ff f d'k„B(1„)
n=0 ' i=1

(2)

Note that the term with n =0 is simply 5(k,„). This for-
mula acquires a simple form when expressed in terms of
the Fourier transform of 8 with respect to impact param-
eter b:

B(b)= f d k,e ' '" B(kg) .

FIG. I. These figures illustrate the geometry of the problem.
The z axis is the collision axis. (a} is drawn in the plane z =0.
P is the point where the leading particles of the jets are pro-
duced. (b} is drawn in the plane of the jets. The solid lines limit
the region occupied by the plasma. The dashed lines are projec-
tions on the plane of the jets of the parallels to the collision axis
drawn through the points where the jets leave the plasma.

Notice that in Eq. (2), the direction of k,v has already
been specified by determining the plane of the jet axis.
Therefore, the distribution depends only upon the magni-
tude of k,v. The distribution of dP/dk, z is, therefore, in
terms of a one-dimensional impact-parameter representa-
tion,

dP/dk, „=—f db cos(k, vb) exp[8(b)] .

ginate from the production point P, back to back. Paral-
lel to the collision axis going through I' and the jet axis, a
plane is defined to which we refer as the plane of the jets.
4 is the angle between the plane and the plane containing
the collision axis and the production point I'. 8 is the an-
gle of the jets with respect to the collision axis, in the
plane of the jets. 8 is related to the longitudinal rapidity
of the jets through the formula

cosh(y;„) =Q/2P, = 1/sin(8),

In order that dP/dk, „be normalized to one, upon integra-
tion over all k, v, we require that 8(b) vanish when b~0.
This is accomplished by subtracting 8(0) from 8(b) We.
emphasize that this subtraction is only done to make
dI'/dk, „a normalized probability distribution. We
should not confuse k„ the component of the jet momen-
tum perpendicular to the jet axis, with k,„, the projection
of It, along the axis g perpendicular to the plane of the

jets (k,„=k,.k,„). For 8(b), we use the same function as
Appel:
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8(b) = — { [in in(Q /A ) —ln ln[(bojb) /A ] ]

&([In(Q /A ) ——', ],
—ln[Q /(bo/b) ]),

where C~ ———, and P=(33—2NF)/12~ for NF flavors. A

is the QCD scale parameter, (0.2 GeV), bo 1.——123. Q is
the invariant mass of the pair of jets. The validity of the
formula above is restricted to the region b g~ A
Furthermore, we shall take 8=0 when b &bojQ Th.is
ensures 111 partlclllar that 8(0)=0.

As we shall see in Sec. III, the scattering of the leading
particles off the plasma constituents leads to a very simple
modification of Eq. (4).

III. JETS IN THE PLASMA

In this section we derive the formulas which allow the
calculation of the acoplanarity arising from the multiple
scattering of a gluon jet on the constituents of the plasma.
Let us first specify our model for the plasma. We consid-
er only central collisions and assume that the plasma is
contained in a cylinder of radius JI =1.2 fm A '~, where
A is the mass number. We shall also assume that the
particle-production process is invariant under Lorentz
boosts in the longitudinal direction. Then all the quanti-
ties specifying the state of the system depend only on the
proper time r=(t z)'r, and—not on z and r separately.
The evolution of the plasma after it is formed is described
by the hydrodynamic equations. In the simplified situa-
tion which we are considering, this evolution corresponds
to a uniform cooling of the plasma, as it expands in the
longitudinal direction. This cooling implies a decrease of
the entropy density according to the law

s (r) =s ( ro)7 os .

