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We analyze quantum electrodynamics around a hypothetical highly charged (Z > 137) nucleus by
treating it as an external source. In contrast with the foregoing analyses which rely on the one-
particle theory we construct a framework which enables us to create the quantum-field-theoretic
treatment of the system. To deal with such a nonperturbative question we develop novel truncation
and approximation procedures. Keeping only the lowest partial wave of the electron and the photon
fields we transcribe the system into the form of two-dimensional fermion theory. We further con-
vert the theory into a two-dimensional boson theory by using a bosonization technique. We then ar-
gue that the semiclassical approximation in the resultant boson theory is reasonably good and in par-
ticular does take care of the quantum effects of the original fermion theory. We investigate the
asymptotic particle state of the theory and find that electrons appear as topological solitons. By
analyzing the boson theory with an external source classically we show that the ground state under-
goes the phase transition at a certain value of Z (Z~150 for nucleus size ~20 fm) from the normal
QED vacuum to an “anomalous” one which is characterized by the occurrence of real pair creation
of electrons and positrons. Qur result is confronted with the one obtained by the one-particle-
theoretic treatment. Some comments are made on the possibility of understanding the peak struc-
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ture in positron spectrum observed in heavy-ion collisions.

I. INTRODUCTION

One of the old problems in quantum electrodynamics
(QED) is the behavior of relativistic electrons around a
point charge Ze with Z > 137. (For the time being we
will refer generically to the system with Z > 137 as a su-
percritical system. A more precise definition will be given
in Sec. IV.) As is well known' the one-particle theory
runs into trouble for Z > 137 by rendering the energy
eigenvalues complex.

It has been recognized by many people that the remedy
of this problem must involve, as an essential ingredient,
the consideration of the finite spatial extension of the
charged source.> In this paper we wish to demonstrate
that the treatment of QED as the quantum field theory is
also indispensable for a complete understanding of the
problem.

What is the physical significance of the problem? We
ascribe its importance to the fact that it tests the
quantum-field-theoretic nature of QED in its nonpertur-
bative aspects. Although well tested and verified to great
accuracy in perturbative aspects,4 QED so far has not
been tested in such regions. For instance, Schwinger’s cal-
culation® indicates that in sufficiently strong constant
electric field the electron-positron pair creation occurs at
a finite rate per unit time. But the rate is too small to
measure for presently available electric field strength in
the laboratory experiments. Here we wish to call the
reader’s attention to the distinction in the role played by
the quantum-field-theoretic effect in perturbative and
nonperturbative QED. While it merely implies a tiny (al-
beit very important) correction to the one-particle-theory
result in the former, it gives rise to the zeroth-order effect
in the latter; the occurrence of the event itself is the conse-
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quence of the quantum-field-theoretic nature of the
theory.

Now we do have the experimental apparatus which en-
ables us to create a highly charged system, at least during
certain times, using heavy-ion collisions. Moreover the
recent measurements of the positron spectrum®’ show an
anomalous peak which might be attributable to the vacu-
um pair creation in the strong electric field. Therefore
our interest in the problem goes beyond the academic one.
(We emphasize, contrary to the current belief,® the possi-
bility that the peak structure in the positron energy spec-
trum can be explained by the pure QED effect. See also
Sec. V.) We, however, restrict ourselves to the case of a
static and spherically symmetric charged source in this
paper. We feel that the study of this simpler system con-
stitutes an important first step toward the understanding
of the physics around highly charged collision systems.

The problem with static charge distribution has been
analyzed by a number of authors’~!! from the one-
particle-theoretical point of view. They solve the Dirac
equations with the Coulomb field of an external charge
Ze and find that the 1S level “dives” to the negative-
energy continuum at a certain value of Z around 170.
They then argue that in the presence of the vacancy of
this level the spontaneous creation of positrons occurs.

The treatment based on the one-particle theory is, how-
ever, without subtlety in its interpretation. One of the
puzzling things concerns the interpretation of the unoccu-
pied level dived to the negative energy but not to the con-
tinuum, namely, to —m, <E <0. The proposed reinter-
pretation'? of the ground state results in regarding it as a
positron-nucleus bound state. But it is hard to imagine
that the positively charged objects bind together by elec-
tromagnetic force. Moreover, there is no reason to believe
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that the result of the one-particle-theoretic treatment is
accurate quantitatively even though it might be correct
qualitatively.

We present a quantum-field-theoretic treatment of the
problem which is free from these subtleties. Since every-
one agrees with the conclusion of positron emission, quan-
tum field theory is the natural framework to describe it.
We will also make a comment on the above-mentioned
subtlety (Sec. II).

The quantum-field-theoretic treatment of the supercrit-
ical system is difficult because the problem is in essence
nonperturbative and our machinery for such a problem is
generally quite poor. We will overcome this difficulty by
appealing the physical consideration leading to the trunca-
tion of the system keeping only the lowest partial wave of
photons and electrons. As will be explained in detail in
Sec. III the resultant system can be regarded as a two-
dimensional theory of fermions interacting with an elec-
tromagnetic field. Since we do have a variety of tech-
niques for dealing with two-dimensional field theories, it
is not too difficult to analyze the system. More luckily
the experience in other problems'>~!7 helps us.

The organization of this paper is as follows. In Sec. II
we will briefly summarize the conventional treatment of
the supercritical system based on the one-particle theory.
We show that the supercritical ground state is connected
with the normal Fock vacuum by a Bogoliubov transfor-
mation. We also make a comment on the essential differ-
ence between the quantum-field-theoretic and the one-
particle-theoretic treatments.

In Sec. III we explain the basic ideas behind our con-
struction of the quantum field theory around a supercriti-
cal system. Based on the observations made above, we
develop the lowest-partial-wave QED. Starting with the
representation as a two-dimensional fermion theory we
convert it into a two-dimensional boson theory using the
bosonization technique. Considering that the readers of
this paper may be nuclear and atomic physicists, we give a
careful explanation of the bosonization procedure, al-
though it might be familiar to particle physicists. We
then present a detailed analysis of the resultant boson
theory and in particular elucidate the asymptotic states of
the theory. We finally argue in Sec. III that the classical
analysis of the boson theory can give a good approxima-
tion to the quantum fermion theory.

In Sec. IV we discuss the physics around a highly
charged source utilizing the formalism developed in Sec.
III. We restrict ourselves to the static and spherically
symmetric source in this paper. We therefore focus upon
the structure of the ground state. It will be shown in Sec.
IV that when Z increases the vacuum undergoes the phase
transition from the normal QED vacuum to an
“anomalous” one. The latter vacuum is characterized by
the occurrence of the real pair creation of electrons and
positrons. Section V is devoted to conclusion and outlook.

