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Based on quantum chromodynamics in a cavity, we calculate the spectra of exotic hadrons con-

sisting of up to four interacting M1 or E1 gluons in the lowest eigenmodes of a spherical bag. The
states that satisfy Bose-Einstein statistics are classified according to the group chain

U(24) DU(8)U(3) DSU(3) l„SU(2), p;„, and the coefficients of fractional parentage are evaluated

up to four gluons in a color-singlet state. The two-gluon interaction includes the one-gluon ex-

change, the Compton or annihilation graph, and the elementary four-gluon vertex. Using the pa-
rameters of the MIT bag model, both the two-gluon and the four-gluon states of lowest energy with

the quantum numbers of the vacuum turn out to be degenerate with the perturbative vacuum state.

I. INTRODUCTION

Quantum chromodynamics, the leading candidate for a
strong-interaction theory of quarks and gluons, has been
with us for more than a decade' and the supporting evi-
dence for this theory must still be considered as rather cir-
cumstantial. At low energies, for instance, the non-
Abelian gauge theory that is based on the symmetry group
SU(3)„i«has been fairly successful in the description of
the low-lying hadron states. 2 Quantum chromodynamics,
however, predicts also the existence of exotic hadronic
matter, i.e., matter that is not composed primarily of
three quarks or a quark-antiquark pair. In spite of the
tremendous effort put into the clarification of this crucial
issue, the experimental evidence for the existence of these
exotic hadrons is still rather weak. Sooner or later,
however, we will have to understand the properties of
these states thoroughly, if they exist. Alternatively, if
they do not exist, we must answer the pertinent question:
why, out of the many possible states given, e.g., by the
state vectors

~ q "+,q™,g ) with A, M,N=0, 1,2, . . . ,

can we only observe in nature a tiny subset of these, i.e.,
the baryons with (A,M,N)=(1,0,0} and the mesons with
(A,M,N)=(0, 1,0)? The existence of such exotic states
would, of course, shed some light on the most interesting
interaction, that of two quarks in the color t 6I state, and
a quark-antiquark pair in a color I8) state, which have
not yet been observed in normal hadronic matter.

This article is devoted to the study of a particular case
of exotic hadronic matter, i.e., the study of many-gluon
systems with a fixed number of interacting gluons with
(A,M,N}=(O,O,N) in the framework of the MIT bag
model. Of course, the number of gluons is not a con-
served quantity in quantum chromodynamics. However,
in the "bagged" version of the gauge theory we are dealing
with, the gluons can only occupy discrete energy levels
that correspond to the cavity modes. Thus the ground-
state energy of a noninteracting many-gluon system rises
linearly with the number of gluons. Now„ if the spacing

between the energy levels and in particular the energy of
the first cavity mode is large, which is the case for bag ra-
dii that correspond to the usual size of the hadron, states
with a different number of gluons are not likely to be
mixed. This argument does not hold once the strong in-
teraction is turned on, and, due to the strong splitting of
the many-gluon states, some states consisting of a dif-
ferent number of gluons may become quasidegenerate. A
possible strategy on how to tackle these problems of de-

generate levels, is to evaluate the interacting many-gluon
spectra for different but fixed numbers of gluons and then
identify those states that are quasidegenerate in energy
and carry the same quantum numbers; one would then
have to take these states as a basis for a coupled-channel
treatment in order to obtain the correct spectrum. Thus
we consider this article as a contribution to the first step
in this direction.

The outline of the paper is as follows. In Sec. II, we
discuss the classification and quantum numbers of a gen-
eral many-gluon system satisfying Bose-Einstein statistics.
Then, in Sec. III, we turn to the evaluation of the coeffi-
cients of fractional parentage which describe the two-
gluon content of a general wave function for a nonin-
teracting many-gluon system completely. Finally, in Sec.
IV, after having introduced the two-gluon interaction via
one-gluon exchange, the Compton effect, and the elemen-

tary four-gluon vertex, we discuss the many-gluon spectra
for a fixed number of identical transverse-magnetic or
-electric gluons of spin 1.

G. CLASSIFICATION OF A MANY-GLUON SYSTEM

In this section we want to construct the SU(3)„i„and
SU(2),~;„representations of a system consisting of N iden-
tical gluons that carry color I8) and spin-1 quantum
numbers and satisfy Bose-Einstein statistics. For exam-
ple, a two-gluon system in the color t IJ representation
can exist only with total spin 0 or 2, since the wave func-
tion with spin 1 would violate Bose-Einstein statistics.
Thus the color and spin parts of the wave function must
be selected such that the total wave function is symmetric
with respect to the interchange of any two gluons. The
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solution of this nontrivial many-gluon problem is much
more complicated than the corresponding many-quark
problem. The reason for this lies in the fact that the
gluons, rather than being in the fundamental representa-
tion like the quarks, are in the adjoint {or regular) repre-
sentation of SU(3) i„and SU(2),~;„.