Thus, as time goes on, the entropy density, or
equivalently the temperature, decreases and eventually
reaches the value at which the phase transition from the
quark-gluon plasma into ordinary hadronic matter is ex-
pected to take place. In order to be able to follow the sys-
tem through the phase transition, further assumptions
have to be made. In this paper, we shall investigate a
plausible scenario in which the plasma adiabatically con-
verts into hadrons. Let us call sp~ and sh the entropy den-
sities of the plasma and of the hadronic matter, respec-
tively, at the transition. We have

sr' j»=&ri j&h=r

where Nz& and Xh count the number of degrees of free-
dom in the plasma and in the hadron gas, respectively,
and we have assumed a bag-model equation of state for
both phases. Typically, r is of the order of 10. From the
fact that the total entropy is conserved, and the fact that
the entropy density decreases with respect to time accord-
ing to Eq. (6), one easily derives the formula

s (r) =xs„~+(1—x)sh,

where n; is the number density of plasma constituents of
type i and d ojd k, is the differential cross section for
jet scattering with transverse-momentum transfer k, .
This latter cross section is assumed to be the sum of two
contributions. The first is due to soft hadronic processes,
which we parametrize as

d o,'/d k, =
2

exp( k, /M) . —
2@m

This differential cross section has been parametrized by
an exponential, as is typical of low-p, phenomenon. We
do not assume that this cross section has the form extract-
ed from QCD under the assumption of large momentum
transfer, since for the processes we consider, the momen-
tum transfer is on the average quite small. In this equa-
tion, i denotes either o.~, or o.

gq
or os We are assuming

that the leading particle in the jet is a gluon, and do not
consider here the scattering of quark jets, although they
could be treated by the same methods. The parameter I
is taken to be of the order of 0.4 GeV. For the cross sec-
tion o; we use

9
4~W '4~ +« (12)

with o.« taken from the additive quark model, i.e.,
o.« ——4.5 mb. This relation between cross sections is only
derivable in perturbative QCD, and is useful to use for
making estimates. Again, this assumption might be re-
laxed to obtain a more general computation, but in this
prehminary analysis, we will use Eq. (12).

where x, the fraction of hadronic matter in the mixed
phase is given by

x = [rr~~/(r 1)—]/(r —1), (9)

r~~ being the time at which the hadronization of the plas-
ma starts. v&~ may be obtained as a function of the initial
time wo, where the hydrodynamic evolution starts from
the entropy equation, Eq. (6). An important feature of the
present scenario is that it implies that the system spends a
lot of time in the mixed phase. If rh denotes the time at
which the hadronization ends, we have rhjrz~ r——as can be
obtained from Eq. (7).

The jets are produced at very short times and are sup-
posed to propagate at the speed of light. Before they leave
the interaction region, whose thickness is typically a few
fm, they will scatter on the plasma particles. The net ef-
fect of this multiple scattering is to increase the momen-
tum imbalance. As shown by Appel, the effect of the
plasma can be accounted for by a simple modification of
the formula Eq. (4), leading to the simple replacement of
the function 8(b) by the function B(b)+F(b) The .new
function F(b) is the Fourier transform [as defined by Eq.
(3)] of the probability density that the gluon jet scatters
elastically off the plasma constituents with transverse
momentum k, . This function F has been subtracted so
that it vanishes at b =0, and that dP/dk, v is properly
normalized. We take F(k, ) to be the integral of the in-
verse mean free path throughout its space-time transversal
of the plasma:

F ( kr ) = g f dx n; d rrjd k, , (10)
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The hard-scattering contribution is taken from pertur-
bative QCD (Ref. 6}. We only include this contribution
for k, ~ 1 GeV. In this limit, the relations between dif-
ferential cross sections are as in Eq. (12}. The differential
cross section for glue-glue scattering is

(13)

Here, a, is the QCD running coupling constant:

a, =l/Pln(k, /A ) .

In order to evaluate the function F, we need to integrate
along the jet path. This integral is conveniently done by
changing the variable, using the proper time r as the new
integration variable. Noting that dx =U dt =dt (since the
jet propagates with the speed of light) and that
~=t sin(8), one gets

F(b) = . 8
(F, +FI, )(f»+f;„).

slQ 8

In this equation, F, and F~ are the impact-parameter
transforms of

f d k, (e ' " l)—d'o~/d'k,
0gg

(20)

mentioned, ~~ may be quite large. %e shall assume that
7.z is always larger than ~L, so that the jet escapes from
the plasma before the mixed phase has totally disap-
peared.

