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The one-loop vertex function in Coulomb-gauge QED has been evaluated. The result is expressed
in a parametric integral form. The ultraviolet divergence has been isolated, and the matrix structure
of the result has been optimized for applications. Examples of the use of the vertex function are dis-

cussed.

I. INTRODUCTION

Techniques for calculating multiloop Feynman dia-
grams in covariant-gauge QED are well known. ' Corre-
sponding techniques in the Coulomb gauge are not so well
developed. Because of the practical importance of the
Coulomb gauge in work on bound states in QED, the
study of diagrams involving loops in the Coulomb gauge
is of great interest.

There is a short history of research on loop diagrams in
the Coulomb gauge. Johnson studied the spectral form
of the Coulomb-gauge electron propagator, and performed
an explicit calculation of the spectral functions to one
loop. This propagator was also considered by Hagen,
who studied its behavior near the mass shell.
Heckathorn dealt with multiloop diagrams, and obtained
the important result that the pole part of the (dimension-
ally regularized) vertex function is proportional to y„. A
convenient explicit expression for the one-loop electron
self-energy function was obtained by the present author.

I

Loop diagrams in Coulomb gauge have also been used in
calculations of physical processes. The Lamb shift was
obtained to order a(Za) by Sapirstein, 6 and the order-a
correction to the decay rate of parapositronium was com-
puted by the present author.

In this article I give an expression for the one-loop ver-
tex function in Coulomb gauge. The momentum integral
has been done, the ultraviolet divergence isolated, and the
result presented in a form useful for applications. In Sec.
II I describe the calculation and write out the result. In
Sec. III I apply the vertex function in evaluations of the
one-loop renormalization constant Z& and the one-loop
vertex correction to the decay rate of parapositronium.

II. AN EXPRESSION FOR THE VERTEX FUNCTION

The Feynman diagram for the one-loop vertex function

is shown in Fig. 1. The corresponding analytic expression
1S '
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Regularization of the ultraviolet divergence in (1) is accomplished via dimensional regularization, with d =2~ (one time,
2' —»pace) the dimension of spacetime. The momentum-space measure is (di)„'=(d2"j)/(2~)2~. The coupling e (~)
that appears in the Feynman rules is the product (m) "eo of a power of the physical electron mass m with the (dimen-
»oniess) bare coupling. The Coulomb-gauge photon propagator has the form

1/1 0
(2)

IJ

where ~ij =&;, —i;i, /&'. The momentum-space integration in (1) is performed by way of the integration formulas tabulat-
ed in the Appendix of Ref. 5.

The result for the one-loop vertex function can be expressed as

aA"(p',p)= y" D f du ln-
4m flan

a i dx» xRg 2x'sRg
+ ds du +4n' o vx (3)

—yE+ln(4ir),

Here a =e /4ir=eo /4ir+0(a ) is the fine-structure constant and D is the divergent quantity
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where ys is Euler's constant. The b, factors are given by

5=m —u(1 —u)k

bx ——m —u (1—u)(ko —xk )+(1—x)[up' +(1—u)p ],
b, r ——xm~ —xu(1 —u)k~+(1 —x)u(m~ —p' )+(1—x)(1—u)(m —p ),
hz ——sm —su (1—u)(ko —xk )+(1—s)u (m —po )+ (1—s)(1—u)(m —po )+(1—xs)[up' +(1—u)p ] .

The p =0 gamma-matrix factors are

Ax ———y p'y y.p(1 x)—y—p'y m —y y.pm+y p'kou ( —1 —x +2xu)

+y pko(1 —u)[1+x —2x (1—u)]+y [2xu (1—u)k +(1—x)[up' +(I—u)p ]j+(1—2u)mko,

r.p—'r'r p rq—x(2xq p' —p4-

+y (1—x )m +(xq —p )o(xq —p)o+x u (1—u)ko

(5b)
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where q =up'+(1 —u)p and k =p —p'. The corresponding p =n gamma-matrix factors are

~"=r p'r"r P(1 .}+r—P'r"r'[(1 }k.—]+r'r"r P[ —(1—}(1— )k.]