Our aim is to construct the irreducible representations
(irreps) of the SU(3)«)«SU(2)», -„group that are compati-
ble with Bose-Einstein statistics. As a first step toward
this goal we must find the group which is suitable for the
description of the internal structure of a many-gluon sys-
tem. To guide our ideas let us introduce creation and an-
nihilation operators b and b which describe a gluon
with color index a = 1, . . . ,8 and spin component
s =1, . . . ,3. %e can now write down the bilinear opera-
tors that conserve the number of gluons and form the
algebra of U(24):

~us pt ~esbpt . (2.1}

The generators of the U(8) and U(3) subgroups can be
easily obtained from (2.1) by contracting the spin and
color indices, respectively, i.e.,

3

&-I= Xc,r (2.2)
s=1

c„=pc (2.3)

The generators of the subgroups SU(3)«i„and SU(2)»;„
are linear combinations of these operators and given by

N =hi+h2+hi . (2.7)

We now turn to the important question: which irrep of
SU(3) i„[or SU(2)»;J is contained in a given irrep of
U(8) [or U(3)]'? The U(3}&SU(2)»,„reduction problem
has been solved by Elliott many years ago, using the
method of plethysm which was developed by I.ittlewood.
A detailed description of this quite general method has
been given by Wybourne' and an elementary introduction
can be found in Ref. 11. In this paper we merely quote
the results for the U(3) D SU{2),~;„reduction. With

p =h, —h2 and q =h2 —hi the multiplicity index Q takes
the values

Q=min(p, q), min(p, q) —2, . . . , 0 or 1

and the allowed spin values for Q =0 are

S =max(p, q, ) max(p, q) —2, . . . , 0 or 1,

rep of the U(8) group could have in principle eight rows;
in our many-gluon problem with spin-1 gluons, however,
the irreps of U{8) are restricted to three rows. In fact the
Young diagrams describing the irreps of U(8) must be
identical to the diagrams of U(3) through the condition
that the product representation of U(8)U(3) must be
symmetric. The symbols (A,,)u) and S label the SU(3)«i„
and SU(2),~;„representations and the quantum numbers
I T T3, and S& characterize the individual members of
the SU(3) i„and SU(2),&,„multiplets. The multiplicity
indices are denoted by 5 and Q and N is the total number
of gluons which must satisfy the relation

8

~r=' X f Pr+ P
e,P=1

whereas for Q+0 we obtain

S=Q,Q+1,Q+2, . . . ,0+max(p, q) . (2.10)
3

S„=i y e„„C.. . {2.5}

[NO]

U(24)

[hih2h30]

U(8)

[h(hih))
U(3)

where f I)„and e~ denote the structure constants of
SU(3) and SU(2), respectively.

We have found in U(24} the group that is appropriate
for the description of the internal structure of a many-
gluon system. However, in order to describe this system
completely, we need to know the group chain and quan-
tum numbers of the corresponding representations. These
are given by

To illustrate these equations let us discuss two examples.
For the irrep [h i h 2h i ]=[210] of U(3) we have

(p,q) =(1,1). The only possible value for the multiplicity
is Q=min(p, q)=1 according to Eq. (2.8). Thus the spina
contained in the [210] irrep of U(3) are S =1 and S =2.
For the irrep [300] we have (p, q) =(3,0) and Q=0. Thus
only spin values of S=1 and 3 will be allowed. In Table
I we have listed all spin states contained in a particular
irrep of U(3) up to five gluons,

The results for the U(8) DSU(3)„),„reduction problem
up to five gluons are also given in Table I. These repre-
sentations can be found in a paper by Butler and Wy-
bourne' or can be determined using the general formula

U 5

SU(3)„(„

(A, ,p)F, T, T&

U Q

SU(2)spin

(2.6)

[h]U(s) = [h ) h2h iO]U(s)

1)"~N)rsgpya[P]U(i)
)

X [}]v(i)
r[a 3

[P]f,']

(2.11)

where the irreps of U(24), U(8), and U(3) are represented
by Young diagrams. Thus the (totally symmetric) irrep
of U(24) is described by X boxes in the first row and zero
boxes in the next 23 which is indicated by a dot above the
0. The most general irrep of the U(3) group can have
three rows with hi, hz, and h& boxes in the first, second,
and third rows, respectively. Finally, the most general ir-

which is derived in Appendix A. Here the sum over r
runs from 0 to 3 and [a]=[a)aqa3] is a partition of
&—&. The symbo» [P]=[@@431and Ir]=[}')}'2Yi]
denote the irreps of U(3)«)«aSU(3)«)«and [y]' stands
for the complex-conjugate irrep of [y]. The symbols
I ~i~ are by definition the expansion coefficients of the
direct product of the representations [a] and [1'] {Refs. 6
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TABLE I. SU(3), ss SU(2),~;„ irreps contained in a given U(8) ts U(3) irrep. (d ) describes the dimension of the U(8) irrep and [d ]
the dimension of the U(3) irrep. Two notations for the SU(3) ~,, irrep are used: (d") denotes the dimension of the irrep and {l{.,p) are

the ordinary SU(3)~] 1abc1s.