II. ONE-PARTICLE THEORY
VERSUS QUANTUM FIELD THEORY

We intend to clarify in this section the relationship be-
tween the one-particle-theoretic and the quantum-field-
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theoretic treatments of the supercritical system. Our dis-
cussion will be confined to the case of static source.

The conventional one-particle-theoretic treatment deals
with QED with background electromagnetic fields Ay,

L=Pid+edpg—m ) . (1

Since the Lagrangian is quadratic in the dynamical vari-
ables the system is exactly soluble.
We introduce the Fock space spanned by the basis con-

structed by the creation and the annihilation operators de-
fined by

Yx)= 3 byu,(x)
n
+ 3 [bkuk,x)+d (k) v(k,x)], )
k

where the first term indicates the sum over the bound
state levels and u,, u(k), and v(k) form the complete
orthonormal eigensolution of the Dirac equation with
“smeared” Coulomb potential. The Hamiltonian of the
system can now be diagonalized

H=SE,b)b,
n
+ 3 [e(k)b (k)b (k) +€(k)d (k)'d (k)] . 3)
k

At Z <Z., where Z_, denotes the critical value of Z at
which the 15 level dives into the negative-energy continu-
um, the ground state of the system is given by the Fock
vacuum,

b, |0)=b(k)|0)=d(k)|0)=0. 4)

Namely, we are taking the Fermi surface at E = —m,.

At Z > Z ., however, the Fock vacuum ceases to be the
ground state of the system. Under this circumstance we
assume the existence of a unitary transformation from the
old to the new vacuum:

16)=U0) . (5)

Correspondingly we define the operators which annihilate
the new vacuum (supercritical vacuum):

B,=Ub,U", B(k)=Ub(k)U",

6)
D(k)=Ud(x)U" . (

Notice that the Hamiltonian should also be diagonal in
terms of the new variables.

Suppose now that only the n =0 level dives into the
negative-energy continuum, that is, Ey< —m,. For the
time being let us forget about the spin degeneracy, al-
though we shall come back to this point later. After some
trial it is easy to observe that the unitary transformation
(6) is nothing but the Bogoliubov transformation

U = exp{6[bd(k=0)'—d (k=0)b,]} %)

with special Bogoliubov angle 6=1/2 (Ref. 18). That is,
Bo=—d(k=0)", D(k=0)'=b, (8)

while all the other modes remain unrotated, namely,
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B,=b, (n+#0), etc. To single out the k =0 mode we
have to work with a large but finite box but we will not
elaborate this point here.

At Z > Z_, the Hamiltonian thus takes the form

H=—m,B{By—ED(k=0)'D(k=0)

+ 3 E,BIB,+ 3 e(k)B(k)'B(k)

ns0 k
+ 3 €D K)'D(K)+(Eg+m,) . (9)
k40

The last term in (9) represents the vacuum energy and its
sign is negative (positive) at Z >Z_ (Z <Z_.), showing
the instability of the Fock vacuum in the supercritical
electric field. '

When the electron spin is taken into account there are
two different ways to pair the b, and the d (k=0) opera-
tors depending upon the spin orientation. We need to in-
clude the electron-electron interaction to determine which
is the right way to pair these operators. We will not enter
into this problem in this paper.

Our treatment of the one-particle theory, which is origi-
nally intended to provide a pedagogical explanation, re-
veals an interesting aspect of the theory. Namely, the
redefinition of the ground state done in Ref. 12 amounts
to performing transformation (8) only on b, leaving
d (k=0) unchanged. This transformation, however, is not
acceptable because it is not unitarily implementable. Ap-
parently this solves the puzzle mentioned in the Introduc-
tion.

In contrast with the background-field problem (1) the
full quantum field theory of the supercritical system is a
difficult unsolvable problem because of the nonlinearity of
the electron fields. While we are planning to describe our
proposal to deal with such a system in the next section,
here we will make a brief comment on the essential differ-
ence between the quantum-field-theoretic and one-
particle-theoretic approaches.

Consider the problem of calculating the induced charge
around the external charged source. In Feynman-diagram
language the one-particle theory deals with the diagram
depicted in Fig. 1(a). This is the only diagram which one
can draw without the electron-electron interactions. In
quantum field theory, however, there exist many other
diagrams, the simplest of which is exhibited in Fig. 1(b).

We note that the latter diagram is of order ~a'Xx (all
orders in Za), while the former one is ~a®X (all orders
in Za). In this sense the latter one is down by order a
but it is far from obvious that its contribution is really
small because we have to deal with the all order effects of
Za which is now larger than unity. In other words we do
not know any evident reasons for believing that the per-
turbation theory is reliable for this problem.?’ Moreover
there are many more diagrams besides the one depicted in
Fig. 1(b).

J

E”j=me [1*{"

n—0+3)+0( +5)7?—-2Z%*"2

Za ]2]—1/2

(a)

FIG. 1. The Feynman diagram for the induced electric
charge in the background-field approach is drawn in (a), while
in (b) one of the additional diagrams in quantum field theory is
illustrated.

III. LOWEST-PARTIAL-WAVE QED

A. Quantum-field-theoretic approach
to supercritical systems

We wish to develop the formalism which enables us to
treat supercritical systems based on QED. Because of the
nonperturbative nature of the problem it is inevitable to
introduce the approximation and/or the truncation of the
system.

To find a sensible way of truncation we go back to the
original problem of the Dirac electron around the charge
Ze. Let us ask the question “what is responsible for ruin-
ing the treatment of the bound-state problem?”’ The
answer to this question is quite simple; as far as Z <274
it is only the lowest partial wave, j =+, of the electrons
that causes the trouble. This can be easily seen from the
expression of the energy eigenvalue:!

(10)
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where m, denotes the electron mass.

There is a simple explanation of the above fact. In the
j =+ wave the Coulomb attraction is strong enough to
dominate the centrifugal barrier and the “fall” of the elec-
tron to center occurs,?! whereas in higher partial waves
there is no such trouble because the centrifugal barrier
wins the race. (When Z > 274 the J =3 wave begins to
fall but since this is not the presently attainable number of
the electric charge we shall ignore this possibility.)

However, we are now considering not the point source
but the one with finite spatial extension. In this case the
bound-state problem is not ruined even when Z > 137. As
far as Z <300, however, the only jz% wave dives into
the negative-energy continuum. (This estimate assumes
the source size of the order of nuclear radius.) Therefore
the dominance of the lowest partial wave seems to be
quite good in one-particle theory provided that the source
radius <<m, "

We, however, wish to go beyond the one-particle theory.
Are there any compelling reasons for believing that the
validity of the lowest-partial-wave approximation contin-
ues to hold in the second-quantized theory? Although
there is no a priori reason for this we can a posteriori justi-
fy this approximation; the electron-positron pair creation
is largely suppressed by the centrifugal barrier and there-
fore the dominance of the lowest partial wave holds in a
good approximation. Of course a complete justification
of our approximation must await an explicit computation
of the effects of higher partial waves, which is beyond the
scope of this paper.??