The calculation of the integral giving F can then be
split into two piece0: one which corresponds to the propa-
gation of the jet in the plasma, the other one correspond-
ing to the propagation of the jet in the mixed phase. We
shall write the Fourier transform of F in the following

F= . g f dr (d o; /d2k, )n;(~),
sin 8,. ~0

(15) and

~L l. sin——(8}

with

(16)

where vL denotes the proper time at which the jet leaves
the plasma. It is easily shown that vL is related to the
path length of the jet in the plasma by

F 2k t g I
0'gg

(21)

where s and h refer to hard and soft scattering and where

f» and f;„are two constants which we will soon calcu-
late.

First, however, consider F. For F„a short coxnputa-
tion gives

L, = [(R2—r, ~sin~4)'~ —r, cos(@)]/sin(8) .
F-, =(1+b2~2}-»2-1. (22)

Here r, is the distance of the origin of the jet from the
collision axis.

It is convenient at this stage to look at the space-time
diagram (Fig. 2) which summarizes the evolution of the
system. In this diagram, the jet trajectory is represented
by a straight line which with the z axis makes an angle a
related to the angle 8 by

tanu = 1/cos8 .

The various stages of the plasma evolution are delimit-
ed by the hyperbolas corresponding to constant proper
times. The hyperbola 7p corresponds to the plasma for-
mation. The next hyperbola is labeled r» which is the
proper time at which the plasma enters the mixed phase.
The mixed phase lasts until proper time ~q. As we already

L S}n 6}
L

Leos 8

FIG. 2. Space-time diagram. The hyperbolas of constant
proper-time delimit the various stages of the plasma history.
The straight line labeled "jet" is the jet trajectory. vL, is the

proper time at which the jet leaves the plasma.

1

2@+2 1(@+3) (23)

In this expression, Ao is a cutoff below which we cannot
trust perturbative QCD, which we choose to be AD= 1

GeV. A is the QCD A parameter. The running coupling
constant is taken to be a constant equal to its value for
6 =1 GeV '=0.2 fm for b &0.2 fm.

The quantities f» and f;„are given as integrals over
the trajectory of the jet in the plasma phase and the mixed
phase, respectively, of

f = f d~ cr~(ns+ , nq) . — {24)

Consider first f», which is given by

f» = dto' (ll sjr+s9 Hq ) .
TQ

The particle densities are directly related to the entropy
densities for an ideal gas, which in turn can be calculated
from Eq. (6) as a function of the proper time r. A simple
calculation then shows that

A tedious, but straightforward computation of FI, gives,
to leading order in a„ the expression

Fp ——(2m) — a, (bA)
1 9 1

o'~ 2 Po2

(Aob /2)'[4(2) —1n(Aob /2) ]
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f„,=o,(dX/dy)ln(~1 /ro)/nR (26)

d/ 1

dy mR'

(ro q( os )—In(ri /r ))r —1

p p(cr p,
—o' )) (~L —w ))

(r —1) rp)
(29)

This formula assumes of course that rL ~ r~~.
A remarkable simplification takes place if one assumes

that the scattering cross section of a gluon from hadrons
is the same as the cross section for scattering on the plas-
ma, i.e., if one sets

Ogh =Opt ~ (30)

This equality is probably a good approximation. In the
additive quark parton model of cross sections, we have
approximately

9 l

ggI ~
4 gq~= 2 0'pp = 19 mb . (31)

This number is remarkably close to the average value in
the plasma, 14 mb. A more detailed computation would
of course include better estimates, but in the crude
analysis which we present, such refinement is inconse-
quential. Then f~i and f;„add up to the simple expres-
sion

dX 1fii+fm. =&pi,—»«L «0) .' dy mR'

It is then easy to add up the contributions of the two jets
leaving the plasma at 4 and 4+m. Note that the 4
dependence comes through the time v.l . One then gets

fii+f .=re,i d, »[(R —«)/ro ].dA' 1 2 2 2

dy mR'

This expression should now be inserted into Eq. (19) for
F(b} The resulting ex. pression still depends on the un-
measured variable r„ the distance from the collision axis
at which the jets appear. One should in principle average
exp[F(b, r, }]over r, . However, in order to get a simple
expression, we have merely replaced the quantity R —r,
by its average over r„which is R /2. Since this quantity

where rL is the smaller of the two times rL and r~~ To
derive this expression, we have used the relation

dX 1

2 =[ng(ro)+ , nq—(~o)]ro.
dy mR'

This expression follows essentially from entropy conserva-
tion. The peculiar factor of —', comes from the difference
in statistics between bosons and fermions. The factor of 1

for gluons arises because pions and gluons are both bo-
sons. Combining Eqs. (25}—(27) gives

op) o~——(1 6+4% F)/(1 6+21%F/2)-14 mb, (28)

where NF is the number of active quark flavors, which for
our purposes, we choose to be X~ ——3.