[10]
(s) P]

SU(3) ),„ SU(2),p,
.„

[20]
&36)

[1 0]
(2s& [3]

(2,2) + {1,1) + (0,0)= {27j + {8 j + {1 j

(1,1) + (3,0) + (0,3)= {8 j + {10) + {16}

0,2

[30]
( 120)

[210]
(168)

&56&

[10]

[8]

(33) + (22) + (30) + (03) + (1,1) + (00)= {64) + {27) + [10}+ [ 10}+ [ 8 j + [1j

(41)+ (14}+(22)2+ (30)+ (03)+ (1 1)s {3S}+ [Y5}+ [27}2+{10}+ [10}+ {8}s

{2,2) + (3,0) + {0,3) + (1,1) + (0 0)= [27) + [ 10} + f 10} + [ 8 } + ( 1)

1,3

1,2

[40]
(330)
[21'0]
(37S&

[310]
(630)

[15]

P]

[15']

(44) + (33) + (41}+{14)+(22}i+(1,1)i+ (00)={125}+ (64} + [35}+ [3S)
+ [27} + {8}+ {1}

(3,3) + (4,1)2+ (1,4)g+ (2,2)3+ (3,0)3+ (0,3)3+ (1,1)4+ (0,0)

[~j + [35}s+{35}2+[27}s+ [10}s+ [+}s+ [8}4+ [ 1 j

{5,2) + (2,5) + (3,3)2 + (4,1)2 + (1,4)2 + (2,2)4+ (3,0)3 + (0,3)3 + (1,1)4

=(Slj + {81}+{64},+ (35},+ [H},+ [27}4+{10}s+$0}s+ [8}4

0,2,4

1,2,3

[2'0]
(336&

(6,0) + (0,6) + (3,3) + (4,1) + (1,4) + (2,2)4+ (3,0) + (0,3) + {1,1)2 + (0,0)2

= {28}+ [28} + [64) + f 35) + [ S5} + [27}g+ {10}+ f 10) + [ 8}2+ [ 1}z

0,2

[5o]
(792)

[410]
& ls4s&

[320]
&16S0&

[31'0]
(1512)

[2 10]
(1008)

[21]

[15 ']

(5,5) + (4,4) + (5,2) + (2,5) + (3,3)2+ (4,1) + (1,4) + (2,2)p+ (3,0) + (0,3) + (1,1)2

+ (00)= {216}+ (125}+ [Sl } + [IT}+ (64)2+ [35}+ [P}+ [27}g+ (10}+ [10}+ [8}i
~ [1)

(6,3) + (3,6) + (4,4)2+ (5,2)2+ (2,5)2+ (6,0) + (0,6) + (3,3)g+ (4,1)4+ {1,4)g

+ (22)7+ (30)4+ {03)4+(1,1)s+ (00)= [154) + f 154}+ [125}i+[81}g+[81)2
+ [28}+ [28}+ {64}s+ [35}4+ [35}4+ [27}7
+ [1o}4+ {10}~+ {8}s+ [1}

{1s7) + {7s1) + (4s4) + (5j2)2 + (2j5)g + (6s0) + (0 6) + (3 3)5 + (4 1)5 + ( 1 4)5 + {2s2)s

+ (3,0)4+ (0,3)g+ (I,l)6+ (00)=[80}+ [80}~ (125}+ [81}g+[Sl}2+ [28}+ (2S)

+ {64}s+[35}s+{T5}s+[27}s+(10}4+[10}4+[8}6+{1 j

{4,4) + (5,2)p + (2,5)2 + (6,0) + {0,6) + (4, 1)g + {1,4)g + (3,3)4+ (2,2)9 + (3,0)5

+ (0,3)s+ (l, l)7+ (00)z ——{12S)+ [81}z+{Sl}2+[28}+ {28}+ [35}s+[35}s+[64}4

+ [27},+ {10},+ [10},+ [8},+ {1},
{5,2) + (2,5) + (6,0) + (0,6) + (3,3)3 + (4,1)4 + (1,4)4 + (2,2)p + (3,0)4 + {0,3)4

+(l, l), +{0,0)= f81}+fsl}+ f28}+{28}+f64},+ f35},+ {35},+ (27},+ f10},
+ {&~}.+ [8}.+ (1}

1,3,5

1,2,3,4

1,2,3

0,2

[~]X[1']=g 1 i.s[li]
[hl

(2.12)

and the gp„are the expansion coefficients of the inner
product in the symmetric group '

[&]o[7']=gg~ [~].
I:~l

(2.13)

The coefficients 1" i,z and g~~ can be determined readily
with the techniques given in Refs. 6, 7, and 10. In order
to evaluate the irrep [a],we have to subtract r boxes from
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the Young diagram [Iiihzhi] with the restriction that
only one box can be removed from each row. The coeffi-
rient I ~&,A is always equal to unity, whereas the symbols

ger are more difficult to evaluate. To this end we need
the characters of the symmetric group, but fortunately
there exist elementary techmques to calculate these. '

III. COEFFICIENTS OF FRACTIONAL PARENTAGE

The strong interactions of a many-gluon system can be
described in second-order perturbation theory by the one-
gluon-exchange interaction, the annihilation or Compton
graph, and the elementary four-gluon vertex' (Fig. 1).
For a fixed number of gluons the effective interaction can
therefore be written as a sum of two-body interactions:

H;„,= g V(j,k) . (3.1)
j&k

Since the N gluons are assumed to be identical, each term
of the interaction operator (3.1) will have the same matrix
element, provided it is taken between states that satisfy
the Bose-Einstein statistics. We can thus work out the
summation trivially and the problem is reduced to the
evaluation of the interaction between the first two gluons:

a Vj, a'
j(k

([N]a
~

V(1,2)
~
[N]a'} . (3.2)