We are thus led to analyze the lowest-partial-wave field
theory around a supercritical source. The lowest-partial-
wave approximation alone, however, does not guarantee
the complete solubility of the theory at the quantum level.
Therefore we have to invent a reliable approximation
method for computation. Our proposal is the following.
We first write the theory in the form of two-dimensional
(one time and one-half space) fermion theory. Second, we
convert the fermion theory into a two-dimensional boson
theory via the bosonization technique. We then argue
that the classical treatment of the resultant boson theory
gives a reasonably good approximation to the original
quantum fermion theory. In particular we claim that the
classical analysis of the boson theory does take care of the
quantum effects at the fermionic level. We will offer
several arguments to justify our claim after developing the
bosonized theory of the lowest-partial-wave QED.

B. Spherical harmonic expansion
and the effective two-dimensional fermion theory

We consider QED with an external charge Ze which is
described by the Lagrangian density

f=—'fl’ wpuv+$(ia+e,4_mo)xp—Zep(x)Ao .

(11

In this paper we confine ourselves to a spherically sym-
metric source, p(x)=p(r,t). The normalization is taken

such that f d’x p(x)=1.

We shall keep only the lowest-partial-wave (j =) fer-
mion fields discarding all the “inessential” higher partial
waves. We also retain only the s wave of the electromag-
netic fields since our external source is spherically sym-
metric. This approximation implies throwing away the
transverse photon while keeping the Coulomb interaction.
By this we lose the opportunity to discuss the photon
emission processes. Nonetheless, it does not mean any
serious limitation for our present purpose. Furthermore
the spherical source approximation seems to be quite ap-
propriate also for the collision system because the
“anomalous” positron emission is dominated® by large-
angle scattering of heavy ions.

For definiteness we use the standard Dirac representa-
tion for the ¥ matrix

o I 0 ; 0 g;
Y'=lo 1| Y= |-0o; 0"
(12)
01
Ys=1|r o

and introduce the two-component spinor X5 (§==) by
which ‘the fermion field with definite chirality,
Yr,L =73 (1+y5)Y, can be expressed as

X_
L (13)

Using these chiral spinors (which are nothing but the
Weyl spinors), the fermionic part of the Lagrangian can
be written as

L= 3 X}[(i8o+ Ao)+80,(id; + 4;)]Xs
a==
—moXX_s . (14)

The s-wave electromagnetic fields have forms

Ao(x)=apy(rt),

(15)
A,~(x)=f’,~a,(r,t) ,

where 7;=r;/r denotes the ith component of the radial
unit vector. The fermion fields can be expanded as

Xp(x) = 3 0f (0 () (16

jmo

using the spherical harmonic basis ¥;,, which are the
simultaneous eigenfunctions of J2, J 3, and T-o, where
J=L+0/2, with eigenvalues j(j +1), m, and o, respec-
tively. They are linear combinations of the parity-
diagonal basis commonly used' in the hydrogen atom
problem, and have the explicit form
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172

jtm m-1/2, |J=m+1 m—1/2
. 2j j—12 = 2 +1) j+1/
Vinomt=—= 172 ) 172 . (17)
e V2 || j=m ymti2— | [tm+1 ym+1/2
2 =172 2G+1) j+172
Using the formula
a,-a,»f(r,t)\l/jm,,(ﬂ)=—g— r%-{—l ]f(r,t)‘lljm,,(Q)+(j+%)f(r,t)\lljm_,,(ﬂ) (18)
and the orthonormality of the basis we readily obtain the fermionic action written in terms of the partial waves:
j+3
Sp= f drdt 3, 2vﬁ:a[iao—f—eao—i-SU(ia,-{—eal)]vﬁ,w-—iﬁa . - vﬁ:avﬁn _a—movﬁ:avj,“,,?, . (19)
jmo 8

From now on we shall keep only the lowest partial
wave (j=+) and rewrite (19) in the form of two-

[
higher partial waves (j > 5) we have to impose the boun-
dary conditions such that all v}s,,,a vanish at the origin. It

dimensional fermion theory. We define the two- should be noticed that the fermion fields would be singu-
dimensional spinor lar at the origin were the boundary condition not obeyed;
5 if one calculates the value of the fermion field at the ori-
s _ |14  1—i v(1/2ms (20)  &in by taking the limit to r =0, the answer depends on the

Um= 2 + 2 i vf’, Jom—5] angle used to approach the origin.

where the extra rotation in (20) is for our later conveni-
ence. Using the two-dimensional ¥ matrix

Yo=m, v'=in, ys=y%'=m, 1)

the fermionic action (19) can readily be transcribed into
the form

Sy= [ drat mza17?,,[yo(iao—t—eao)-i—yl(ia,-}—eal Ju,

)

+—adysud —moadu;®. (22)

I
-

Adding to this the gauge field part including the in-
teraction with the external source,

Sg= fdrdt27'rr2(80a1—8,a0)2—47rZer2p(r,t)a0 ,
(23)

we have obtained the total action of the lowest-partial-
wave QED on which we concentrate in this paper. From
(22) and (23) we recognize that our system is precisely the
two-dimensional QED with r-dependent charge e /2V 7.
The last two-terms in (22) represent the effect of centrifu-
gal barrier and the fermion mass, respectively.

Before closing this subsection we mention that tran-
scribing the field theory with definite partial wave into
the effective two-dimensional field theory can be done in
all partial waves beyond the lowest one. In the case of the
magnetic-monopole—fermion system this has been worked
out in Ref. 23, and it is straightforward also in our case.

C. Boundary condition
When we rewrite the four-dimensional field theory into

the set of two-dimensional field theories careful attention
must be paid to the boundary condition at the origin. For

The boundary condition for the lowest partial wave, on
the other hand, depends upon the basis one uses. If one
works with an interaction representation where only the
gauge interaction and the mass terms in (22) are regarded
as perturbations the boundary condition for the lowest
partial wave is the same as the one for the higher partial
wave.?* This is due to the presence of the centrifugal-
barrier term in the unperturbed Hamiltonian.

On the other hand, we want to work with a different in-
teraction representation where all the interactions includ-
ing the centrifugal-barrier term are taken as perturbations.
That is, we are to work with the massless free-fermion
basis in two dimensions. This choice is required in order
that the conventional bosonization procedure -carries
through?® as will be seen later. Being the free-fermion
basis it is only necessary to avoid the singularity (angular
dependence) at the origin. Thus the proper boundary con-
dition in our case is

V81 /2m + (0,0 =001 /2y — (0,0)=0, 24)

which implies that the coefficient of W(; /5)m + —¥Y(1,2)m —
vanishes. Notice that the coefficients of Wi 2)m4
+W¥(1,2)m — need not vanish because this combination does
not have angular dependence as one can easily check from
(17).