The calculation of the mixed-phase contribution implies
evaluating the densities of particles in the mixed phase.
This may be done easily using the entropy equation. One
then finds

In an experimental environment, in order to identify
particles as associated with jets, those particles with small
momentum along the jet axis one must explicitly subtract
out. These particles primarily are associated with the
hadron matter distribution, and have no origin in the jet
itself. We therefore subtract out particles with a rapidity
along the jet axis less than a specified amount determined
by experimental cuts. We expect that a cutoff of about
two units of rapidity along each jet axis should be suffi-
cient.

%e now will determine the minimum momentum and
therefore the minimum rapidity along the jet axis for
which particles may be unambiguously identified as be-

longing to the jet, and not as belonging to the tail of the
low-p, distribution associated with the typical soft-hadron
production. To estimate the magnitude of this cut, we
first notice that all of the particles with momentum along
the jet axis satisfying p &pa are within a rapidity interval
of M/po, with M-0.4 GeV. The distribution of parti-
cles along the jet axis must exceed the background from
low-p, particle production to be detectable. %'e have,
therefore, that

M dN"~
&M M dE'"

(35)
p dy p

The factor of M/p on the right-hand side comes from
converting dN/dp along the jet axis to dN/dy along the
jet axis and multiplication by a factor of M on both sides
of the equation to compensate for the 1/M normalization
factor in dN/dp on the left-hand side of the equation.
Assuming that the nuclear multiplicity is about 2A times
that of the jets, we crudely obtain therefore that the cutoff
in rapidity along the jet axis, yp 1s

yo-ln[ln(2A)] . (36)

The assumption that the jet multiplicity is 1/2A that of
the nuclear should be adequate for the crude order-of-
magnitude estimate we make here. Even for uranium,
this cutoff is only about 2.

Brause of momentum conservation, the transverse
momentum lost by the remainder of the jet is therefore
given by

dX t

C(k, )= f dy -4yo
dy dkf M

The distribution dI'/dk, z can then be obtained from Eq.
(4) with 8 replaced by 8+F+C.

IV. RESULTS AND DISCUSSION

%e have investigated the contributions to the jet aco-
planarity due to the scattering of the jets in the plasma

sits in a logarithm, one may expect this to give a fair ap-
proximation. The resulting formula is then

F(b)= . o'~& (F, +Fq)ln 2
. (34)

1 dX 1 — — R
sin(0 ~ dy 2 Tp
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and the effects of the experimental cuts which must be
imposed in order to be able to identify the jets without
ambiguity. In our calculations, we have taken ap&

——14
mb. We have considered a variety of A and Q values.

The effect of the plasma is contained in the term F(b).
F(b) depends explicitly on three variables: 3, the mass
number of the colliding nuclei, the jet emission angle 8,
and the initial entropy density proportional to dN/dy.
The A dependence is fairly weak and comes mostly from
the ratio (dN/dy)/mR which grows like A'~ (there is
an extra lnA dependence buried in the term lnR ). This
effect is however amplified when the expotential of I' is
taken to generate the acoplanarity. To generate curves we
have assumed that dN/dy =2& dE/dy

i z~ -SA.
The effect of varying A is shown for 20-GeV jets in

Figs. 3(a)—3(d). In these figures, the value of the aco-
planarity is plotted for the case of rescattering from the
plasma with experimental cuts, and experimental cuts
only. In both curves, the preemission bremsstrahlung
contribution is taken into account. All of the curves are
for jet production at 90' relative to the collision axis, so
that the effect of the plasma is mimmized. Notice that
for all values of A in the range 20gA g200, there is a
significant effect due to the plasma, which broadens the
distribution and lowers it at small k,„. For A of 200, the
distribution is broadest, about a factor of 2 broader than is
the case with no plasma. For A of 20, the distribution
seems only a factor of 20% broader. The effects of A are
therefore significant.