Since the operator V(1,2) is a two-body operator, we do
not need the full information on the X-gluon wave func-
tion for the evaluation of this matrix element. In fact we
only need the two-particle content of the many-particle
wave function. We thus decompose the N-particle wave
function into 2- and (X—2)-particle pieces introducing
the (real) coefficients of fractional parentage (CFP's)
through the equation

~
[N]&a}=/Chic[ ) [2]b}X

~
[N —Z]c}], . (3.3)

Here a, b, and c denote the representations of
SU(3)~~„SU(2), &,H, including the multiplicity indices,
and the n refers to all quantum numbers ( F, T, T&, and

S3 ) that characterize the individual member of the
SU(3)„&„eSU(2),~;„multiplet a. The symbol

FIG. 1. The contributions of second order in the strong cou-
pling constant to the interaction of two gluons: (a} the one-
gluon-exchange interaction; (b} the annihilation or Compton
graph; (c) the elementary four-gluon vertex.

[I[2]b}XI[&—2]c}l..
= g (bPcy

~
aa}

~
[2]bP}X

~
[N —2]cy } (3.4)

Q Cg, Cf, ([ 2]b
~
V(1,2)

~
[2]b } (3.5)

b, c

which can be readily evaluated once the CFP's are known.
However, for particular many-gluon states which are dis-
cussed in Appendix B, one can work out the diagonal in-
teraction matrix elements without actually knowing the
CFP's.

We now turn to the evaluation of the CFP's for three
and four gluons in a color I 1 j state. In this context it is
important to note that CFP's are an intrinsic property of
the noninteracting many-gluon wave function, and there-
fore do not depend on the particular choice of two-body
interaction. A possible calculation scheme for the CFP's,
though probably not the most efficient one, is to construct
the explicit wave functions for three and four gluons and
work out their overlap with the two-gluon wave functions.
Thus we have to consider all two-gluon wave functions
with the quantum numbers listed in Table I. For the
three- and four-gluon wave functions, however, we can re-
strict ourselves to the color I 1 j states given in Table I,
since we only want to study three- and four-gluon states
that are color I 1 j.

The two-gluon wave functions with arbitrary color and
spin are readily determined in terms of one-gluon wave
functions using the SU(3) and SU(2) Clebsch-Gordan coef-
ficients' ' and Table I. The three-gluon wave functions
are obtained by first coupling the two-gluon and one-
gluon wave functions to a total spin S and color I 1 j.
Then we construct the totally symmetric three-gluon wave
functions by symmetrizing a linear combination of prod-
uct wave functions which describe the same total spin S
and color I 1 j. Technically, the symmetrization is
achieved by first diagonalizing the permutation operator
Pi3 in the Hilbert space of the product wave functions of
two and one gluons. Then we pick out the wave function
to the eigenvalue 1 and disregard the remaining state.
The resulting coefficients are listed in Table II.

In order to construct the four-gluon wave functions we
can proceed in a similar way. First the products of the
general two-gluon wave functions are coupled to a total
spin S and color I 1 j. Then the permutation operator P2i
is diagonalized in the space of the product wave functions
and the states with the eigenvalue 1 are picked out. To
separate the color (or spin) symmetry [4] and [2 ] we also
diagonalize the permutation operator Pz3 that acts on the

denotes a linear combination of products of the 2- and
(N —2)-particle wave functions which are coupled to the
quantum numbers aa using the usual Clebsch-Gordan
coefficients of SU(2) and SU(3) (Refs. 15 and 16). Thus
the CFP's do not depend on the "magnetic" quantum
numbers Y, T, T3, and S3 any more. Since the operator
V(1,2) must obviously conserve color and spin, we can
write down the matrix element (3.2) immediately as

N "VJk X'
j&k
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TABLE IL Coefficients of fractional parentage (CFP) for three gluons in a color f 1 j state.

g3

Symmetry Color Spin
g

2

Symmetry Color Spin Symmetry Color Spin

[1')
[3]

f31

[1)
[1) P)

f2)

f2)

(8)
[8)
[8)
(8)

[ll
[ll
[11

[1]

[8)
(8)

[8)

1

+5/9

3

l

TABLE III. Coefficients of fractional parentage (CFP) for four gluons in a color (1 j state.

g
Symmetry Color Spin

g
2

Symmetry Color Spin
g

2

Symmetry Color CFP

[2'I Pl
P)
Pl
Pl
P)
Pl
[1')
[1')
[1']

[1)
[1)
f8)
{8)

f27)

[10)

{1o)

f2]

[2]

P]
[?)
Pl
Pl

f 1'I

[1']

[1'I

[1)

[8)
[8)
[27)
[27)

{10)

f loj

—I /3&5/6
5 /6V'1/6

—4 /3&1 /15
2/3V 1 /3
I/3V 1/10
—I /6+1/2

0

[2') [lj 0 P]
P)
P]
P]
P)
P]
[1'I
[1'I
f 1'I

[1)
f8)
(8)
{27)

[27)

[10)
f Toj

Pl
P]
Pl
Pl
I:2]

Pl
[1'I

[1'I

[1)
(1)
(8)
[8)
(27)

{27)
[8)
[10)
[10)

—I /3+I/3
1/6V 5/3
1/3+2/3

—1/3&5 /6
1

3

—&5/6

0
Q

[4] P]
[.2]

P]
P]
E2]

P]

[1)
[1)
[8)

{27)

f27)

PI
P]
l:2)

Pl
PI
Pl

[i)
{i)