The condition (24) does allow a clear physical interpre-
tation for massless electrons. For this we recall that o
is equal to the helicity for outgoing waves and to the
minus helicity for incoming waves. Therefore (24) simply
states that the helicity conserves at the origin.

The boundary condition can be written, in terms of the
two-dimensional spinor defined in (20), as

(1—y"ub(0,1)=0. 25)

One may note the similarity with the Rubakov-Callan'®!4
boundary condition in the monopole-fermion system.
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D. Bosonization

Our next step is to rewrite the resultant two-
dimensional fermion theory into the equivalent two-
dimensional boson theory. Since the discovery due to
Coleman?® and Mandelstam,?’ the fact that the fermion
theory can be mapped into the corresponding boson
theory (and vice versa) in two dimensions is widely ac-
cepted and is referred to under the name of bosonization.

In the sine-Gordon and massive Thirring models one

J
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can find the correspondence between the Heisenberg
operators in both models.?’” In most cases, however, this
is not possible and the bosonization proceeds via the fol-
lowing path:*® we take the free massless fermion basis re-
garding the mass term and other terms as interactions.
For free massless fermions one can find the operator
correspondence between fermions and bosons. [See Eq.
(26).] Working in the interaction representation one can
rewrite the whole theory using the boson variable.

Let us start by introducing the boson-fermion
correspondence for massless free fields:

5o | e 12 | —iNyexp{iVal g (nn)+6 0 (nn)]}
)= K . .
Um'F 2 ™ N, exp{ivVa[ —¢5(r0)+65 (0]} |’ 29
[
where The fact that the right-hand side of (26) does really
have the property of a free massless Fermi field can be
- . ® : demonstrated by showing that all the n-point functions
5 _ —esi b
$m(rt)= ?_’f}) f r dse” ¢ m(s;t) . @7 calculated in terms of the Bose variable agree with that of

Hereafter we frequently use the overdot and the prime for
temporal and spatial derivatives, respectively. In (26) we
have introduced four boson fields ¢3, (m =++, §=1)
corresponding to the four fermion fields ud. The symbol
N, indicates the normal ordering with respect to mass p
(Ref. 26), c is a constant whose value is irrelevant in what
follows, and K,?, stands for the Klein factor which
guarantees the proper anticommutation relation between
different Fermi fields.

|

[6 0 +0d' (0,6 1)+ 1]

the free massless Fermi field. In the usual two-
dimensional theories this can readily be done but in our
case we have to be careful about the boundary condition
(25). In our case it can properly be dealt with simply by
imposing the boundary condition for the boson fields

$5,(0,0)=0. (28)

Because of this boundary condition the commutation rela-
tions between boson fields contain extra terms in addition
to the unusual one,

1
== [ =mU—) 4, +(1+m1+7)4_+1—)1+9)B, +(1+9(1-7)B_], (29

where

Ax(rt;r',t")=Inicu[(t —t' )X (r —r')—i€], 30)
0
By (r,t;r',t')=Inicu[(t —t")x(r +r')—i€],

where ¢'*’ and ¢'~ indicate the positive- and the
negative-frequency parts, respectively. The extra pieces
(B’s) in (29) serve to make the fermion’s boundary condi-
tion (25) hold.
The Klein factors may be taken as
imF

Kip=1, K* ,=Kip=e *,
iwF, inF Gy
KZip=e ‘Ye 7,
where
F, = fo"" dr 3 ad voud (32)
5

denotes the fermion number of spin-up (-down) fermions
form =+ (—1).
In this paper, however, we work exclusively in the

zero-fermion-number sector of the theory. This enables
us to disregard the Klein factors since they are expressed
only by F,,. It should be noticed that this restriction does
not prevent us from discussing the charged state such as
the one-electron state. Because of the cluster property we
can talk about the behavior of the electron quite indepen-
dently of the associated positron located at spatial infini-
ty. We therefore disregard the Klein factor in our follow-
ing discussions.

Upon accepting the correspondence (26) we can readily
express our fermion operators in terms of the boson fields.
We obtain the formulas

il y*Buub =+0,65044%, (33a)
=8 . u 8 _ 1 va 48

u Up = — e*"a

_ i

adysul=— Ey— cos(2Vmed) , (33c)
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S @bt =2 cos[ Vg +4m)]
]
X cos[V(d —dm)] . (33d)

It should be noticed that these formulas can be obtained
only after the careful point-splitting procedure. In (33c)
the expected p dependence is replaced by r~' which

|
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comes from the additional terms in the commutator given
in (29). We have used the covariant notation
x#=(x%x")=(t,r) and € denotes the antisymmetric
symbol with €°=1.

Using the formula (33) we bosonize our system (22) and
(23); for definiteness we choose the a;=0 gauge. We
have, after integration by parts,?’

- 20721 od(r)a’ 10348 )24 —€ 1 4B 1 5
S= [drdt2mriay+e (r)ao+'§8 2(a“¢’")+\/77"°¢'"+2m2 cos(2V'7d,)

2cumg
+3 -

m

where

' (r,t)=47Zr’p(r,t) .

cos[ V7t +m)lcos[ VT & —6 )] , (34)

(35)

Here we have fixed the arbitrariness of the chiral angle so that the vacuum values of the Bose fields vanish in the absence

of the external source.

From (34) we observe that the electromagnetic field a, has no dynamical degrees of freedom as usual in the Coulomb
gauge. The absence of the transverse photon is, of course, due to our restriction to the s wave. We eliminate a by using
the equation of motion and construct the Hamiltonian as a functional of ¢3, and their canonical conjugates 75, (Ref. 30):

1
27r?

H= [ar3

m,8

%(72,2+¢g,2)—° cos(2\/1—r¢,5,.)]

2cumg

m

S cos[ V(S +65)] cos [\/; 7 dstma(s)—mis)] ]+

2

e
8mrr?