In Figs. 4(a)—4(c) the effects of Q of the jet are deter-
mined. Here we have the same plots as in Figs. 3(a)—3(d)
except that thro: different values of Q =10, 20, and 40
GeV are considered for A =100. For Q=10 GeV, the
acoplanarity distribution is almost flat, suggesting that
the plasma has destroyed any jettiness in the distribution.
The computed distribution is probably not quantitatively
correct since our computations are strictly speaking only
valid if k,„/Q ~&1, a condition not satisfied for this case.
For Q =20 GeV, the distribution is jetlike, but the distri-
bution with the plasma is about twice as broad as that of
the distribution without the plasma. For Q =40, the dis-
tribution without the plasma becomes closer to that of the
case with the plasma, and is perhaps about 30—40%
broader.

It appears that there is a significant contribution due to
rescattering in the plasma. A good measurement of these
distributions may ultimately give a measure of the gluon-
plasma cross section. Our computations show a small
shift in the distributions as a function of cross section, but
other contributions, such as the rescattering of inelastical-
ly produced particles from the jet in the plasma must be
added in to make a precise comparison. A difference of a
factor of 2 in the cross section effectively modifies the
distribution as a shift in A by a factor of 8. The differ-
ence of a cross section by a factor of 2 therefore produces
a change equivalent to changing 2 =20 to A =200.
From Fig. 3 we see that this is in fact a quite significant
shift.

Finally, we have studied the dependence of the jet aco-
planarity upon jet opening angle. %e find little depen-
dence upon the opening angle for reasonable value of the
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FIG. 3. These figures illustrate how the distribution dI'/dk, „
depends on the baryon number of the colliding nuclei. The
dashed curve in each plot represents the distribution computed
in the absence of a plasma with experimental cuts included. The
solid curve contains the contribution from the plasma plus cuts.
In both curves the effects of gluon bremsstrahlung are taken
into account. The jet mass is 20 GeV and the assumed cross
section is 14 mb. The values of A are (a) 20, (b) 50, (c) 100, (d)
200.
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PIG. 4. For g = l00, the acoplanarity distributions for ia) Q =20 GeV, (b) Q =20 GeV, (ci Q =40 GeV.

angle. This seems to be because the probability distribu-
tion is normalized to one, and the width is not too strong-
ly dependent upon the value of 8 for 8&30'. In this
range, the value of sin(8) changed by only a factor of 2,
and therefore the distribution is not too rapidly varying.
A change in 8 by this large amount corresponds to an ef-
fective increase in the gluon-plasma cross section by a fac-
tor of 2. For our choice of o =14 mb, there is not too
large a variation if the cross section increases by a factor
of 2. Also, most of the variation takes place only at small
angles, where experiments are most difficult. If the cross
section were chosen to be a little smaller, then there would
be a somewhat larger variation. Although the angular
variation may be useful for studying the effects of a plas-
ma upon jet acoplanarity, without more knowledge of the
range of angles which may be observed with cuts imposed,
it is difftcult to make any precise statement.

V. CONCLUSIONS

In summary, our analysis supports Appel's conclusion
that jets may provide a useful diagnostic tool for studying
the quark-gluon plasma. We have shown that in high-

energy nuclear collisions, the effects of jet rescattering do
in fact appear in the acoplanarity distribution. The cross
section for scattering from the plasma may be inferred.
We should be careful to note, however, that the existence

of acoplanarity does not by itself alone give evidence for a
quark-gluon plasma, and may in fact be generated by
scattering from a hadronic gas. The jet acoplanarity is

therefore not a signal for the plasma, merely a diagonstic
tool. The utility of this tool for determining the gluon-

plasma cross section, and hence inferring the degree of
thermalization of the plasma, if it exists, remains to be es-

tablished.
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