[8)
[27)

[27)

—5/6v 1/3
—1/3V 5/3

I /3't/2 /3
2/3+2/15

)
2

—&I/S

[21'] [1) 1 f 1'I
[1'I
Pl
P]
[1'I
[1'I

[loj
[1o)
[8)
[8)
[8)

[1'I

[1'I
[1')

Pl
Pl

{10)
[10)
{8)
[8)
{8)

—1/3+1/2
—1/3+5/2
—1/3V 1/2
—1/3V 5 /2

[2'] P]
Pl
[2]
[2]

Pl
E2)

Pl
Pl

I /6+5/6
1/6V'5 /6

—I /6V 35/6
2 /3&1 /15
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TABLE III. ( Continued).

g
Symmetry Color Spin Symmetry Color

g
2

Spin Symmetry Color Spin CFP

P]
Pl
Pl
Pl
[2]

[ 12]

[1'l

[27}
[27)
[27)
[8)
[10)

[1o)

Pl
Pl
P)
Pl
[2)

[ 1'l
[1'l
[1']

[8)
I»

I 27)

[27)
[27)
[8}

[10)

2/3V'1/15
—2/3V 7/15
—1/6V 1/10
—1/6V 1/10
1/6V 7/10

0

[2') Pl
Pl
Pl
P]
P]
Pl
P]
P]
P]
[1'l

[1'l

[1)
[1!
[1)
[8)
[8)
[8}

I 27)

[27)
[8)
[10)
[ 10)

[2]

P]
Pl
P]
Pl
Pl
P]
Pl

Pl
[1'l

[1!
[1}

[27)

[27!
[8}
[1o}
I 1o)

1/6V 1/3
1/6V 1/3

—1/6V 7/3
—1/3V 1/6
—1/3V 1/6
1/3V 7/6

)
e
l

&7/6
—V'1/2

0
0

[4] P]
Pl
P)
Pl
P)
Pl
P)
I:2]

Pl

[1)
[1)
[1)
[8)
[8)
[8)
[27)
[27}
[27)

Pl
[2]

Pl
Pl
P]
P]
Pl
Pl
Pl

[1)
[1)

[8)
[27)
[27!
[27)

1/6V'35/6
1/6V'35/6

1/3V 5/6
—1/3V 7/15
—1/3V 7/15
—2/3V 1/15
1/2V'7/10
1/2V 7/10

V 1/10

[4l Pl
P]
Pl

[1)

[27)

[2]

P]
P]

[1)

[27)

1/2V 5/3
—V 2/15
3/2V 1/5

color part only. The resulting CFP's are listed in Table
III. In contrast with the three-gluon case, a multiplicity
occurs in the state with color (or spin) symmetry [2 ].
Thus there exist two (orthonormal) states with color I 1 j,
S=0,2 and color (or spin) symmetry [2 ]. Finally, we
apply an additional rotation in the plane of these two
states in order to get CFP's that are square roots of ra-
tional numbers.

The CFP's listed in Tables II and III can be used to cal-
culate any kind of two-body interaction in the three- and
four-gluon system. Thus they do not depend on the in-
teraction parameters used in our model which will be
specified in Sec. IV.

IV. THE MANY-GLUON SYSTEM

We now turn to the evaluation of many-gluon spectra
in the framework of the MIT bag model. 2 For simplicity,
the Hilbert space of the one-gluon states has been truncat-
ed such that it includes only the lowest eigenmodes of
positive and negative parity rvith spin 1. Thus all the
gluons will occupy either the lowest transverse magnetic
(M 1) or transverse electric (E1}mode of a spherical cav-
ity. If we restrict the Fock space to the subspace generat-
ed by the X-gluon states, we can describe the many-gluon
system in a fixed cavity by the "effective" Hamilton
operator
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(4.1)

where the first term denotes the kinetic energy operator
and the latter stands for the gluon-gluon interaction.
Since we restrict our study to identical gluons occupying
the same shell, we easily arrive, using Eqs. (3.3) and (3.4),
at the matrix elements

([N]a [H f
[N]a')

~s
8

+ QCs Cs &[2]b I
I'(1»)

1
[2]b&

E(nr)a, [x)a'(B ) = 4g 3 Zpkc
BpR — 5~

two-gluon interaction par mieters, the normalized matrix
elements of the effective interaction in an arbitrary two-
gluon state

h[z)y=([2]b
~
Fi Fi[A+Bsi.S2+C{si Sz) ] ~

[2]b)
(4,4)

have beni plotted in Fig. 2 for M 1 gluons and in Fig. 3
for E 1 gluons in the lowest cavity modes.

Following the MIT groups the total energy matrix of an
N-gluon bag is given by

(4.2)
+([N] ~H ([N] '), (4.5)

where Reap/B denotes the single-particle energy of the
gluon in a cavity of the radius R.