2
1 g s
¢(r,t)—ﬁ"%¢m] . (36)

The particle content of the theory is far from obvious from (36) because of the complexity of the mass terms. There-
fore we perform a canonical transformation to the “physical” Bose variables:

Op=1(85+0m)— 1 [~ dslmi($)—7m(9)], Om=F@a+bm)+5 [ dsmais)—mn(s)],

(37)
Op=3mh+7m)+3(bn'—bm')y Pn=73(mm+7)—5(d5' —67") .
We thus have the final form of the Hamiltonian
H= f ary, (24 P2+ @2+ 00 D)+ b - 1;-2 [1—- cosV'r [<I>,,,+Q,,,—8 fr ds[I1,,(s)—P,,(s)] ] ]
m m,8 <™
M 2 e 2 1 2 2
+§—1r—[2—-cos(2\/1_r<l>,,,)— cos(2V'7Q,, )]+ py— @(r,t)—ﬁ§(¢m+QM)J —o(r,)? |, (38)
f
where we have renormal ordered the Hamiltonian at Sec. IV.
(m/4)*¢~'my and M =(mw/4)m,. In (38) we have made The boundary condition for (25) or (28) has the form
the subtraction of the c-number terms so that the energy
of the temporary vacuum with ®,,=Q,, =0 vanishes. ®,,(0,0)+0p (0,1)=0 (39)
ghe ter;n i“tentl}?ortary” imslifstthtat tfhlt; C‘t’lf:glogr‘;fa“i‘t’ﬁ in terms of the physical boson variables.
oes not give the true ground state of the w A tly th ist ther bound iti
external source although it does for the sourceless theory. pparently there exists another boun condition
This fact will be verified in our numerical computation in D (00,t)—Qp(0,t)=0 (40)
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due to the definition of these variables. However, it
should not be regarded as the boundary condition to be
imposed in doing quantum computation. Since 1r,5,, in the
integrand is a quantum-mechanical operator,

lim frm ds 17,5,,(s)

r—>co

does not necessarily vanish. It should not come as a
surprise if one remembers that Mandelstam’s bosonization
formula (26) does not imply the fermionic boundary con-
dition u (o )=iu,(c0) (u; and u, being the up and the
down components) in performing fermionic path integral.

E. Electron excitation

We wish to demonstrate the existence of electron excita-
tion in our bosonized lowest-partial-wave QED. From
our experience in the monopole-fermion system'* it is
natural to expect that the electron exists as a soliton in
our theory. To identify the asymptotic particle state we
hunt the soliton excitations far from the location of the
external source. For this purpose we are allowed to keep
only the kinetic and the mass term in (38).

We look for the lowest energy excitation in our system.
The obvious candidate for such a soliton solution is

—2M(r—ry)

@ (r)= —2 arctan(e ), (41)

'z

where m =++ or —+ (not both). It should be noticed
that (41) give an accurate solution which is consistent
with the boundary condition (39) only if ro>>M ~'. The
energy of this configuration can easily be calculated as
(4/m)M =m, which may be interpreted as the mass of
the soliton.

Can the soliton (41) be interpreted as an electron? To
answer this question we calculate the quantum numbers
of the soliton. The electric charge and the third com-
ponent of the angular momentum allow the following ex-
pressions in terms of the Bose variables:

Qem=e [ d*xy'y

e 0
_egpm_- = %[d)m(r)ﬁ-Qm(r)] o (42a)
= (ot lewlor &
L= [dxy rX V43 3¢
1 -]
=—= S m[® (1) +0p(r)] (42b)
\Za % " 0

It should be noticed that the angular momentum of the
soliton at rest may be identified as the soliton’s intrinsic
spin.

Using (42) we can easily calculate the quantum number
of the soliton and we have (Qgum,J3)=(—e,+5) for
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m =i%. It is the electron with spin up and down for
m=++ and — —;—, respectively. It is, therefore, tempting
to conclude that the soliton (41) is the electron.

A problem, however, arises in this conclusion. The
solution (41) exists also for Q,,(r) which has exactly the
same mass and the same quantum numbers. Therefore we
are left with an ‘“embarrassment of riches,” having the
two kinds of electrons.

The origin of this degeneracy can be traced back to the
parity invariance of the theory. To understand this, and
also for completeness, we work out the transformation
properties of the physical Bose fields under the parity ( P),
the charge-conjugation (C), and the time-reversal (T)
transformations. By knowing the transformation proper-
ties of the original fermion field it can readily be done
with the results

P, P '=Q,, ,

(43a)
@Qm'@_-l:q)m;
€Y, € '=—Q_,n,

(43b)
EOnE '=—D_,, ;
T, (rt) T '=®_,(r,—1),

(43c)

T Qm(H)T 1=Q _,,(r,—1) .

We have not presented the transformation properties of
the canonical momenta in (43) since they are exactly the
same as that of the corresponding fields. Here we are tak-
ing the phase convention such that an electron state has
even parity.

From (43a) it is evident that the degeneracy of the soli-
ton solution reflects the parity invariance of the theory.
Our problem now has a natural solution; we have to form
the parity eigenstate so that the physical states respect the
symmetry. However, we cannot do the job in a purely
classical context and therefore we have to proceed to
quantum mechanics.

Since we wish to remain in the semiclassical approach
we emgloy the coherent state formalism.>' Following
Cahill* we construct the quantum-soliton states | ®) and
| Q) corres,ponding, respectively, to the classical solutions
®;, and Q,, as

|®)=exp [—i f dr &% (r)I1,,(r,0) ] o), (44a)

(44b)

|Q)=exp

where the sum over m is not implied. We note that

—i [ dr Q(nP,(r0) | [0)

8(®|H |®)/5®=0

is solved by ®Z. It should also be noticed that these
states have a number of desirable properties:

(0| ®)=(0]|Q)=(P|Q)=0, (45a)
(P Qem | P)=(Q |Qem |Q)=—¢, (45b)
(®|Qem | Q)=(Q | Qpm | P)=0. (45¢)

The equations in (45a) hold because of the property of the



soliton configuration which differs by a constant from the
vacuum value in an infinite range of r.
Now the parity eigenstate can easily be constructed:

1
|E(i))=7—3({¢)i|Q>). (46)

Owing to (45c) the electric charge and the spin of the new
states (Qgy,J3) are still given by (—e,++) for m =++.
The parity-even state | E(+)) is nothing but the s-wave
electron state, while the parity-odd one |E(—))
represents the p-wave state.

Both of them are degenerate within our approximation
of ignoring 1/r? terms. If these terms were included the
parity eigenstates (46) would naturally come out through
diagonalizing the Hamiltonian. In the problem of hydro-
genlike atom such a procedure will bring us the
18, ,,-2P, s, splitting, which will be the subject of a forth-
coming publication.

F. Validity of semiclassical analysis of the boson theory

In Sec. IV we will give a detailed analysis of the resul-
tant boson theory (38) to investigate the ground state of
the supercritical system. Before doing this we wish to ex-
plain the reasons for our claim that the semiclassical
analysis of the boson theory does take into account the
quantum effects of the original fermion theory.

It is well known that the semiclassical treatment of the
sine-Gordon theory comes close (at least qualitatively) to
the quantum massive Thirring model, the equivalent fer-
mionic theory of the former. Since our system essentially
behaves like a sine-Gordon theory far away from the
source it is plausible that the same thing happens. The
fact that we have obtained the sensible particle spectra in
the previous subsection does support our viewpoint.

Moreover if we turn our eyes to wider physical contexts
there are good examples which further support our belief.
One of the best examples concerns the fermion fractioni-
zation,>* the phenomenon that the fermions induce their
charge on solitons in the toPologically nontrivial solitonic
background. It is known'>!® that in this case the classical
analysis of the boson theory exactly reproduces the results
of the fermion one-loop calculations.*

Our foregoing remarks, however, do not guarantee the
validity of the semiclassical approximation at r <M ~!or
more importantly near the external source. (In the fer-
mion fractionization the result depends only on the
behavior of Bose fields at spatial infinity because of the
topological nature of the problem.) One of the most seri-
ous objections would be that the classical treatment can-
not properly deal with the uncertainty principle which is
certainly one of the most important features in quantum
theories.

It is, nevertheless, true that our classical analysis of the
boson theory does take into account the uncertainty prin-
ciple. To show this we consider a simplified system by
dropping the mass term and the centrifugal force term in
(38). Notice that by doing this we lose no essential in-
gredients of the model for our purpose. Since the uncer-
tainty principle is effective at r < m,~! and the centrifu-
gal barrier prevents electrons from falling to the center,
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our simplified system would suffer an even more severe
problem of ignoring the uncertainty principle.

The simplified system is exactly soluble quantum
mechanically at the fermionic level. In fact it is essential-
ly the dyon-fermion system which has been discussed in
Ref. 17 apart from the number of the fermion species.
Using the path-integral method one can easily calculate
the induced fermionic charge in the vacuum. We obtain

(Fr) == 3,b(r1)
4vimr @7

b(rt)=vV2rK f dr’a’t'——ll2 Rg(rt;r',t")o(r',t'),
r
where Zk is defined by

Rg(r,t;r',t')=8(r —r')d(t —t') (48)

32-3,2+%
r

and K =e?/47 (e?/8w) for our simplified system (the
dyon-fermion system).

On the other hand, (47) is nothing but the result of the
classical treatment of the boson theory.!” [Notice that
b(r,t) in (47) is the solution of the classical equation of
motion.] Thus the classical analysis gives the quantum-
mechanically exact answer in our simplified system.

Even more dramatic evidence that the classical analysis
contains the quantum effects can be provided by showing
that the hydrogenlike atom constructed by the classical
Bose theory has a characteristic size of the order of the
Bohr radius. Recall that the size of the ground-state atom
is determined by the balance between the repulsion due to
the uncertainty principle and the Coulomb attraction is
nonrelativistic quantum mechanics. The result of our pre-
liminary analysis of the problem, which is dealing not
with the hydrogen but with the uranium atom seems to
support our viewpoint; the size of our bosonic atom is
much closer, on the order of magnitude, to the Bohr ra-
dius rather than the nuclear charge radius.

This completes the arguments to justify our claim that
the classical analysis of the boson theory takes care of the
fermionic quantum effects.

IV. INDUCED FERMIONIC CHARGE
AROUND A SUPERCRITICAL SOURCE
AND POSITRON EMISSION

We now address our original question of the physics
around a supercritical system. We restrict ourselves into
the static and the spherically symmetric source in this pa-
per although our formalism can accommodate the time-
dependent source. Because of the restriction we are able
to directly talk about neither the positron emission in
heavy-ion collisions nor the time development of the pro-
cesses. Nevertheless, it is interesting to examine the struc-
ture of the ground state of our system. We do this by
computing the vacuum energy and the induced charge
around the supercritical source. Furthermore the problem
with the static source is of physical significance provided
that the nuclear collisions occur with very long reaction
times.3%37 (We argue, however, in Sec. V that this possi-
bility is unlikely in view of the data on positron emission.)
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r (a) ®)

r r

FIG. 2. Schematic illustration of the induced charge density
(dashed line) and the corresponding boson wave function (solid
line) for (a) undercritical and (b) supercritical cases, respectively.
For definition of these terms see the text.

To appeal to the reader’s intuition and to make it easier
to understand what is going on we first give a sketch of
the method for analysis and a schematic description of
our results. Taking the validity of the classical analysis
for granted it is easy to calculate the induced fermionic
charge in our framework. That is, we look for the config-
uration which minimizes our Hamiltonian by solving the
classical equations of motion.

For each value of Z we find two local minima in the
parameter space of the solutions. They correspond to the
charge distributions depicted in Figs. 2(a) and 2(b), respec-
tively. The corresponding bosonic fields are also shown in
Figs. 2(a) and 2(b), respectively.

For a small enough value of Z the type-(a) minimum
gives the lowest-energy state of the system whereas for
large enough Z the type-(b) one is the true ground state.
When we increase Z the vacuum changes from type-(a) to
type-(b) at a certain critical value of Z. Notice that we
are comparing the vacuum energies of the type-(a) and -(b)
ground states as we also did in one-particle theory (Sec.
II). From here on a source is called supercritical (under-
critical) if it has an electric charge greater (smaller) than
the critical value.

The type-(a) minimum allows an immediate interpreta-
tion as the normal QED vacuum with the vacuum-
polarization effects through radiative corrections (this
again supports our claim that the classical analysis of the
boson theory contains the quantum effects), whereas the
type-(b) one is much more difficult to interpret. Ap-
parently the ground state becomes charged. But this
should not be the case as will be explained below.

Since we are dealing with the one particle state, a su-
perheavy nucleus state, the charge conservation alone does
not generally prohibit that our ground state is electrically
charged. This situation in fact occurs in a certain mag-
netic monopole-fermion system where the monopole
ground state carries fermion number®*34 as well as electric
charges.!>16

Let us consider, however, to adiabatically increase the
external charge Z starting from the type-(a) phase just
below the critical point. At Z =Z_ the ground state un-
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dergoes the phase transition from the type-(a) to the type-
(b) states. Since the former is charge neutral (apart from
the external charge) the latter should also be charge neu-
tral unless the charge conservation is broken. Notice that
this argument does not apply to the case of magnetic
monopoles since the magnetic charge cannot be turned off
adiabatically.

Another important difference between our and the
monopole-fermion system is that while we are working
with the external source, one is talking about the fermion-
ic charge induced around a fixed background field in the
latter. Since the fermion comes into the problem only
through the coupling with the dynamical gauge fields in
the former, there is no way to have a charged ground
state, unless the charge conservation is spontaneously bro-
ken. This last possibility is, however, highly unlikely and
in fact contradictory to the general argument due to Vafa
and Witten.3®

To interpret correctly the type-(b) ground state we cal-
culate the charge induced around the external source. Us-
ing (42) and noticing that ®,, and Q,, take V7 times the
integer we realize that the value of the induced charge has
to be an integral multiple of the electron charge. There-
fore we were observing the trace of the real (opposed to
virtual) pair creation of electrons and positrons. We em-
phasize that this interpretation is possible only if the in-
tegral valuedness of the induced charge is demonstrable.>’
It is the topological nature of the electron excitation that
makes it possible in our classical analysis of the boson
theory.