We now turn to the explicit form of the two-gluon in-
teraction V(1,2) that describes the one-gluon exchange,
the Compton graph, and the elementary four-gluon vertexI second-Ordcf' pcltQrbRtlon theOPj'. Th18 t%0-bOdy 2Q-

teraction can be written in the form

where Bp is the bag constant and Zp is the sum of the
zero-point energy and center-of-mass correction. For all
these parameters and for the fine-structure constant of the
strong interactions a, we have chosen the original MIT
bag values

V(1,2)= Fi F2[A +BSi S2+C(Si Si) ], (4.3) Bp ——(145 MeV)"~(Ac)

Z0=1 842~ o,'s =2 2
(4.6)

where F; and S; (i =1,2) denote the color and spin opera-
tor of the ith gluon, respectively, and a, is the fine-
structure constant of the strong interactions. The param-
eters rp, A„B, and C, listed in Table IV separately for the
one-gluon-exchange interaction (a), the Compton graph
(b), and the four-gluon vertex (c) of Fig. 1, have been cal-
culated by Buser and Viollier' based on "bagged" quan-
tum chromodyn"miics in the Feynman gauge. The numer-
ical results agree very well with the calculations by
Chanowitz and Sharpe, ' Carlson, Hansson, and Peter-
son' (Ml and El gluons), and Barnes, Close, and
Monaghan'9 (M 1 gluons), for the transverse part of the
one-gluon-exchange interaction and the four-gluon vertex.
However, the Coulomb (—=scalar+ longitudinal) part of
the one-gluon-exchange and Compton interactions does
not agree with the Coulomb contributions calculated by
these authors in the Coulomb gauge. To illustrate our

for simplicity. The energy eigenvalues of the bag
E(~)„(R)are obtained by diagonalizing the energy matrix
(4.4). We must also consider the quadratic boundary con-
dition of the MIT bag model which ensures the exact
pressure balance at the boundary. States with nonzero
spin obviously exert a nonspherical pressure on the bag
surface and therefore the bag will deform. The study of
deformed bags, however, lies beyond the scope of this arti-
cle. p In order to satisfy the quadratic boundary condition
at least in an average fashion for these nonzero spin states,
we mimmize the energy eigenvalues E(N)„(R) with respect
to R. The equilibrium radii R(z)„are, of course, state
dependent and given by the solutions of the equation

dE(~)„(R) =0, (4.7)

TABLE IV. The single-particle energy parameter u and the interaction parameters A, 8, and C for
tv' interacting M 1 or E 1 gluons in the lowest cavity modes of a spherical bag.

Gluons

Fig. 1(a)

Fig. 1{b)

Fig. 1(c)

Fig. 1(a)

Fig. 1(b)

Fig. 1(c)

Graph

(a) Coulomb
Transverse

(b) Coulomb
Transverse

(c)
+ (b)+

(a) Coulomb
f'rans verse

{1) Coulomb
Transverse

(c)
(a) + (b) + (c)

—0.1046
0

—0.1962
0

—0.1549
—0.4556

0.1381
0

—0.2072
0

—0.1616
—0.2307

0.0407
—0.3399

0.0981
0
0.1549

—0.0462
0.0072

—0.3207
0.1036
0
0.1616

—0.0553

0.0814
0
0.0981
0
0.0774
0.2569
0.0144
0
0.1036
0
0.0807
0.1988
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there is a large splitting of the various states due to the
strong gluon-gluon interaction. In fact, the interaction
energy may occasionally cancel the kinetic energy of the
gluons, if

Q)~)„——coN —Zo+ a,6)pq„& 0,
where h(z)„ is defmed as

N(N —1)
b,

( )„—— ([N) i F, F [A +BS, S
2

(4.9)

+ C(St S2) ] J [N]n ),

Two-Gluon Interaction
M I-GIuons Jmc = )+

FIG. 2. The interaction of two M 1 gluons with spin, parity,
and charge conjugation J"~=1+ in the lowest cavity mode for
various color states. The symmetry of the color (or spin) part of
the wave function is denoted by a Young diagram.

2) I1IO++
———1.9932,

6( )I)I ++———4.4732,
(4.11)

and thus Q( )(,)c++ and Q(~)(, )o++ turn negative for

a, & 1.8289 and a, &2.0417, respectively. Indeed, using
the MIT va1ue a, =2.2, we obtain

(4.10)

consistent with Eq. (4.4). This cancellation occurs in the
lowest states

~
[2]t 1)0++) and

~ [4]j1IO++) consisting
of M 1 gluons, where we have

M(x)» =E(w) I(&pqs ) (4.8)

while the masses of the exotic hadrons are given by the
value at the minimum Qt ] I I

++ 0 7396

Q~ ~t I
++ 0 7082

(4.12)

In Figs. 4 and 5 the spectra of the many-gluon systems
(or glueballs) are shown for two, three, and four interact-
ing gluons in a color I 1I state. In general, the interaction
(4.3) does not conserve the permutation symmetry of the
color part of the many-gluon wave function. Thus, the
four-gluon states with S =0 and S=2 are linear com-
binations of the [2 ] and [4] symmetries of the color wave
function. The spectra for M 1 and E 1 gluons are sinular:

Iio) = ( IoI

which indicates that for a fixed bag radius the two-gluon
state is lower in energy than the four-gluon state. The in-
teraction energy per gluon

1

D 9966

1

)(t)o 1 1 183
(4.13)

is slightly larger in the four-gluon than in the two-gluon
esse.

For negative Q(~)„s, the minimization procedure (4.7)
ceases to be meaningful, since there is no minimal value
for the energy any more. Thus these states will become
degenerate with the (perturbative) vacuum. In other
words, in these states gluons can be created spontaneously,
a fact which could cause the perturbative vacuum to

2 ~++

o + +
—————~r -O++

2
CQ

(GeV) N 2

3-

2-

2"

B.ccm

CG3
H] ~p+ p++

83+am ..

CKG
4

2

Two-Gluon tnteroction

E I-6]uons J~c = I

O. G3 8-am
p+ +

N-Glvon Spectrum
Colour {lj
M t-Gluons J ~ I

FIG. 3. The interaction of two 81 gluons vrith spin, parity
and charge conjugation I" = 1 in the loudest cavity mode for
various color states. The symmetry of the color (or spin) part of
the wave function is denoted by a Young diagram.

FIG. 4. The spectrum of %=2, 3, and 4 interacting M1
gluons with J" = l+ in the lowest cavity mode for a color {l j
state. The symmetry of the color (or spin) part of the wave func-
tion is denoted by a Young diagram.
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(GeV}

2-
!XD

83+cxm „O+ +

EB axe

P EI axa

H3 crm 2"

CIID
4

-3

2.0

E4j 2"
-E4) I++

6 crra p+ +

N-Gluon Spectr um

Colour ()j
E)-G/ups J "c=

t

E 530+
r. 4]O+'

FIG. 5. The spectrum of N =2, 3, and 4 interacting E1
gluons with I" = 1 in the lowest cavity mode for a color I 1 I

state. The symmetry of the color (or spin) part of the wave

function is denoted by a Young diagram.
).0

E2]2+'
[432+'

E3] I+

break down. Of course, one should be careful in drawing
such conclusions too early, since this degeneracy property
depends critically on the model parameters and the per-
turbative treatment of the gluon-gluon interaction. The
single-gluon energy, for instance, will be modified by the
self-energy correction which may turn out as large. 2'2i

Moreover, the fme-structure constant a, could very well
be much smaller than the value assigned in the original
MIT bag model. For this reason the spectrum of in-
teracting M1 gluons is shown in Fig. 6 as a function of
the coupling constant a„as well. In fact, the glueball
spectrum, as calculated in lattice gauge theories, is in
marked contrast to our expectation, that some of the 0++
states may be degenerate with the perturbative vacuum.
Ishikawa, Sato, Schierholz, and Teper, 2 e.g., find the first
0++ state of gluonium at 0.67 GeV and the first 2++ at
1.47 GeV. Thus the predicting power of our calculations
is limited by the uncertainty in the parameters used.

It is interesting to note that the four-gluon state

~
[4]t 1 IO++ & which is degenerate with the vacuum is not

just a product of two two-gluon states

~ [2]{1I0++ & X
~
[2]I1)0++& as suggested by Hansson,

Johnson, and Peterson. ' In fact the
~

[2]t27)2++ &

X
~

[2]I27)2++ & state contributes with 33%, almost as
much as the

~

[2]I1]0++&X
~

[2]I1IO++& state with
35%. Finally, also the states

I [2]I I)0'+
& X

I [2) I 811"&

I [2)[10I1"& X
I [2) I »j 1++

&

with 11% and 9%, respectively, inake an important con-
tribution to the lowest

~ [4]I 1 j0++ & state.
Our results in Tables I and III are in disagreement with

the paper by Hansson, Johnson, and Peterson, ' who ob-
tain four instead of three color [1) spin-0 states. We
could not find the reason why these authors get four such
states, since we were not able to prove the validity of their
method. On the other hand, our technique is a standard
method which has already found the way into the text-
book literature. ' Moreover, there is a completely in-
dependent (non-group-theoretical) proof of the method,

0.5

since we have evaluated the four-gluon wave functions ex-
plicitly for the color I 1 I case. The components of the
wave functions are listed in Table III in terms of the coef-
ficients of fractional parentage and the resulting states
agree with Table I.
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APPENDIX A: THE PLETHYSM OF U(8) DSU(3)~}og

Let us consider the group chain U(8) &U(3)„„,
&SU(3)«,~«, where the irreps of U(8) are mapped on the
irreps of the subgroups U(3}, „,and SU(3)„i,„. The fun-
damental irrep of U(8), for instance, is mapped on the I 8 I
representation of SU(3}„~„according to the chain

[10)~ [210)~ I 8 ) = ( 1,1),
U(8) DU(3)„)„DSU(3)„)„.

Following %ybourne' we denote this mapping by

(Al)

0
I

S

FIG. 6. The spectrum of N =2, 3, and 4 interacting M1
gluons with J"~=1+ in 1awest cavity mode for a color I 1 )

state. The energy levels are shown as a function of the strong
coupling constant a, and are labeled with the quantum numbers

[ pf]JBC
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[210)~[ 1o) (A2)

where the symbo1 {3)~ denotes plethysm.
Our aim is to determine the mappings of a general irrep

of U(8) on the irreps of U(3)„)„and SU(3)„)„

[h)h2h30]~?~?,
U(8)DU{3) )„DSU(3)

(A3)

or, in symbolic notation, we want to find the plethysm

[210]P[h) h2h30] . (A4)

A few formulas in Wybourne's book are of interest in this
context: e.g.,

([) 1
—[v))~[h]
= X {—»"I' ps{[ )~[a]X{[v)~[@])

all

[a]o[P]=gg.t)) [y] .
frl

(A8)

In order to solve our problem, let us now introduce the
identities

direct product of [a] and [p], i.e.,

[a)X[PJ=g I py[y] (A6)

and fp] stands for the transposed partition of [p]. In the
same book we also find the relation

([)ul X [vl)i [hl

= g g ps([)u]~[a])X([v]P[p]),
felfP7

where the g )3s's are the expansion coefficients of the
inner product (Clebsch-Gordan series) in the symmetric
group, &.e.,

with

[i]=[iii3i3 ], i =p, v, a„P,h or

f8j = [37 X t37 - tlj

[210]= [10]X [1'0]-[1'] .