Thus we have arrived at a natural interpretation of the
type-(b) ground state. It accompanies at spatial infinity
positrons whose electric charge exactly cancel the one in-
duced around the external source. In comparing the ener-
gy of this ground state with that of type-(a) we have to
add the rest mass of these positrons to the energy comput-
ed before. Hereafter we denote the type-(a) and -(b)
ground states as the no-emission and the n-positron-
emission states, respectively.

Now we enter into the details of our actual analysis.
We take, as spherically symmetric sources, the solid-
sphere and the spherical-shell forms both with radius R:

pl r,t)=z—:;;9(R —r) (solid sphere) ,

1 (49)

47R?

where 6(x) denotes the step function. The corresponding
®’s defined by (35) are given, respectively, as

plr,t)= 8(r —R) (spherical shell) ,

3
O(R —r)+Z6O0(r —R) (solid sphere) ,

,
D(r,t)=2Z [R
(50)

®(r,t)=Z6(r —R) (spherical shell) .

Once giving the source it is in principle straightforward
to numerically obtain the lowest-energy state. We note
that all the canonical momenta can be set equal to zero
because of the time independence of the system. The sys-
tems are still coupled ones and we need further simplifica-
tions. We confine ourselves in this paper to the case
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FIG. 3. The energies of the no-emission and the n-positron-emission states are plotted as functions of the atomic number Z for the
solid-sphere source with radii (a) 10 fm, (b) 22 fm, (c) 34 fm, and (d) R =2m,~(2.5X Z /2)!/3 cases, respectively. In each figure the
dashed, dash-dotted, and solid lines show the energies of the no-emission, the two-, and the four-positron-emission states, respectively.

®,, =Q,, which simplifies the analysis considerably. The
condition ®,, =Q,,, however, implies an important re-
striction that the single electron (or positron) cannot be
emitted.

We employ the variational method to obtain the
lowest-energy configuration of the bosonized Hamiltonian
(38). We display mainly the results for the solid-sphere
source and occasionally make comments on the
spherical-shell case, considering the fact that the latter re-
sults are quite similar to the former’s. In Figs. 3(a)—3(c),
the energies of the three minima, the no-emission, the

two-positron-emission, and the four-positron-emission
states, are depicted as functions of the atomic number Z
for R =10, 22, and 34 fm. The energy of the n-positron-
emission state includes the rest mass of the n-positrons at
spatial infinity. In Fig. 3(d), the case of source with mass
number dependent radius,

R(A)=2m,~Y2.5xZ/2)'/3,

is shown.
From these figures we observe that the vacuum under-
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FIG. 4. The energies of the no-emission (dashed line) and the
four-positron-emission states (solid line) are depicted as func-
tions of Z for the spherical shell case with R =22 fm.

goes the phase transition from the normal to the
“anomalous” one at the critical values of Z, Z.~140,
150, and 160, for R =10, 22, and 34 fm, respectively.

It should be noticed that we are measuring the energy
with respect to the temporary vacuum in which all the bo-
son fields vanish. Therefore the absolute magnitude of
the energies is of no meaning but the difference between
the normal and the anomalous vacua does make sense.
We note that these values of R agree, on the order of
magnitude, with the distance to the peripheries in
Coulomb scattering with incident energies of several
MeV /nucleon.

In Fig. 4 the energies of the two types of ground states
are shown for the case of spherical-shell source with
R =22 fm. The critical value of Z tends to be higher
than that of the solid-sphere case and Z,~160.

We next show how the bosonic wave function and the
induced charge density around a highly charged nucleus
behave. We restrict ourselves to the cases with two typi-
cal values of Z; Z =120 for undercritical and Z =180 for
supercritical sources. The wave functions for other values
of Z behave qualitatively similar with either the Z =120
or 180 cases.

In Fig. 5 we show the boson wave function and the in-
duced charge density around the solid-sphere source with
R =22 fm. Only in this figure we are presenting the re-
sult of the Runge-Kutta method since it gives a slightly
better solution (see below). A notable feature of the in-
duced charge distribution is that it is sharply peaked at
r~R. This is true for both the supercritical and the un-
dercritical case and also true for other values of R. This
feature persists in the spherical shell case.* We do not
present the wave functions for other values of R since
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BOSONIC WAVE FUNCTION AND CHARGE DENSITY
R=22fm, Z=120
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R=22fm, Z=180
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FIG. 5. The induced charge density (dashed line) and the cor-
responding boson wave function (solid line) are represented as
functions of r for (a) Z =120 and (b) Z =180 cases, respective-

ly.
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they are very similar apart from the shift of the peak at
r~R.

We make a comment on the accuracy of our variational
calculation. Of course it depends on how well the trial
function was chosen in this method. In order to check
this point we have performed independent calculations by
numerically solving the differential equations via the
Runge-Kutta algorithm. This has been done for the no-
emission and the four-positron-emission states. By com-
paring the results of two methods the accuracy of our
variational calculation is estimated to be about ~5% on
the ground-state energy.

We note, in Fig. 3, that the energies of the no-emission,
the two- and the four-positron-emission states approxi-
mately degenerate at the critical point. Even when the
electron-electron interactions are ignored one expects that
the two-electron state is preferred over the four-electron
state there because the 2P, , state has higher energy than
the 1S,,, state. The semiclassically constructed state
with the ® and the Q excitation, however, correspond to
the two-electron state one of which is in 1S,,, and the
other in 2P, , levels, respectively. (Since it carries spin 1
there is no other choice under the assumption that we are
dealing with radially unexcited states.) Therefore, in our
calculation, the two- and four-electron states should de-
generate at the critical point apart from the effect of
electron-electron interaction. The fact that the two-
electron state is slightly favored over the four-electron
state around the critical point can naturally be explained
by its effect. Clearly the above-mentioned approximate
degeneracy is the artifact of our restriction to the
®,, =0Q,, case due to technical reasons. This and the re-
lated problem concerning the mixed-state nature of our
semiclassical state should be resolved by an improved
treatment in the future.

Our result on the phase transition from the undercriti-
cal to the supercritical ground states qualitatively agrees
with the one expected from the one-particle theory. At
the quantitative level, however, our results differ from the
predictions of the one-particle theory.