(A9)

(A10)
& =P)+Pz+P3+ ' ' '

Here the I )3z's denote the expansion coefficients of the
I

Substituting Eq. (A10) in Eq. (A5) we immediately arrive
at

[210](8)p[h]=([10]X[130]—[1'])[h]= g ( —1)"I' p, {[10]X[1'0])ep[a])X([13]p[p]) .
felfP7

(Al 1)

The last factor in Eq. (All) can be readily evaluated by
noting that the general irreps of [p] and [p] are restricted
to the particular irreps [p]=[r00] or [p]=[1'],where r
is a non-negative integer number. We thus obtain

I

we arrive at

[hihzh3 ]U(s) g g ( —1)"IN)„sgi3rm[p]U(3)
~f+7 fWfr7

[210] p[h]= y„(—I)'I ~)ps([10]X [1 0))ep[a]) .
[air

Using Eq. (A7) we arrive at

(A12)

X [y]U(3), ), (A18)

which is precisely the equation mentioned in Sec. II. Of
course, the direct product in Eq. (A18) remains to be
evaluated using the rules given in Refs. 6 and 10.

[210)p[h)= y y {—1)~ )dgpy. ([1o)p[p))
fel~ fPlfr 7

X([i'0)3 [y)) . (A13)

The first plethysm on the right-hand side is the U(3)~i«
irrep [p] itself, i.e., we have

[1o]) [P]=[p) .

Similarly, we obtain, for the second plethysm,

[1'013 fy] =[y]'

{A14)

(A15)

where for a general irrep [y]=[y)yiy3] the complex con-
jugate irrep is defined as

[y)'=[y)-y3 yi-y2 o1 ~

Finally defining

[210](8)p[h]=[h ihih30)U(s)

APPENDIX 8: INTERACTION MATRIX ELEMENTS
FOR PARTICULAR MANY-GLUON STATES

If the color (or spin) part of the many-gluon wave func-
tion has total symmetry or antisymmetry with respect to
the interchange of any two gluons, we can determine the
expectation value of the interaction (4.3) directly without
knowing the coefficients of fractional parentage. In this
context, it is interesting to note that a total1y antisym-
metric color wave function can be constructed only for
?)? (3, since we restrict our study to spin-1 gluons. In the
case of total symmetry or antisymmetry in color, the
many-gluon wave function factorizes in a product of a
color and spin part

~

[i(()']aa&=
~
[h](Z,p)rn;&X

~
[h]SS,&, (Sl)

where [h]=[?(i'] or [1 ] denotes the permutation symme-
try of the color (or spin) wave function and the
(A, ,)((, ), F,T,T3 and S,S3 characterize the individual
members of the multiplets of SU(3) )„and SU(2),~;„,
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respectively. Let us assume that the two-gluon interaction
can be factorized in a color and spin part, as well,

V(1,2)= V, (1,2}Vs(1,2), (82)

= ( [h]FTTi
~

V, (1,2)
~
[h]YTTs )

which is certainly the case for the interaction given in Eq.
(4.3). Thus also the expectation value of this interaction
factorizes yielding

([N]aa
~
V(1,2}

~
[N]aa}

where the Casimir operator of SU(3)„(„is defined as

C&(A,,ls) = ,
'

(l—(, +Alt+is )+lt, +p .

Similarly, me arrive at the matrix element

([h]SSi
~
Si Sp

~
[h]SSs }=

in terms of the Casimir operator of SU(2),~;„.
In order to determine the remaining matrix element

& [h]SS31(Si'S2)'
I [h]SS

(86)

(87)

(88)

&(([h]SS3
~

V, (1,2)
~
[h]SS)}, (83)

Qg

V, (1,2)=A+BSi S2+C(S S2)

V, (1,2)=

The matrix element of Fi Fi can be readily expressed as

([h](A,,p}rTT$
~
Fi F2

~
[h](A, ,p)FTTs }

Cs(i„p)—3N

N(N —1)

and we are left with the problem of calculating the matrix
elements of the color and spin part of the interaction
separately. We now introduce the explicit form of the in-
teraction (4.3):

Pip ———1+Si S2+(Si S2) = —, +2Gi G2, (89)

where the G; denote the generators of the symmetry
group U(3), that describe the ith particle. We then readily
arrive at

([h]SSs
1
(S('S2)

1
[h]SSs &

2Ci(p, q) —S(S+1)+4/3N2 2N-
N(N —1)

(810}

where p and q are defined as p =h, —h2 and q =h2 —h3
with [h]=[h,highs]. Thus we obtain, for the general ma-
trix element (83),

we can make use of the fact that the permutation operator
for the spin part of the wave function Pi& can be written
as

C3( A„ls ) 3N-
([N]aa

~
V(1,2)

~
[N]aa) = 2Cs(p, q) —S(S+1)+—,N —2N

N(N —1) N(N —1) R
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