One of the most significant differences appears in how
many positrons are emitted for a given number of Z. The
one-particle theory predicts® ! that it is equal to the num-
ber of the unoccupied dived level. At Z =180 two posi-
trons are predicted to be emitted. Whereas in our
quantum-field-theoretic treatment the number of induced
electrons, which is equal to the number of emitted posi-
trons, is determined by the energetics of the system, we
gain energy by creating an electron-positron pair since
they screen the electric field and thereby decrease the
Coulomb energy. Of course we lose the rest mass, the ki-
netic energy, and the centrifugal barrier energy by pair
creation. By balancing the gain and the loss of the ener-
gies the number of the electron-positron pair is deter-
mined. At Z =180 we have four positrons as shown in
Fig. 3.

Similarly Z_, the critical value of Z for the positron
emission, can differ for differing treatments. Our
quantum-field-theoretic treatment predicts that, assuming
the source radius ~20 fm, Z,~150 which is smaller by
about 20 than the one deduced from the usual one-

particle-theory treatment. This smaller value of Z, is
favored experimentally in view of the fact that the posi-
trons due to the strong electric field seem to be observed
already at Z =163 (Ref. 41).

To conclude that the difference between our treatments
and the one-particle-theoretic treatments is due to the
quantum-field-theoretic effects such as represented in Fig.
1(b), we have to guarantee the quantitative accuracy of
our semiclassical analysis. Unfortunately it is not beyond
doubt because in our system the semiclassical expansion is
not a systematic expansion with respect to a small expan-
sion parameter. Of course our machinery is not meant to
describe whole aspects of QED in a quantitatively accu-
rate manner but designed to mainly deal with the systems
around a highly charged nucleus. In fact the features of
the ground state of the uranium atom do allow a reason-
able description by our classical Bose theory. Therefore
we believe that our results suggest that the quantum-
field-theoretic effect enhances the pair creation around a
supercritical source.

V. CONCLUSION AND OUTLOOK

In this paper we have described a quantum-field-
theoretic formulation of the supercritical system. By dis-
carding all the “inessential” higher partial waves we have
constructed the effective two-dimensional fermion theory.
The resultant theory has been further transcribed into the
two-dimensional boson theory via the bosonization tech-
nique. We have presented a thorough analysis of the bo-
son theory and in particular revealed the particle spec-
trum of the theory. Several arguments have been offered
to justify our claim that the classical treatment of the bo-
son theory does contain the quantum effects at the fer-
mionic level. Finally we have performed a detailed nu-
merical analysis of the theory in the classical approxima-
tion to elucidate the structure of the ground state around
the supercritical source.

The result of our analysis indicates that as Z increases
the vacuum undergoes the phase transition from the nor-
mal QED vacuum to the “anomalous” one which is
characterized by the occurrence of the real pair creation
of electrons and positrons. While this feature of the vacu-
um around the highly charged source has been anticipated
from the one-particle-theoretic point of view, our analysis
provides a demonstration based on quantum field theory.

Moreover our results differ quantitatively from those of
the one-particle-theoretic treatment. The critical value of
Z at which the phase transition occurs tends to be small-
er. In our case Z,~150 (R =22 fm), whereas the one-
particle theory predicts that Z.~170. The number of
emitted positrons is also different; at Z =180 it is four in
our case while it is two in one-particle theory. Unfor-
tunately our restriction to the classical approximation
prevents us from making the definite statement that the
above difference does reflect the quantum-field-theoretic
effect. Nevertheless we believe that our treatment consti-
tutes an important first step toward the quantum field
theory of the supercritical system.

What does our result imply for the hypothetical su-
perheavy nucleus with supercritical charge if it exists as a
real object? It seems to indicate that the superheavy nu-
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cleus wears the electron cloud and thereby carries a small-
er number of electric charge than the number of protons
inside.

Finally we wish to make some comments on the super-
critical collision system. It should be noticed that from
the viewpoint of quantum field theory the collision sys-
tems are entirely different physical systems from the ones
with stable supercritical nuclei. This is because there is no
asymptotic state with supercritical charge in the former.
Therefore it is only for the very limited situation that the
static source problem is a good guide for the collision sys-
tem. The suitable condition would be

Tereation << Tcollision » (51)

where Tereation @nd Teopiision denote the characteristic time
scales for the pair creation and the heavy-ion collisions,
respectively.

Condition (51) does not seem to be satisfied in the actu-
al situation. We note that the e*te™ pair creation in
heavy-ion collisions is the strong-interaction process be-
cause Za~1. Then it is reasonable to guess that
Tereation=Me ! by recalling the standard argument on the
space-time structure of particle creation in hadronic col-
lisions,* especially with the classical external sources.*
On the other hand, 7.;s0n May be estimated, by assuming
the Coulomb scattering, as the time during which the two
ions come close to each other within r  ~10 fm. This
gives on the order of magnitude Teouision~(Ma¥4>/
Z%a)'?, where m, is the reduced mass. Numerically
Tereation AN Teollision €Stimated as above happen to coincide:

—-21
Tereation™Tcollision ~ 10 sec .

Therefore the extreme situation (51) cannot be realized
apart from the possibility®*® of the formation of
molecular-type intermediate states.

Furthermore the observed peak structure in the positron
spectrum®’ seems to indicate that T ;eion i €ven longer.
Since the intrinsic width of the peak should be less than
the observed value (about 80 keV), Tcreation> 10720 sec.
Therefore the physically interesting situation is, instead of
(51),

Tcreation >> Tcollision * (52)
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It should be noticed that under the circumstance (52) the
emitted electron and the positron behave more or less
symmetrically.** Moreover the too rapid Z dependence
of the positron kinetic energy® may tend to flatten when
the large space-time region is relevant to the pair creation.

One may doubt the occurrence of the pair creation itself
under condition (52). We, however, argue that it may be
possible thanks to the cooperative effects of the strong
Coulomb field and their time dependence. We feel that
our formalism is best suited to examine such a possibility.
Work toward this direction is in progress.

In conclusion this work implies only the first step to-
ward the complete understanding of the physics around
the supercritical systems. Many things remain to be done
in the future. First, our claim that the classical treatment
of the bosonized theory takes proper account of the fér-
mionic quantum effects should be confirmed. The accu-
racy of the classical approximation should be quantita-
tively estimated. Second, the problem of a hydrogenlike
atom in our bosonized QED has to be worked out. Third,
the effects of higher partial waves of the electromagnetic
field should be examined. This may be important if one
works on the collision system since in this case the spheri-
cal symmetry of the source, in general, does not exist.
Fourth, the effects of higher partial waves of the fermions
have to be evaluated. We, however, emphasize that our
formalism developed in this paper provides a firm basis
for the investigation of the above subjects. We hope that
we will return to these questions in the future.
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