+y p'y"m +y"y pm+y p'(2xup'")+y p[2x(1 —u)p "]

+y"Im +u(1 —u)(ko +xk ) —2x[up' +(1—u)p ]j+y [2xu(1 —u)kok "]+y"y mko+»mq", (7a)

rp'r"—r p(2 x) r—p'r"—r'(x. q p»}o r—'r "r—p(xq p'}o —rp'r—"m y"r p—m
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+y" t —,'x [u (m —p' )+(1—u)(m —p )]+(2—x)p' p j

+y fx (2xq —p' —p)oq" —2(xq —p')op" —2(xq —p)op'"]+2m (xq —p' —p)", (7b)

~Z=3r P y r P+2r P'r y (s'q P)o+2r y —r P(sq —P }0+2r'P y m+2y"r'Pm
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+y [2(sq p')op" +2(sq —p—)op'"]+2m (p'+p)", (7c)
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FIG. 1. Graphic expression for the one-loop vertex function
—ieo(m)A„(p', p).

The gamma-matrix factors are written so that y p' ap-
pears on the left and y p appears on the right. This con-
vention facilitates the use of (3) in applications.

FIG. 2. The lowest-order (a) and vertex correction (b) dia-
grams for the parapositronium decay amplitude. The two-
photon final state is shown to the left and the initial bound state
to the right.

III. APPLICATIONS

In this concluding section I discuss the use of expres-
sion (3) for the one-loop vertex function in two examples.

A. The renormalization constant Z~

The full vertex function I &(p',p}=y„+A&(p',p) can be
related to a finite renormalized vertex function by way of
a renormalization constant Z

&

..

I I
(p' p) =Zl I' (p' p)

I define Zi so that the renormalized vertex function is ef-
fectively y„ for electrons at rest:

(yp'+m)I „"(p',p)(yp+m)~(ymn +m)y„(ymn +m)

0 1
tr y 82(yp'+m)A(p', p) 0, (12b)

which enter into the lowest-order [Fig. 2(a)] and vertex-
correction [Fig. 2(b)] terms in the decay rate, respective-
ly. ' The matrix on the right in each trace represents the
4X4 Dirac spin structure of the bound-state wave func-
tion in the limit of slowly moving particles. The momen-
tum assignments are indicated in Fig. 2, which shows an
electron emerging from the bound state with momentum

p =(m, 0}, a real photon carrying away momentum
k = (m, k), and a virtual electron with momentum
p'=(0, —k). The photons split the available energy be-
tween them equally. In the context of (12b) the one-loop
vertex function is effectively

(9) A"(p' p) Cy"+8'ky", (13)

as p'~mn, p~mn where ri =(1,0). The corresponding
relation for Zi is

,' (yn +1)n "—I„'(mn, mn) —,
'

(yn +1)= ,' (yn +1)—Zi

(10)

where use has been made of the transversality of real pho-
tons (k 8=0}and the projective nature of the spin matrix
(factors of y on the right in A" are effectively equal to
one). Using (13} in (12b} one finds for the vertex-
correction term

When p'=p =mn, expression (3) reduces to
a

n"A„(mn, mn) = ynD +const X(yri —1) .
4m'

2im(g+mg)k (e, XR,),
(11) compared to

(14}

Consequently one has for the renormalization constant

Q
Z) ——1 — D

4m'

through terms of O(a). This agrees with the result of
Ref. 5.

2imk (Ri XR2)

for the lowest-order term (12a). Evidently the vertex-
correction contribution to the decay amplitude is (/+ md)
times the lowest-order amplitude. It only remains to
evaluate (/+md). In the kinematic situation of interest
here one has

0 I
tl y Ei(yp +m)y'4i () () (12a)

B. The vertex correction in parapositronium decay

The one-loop vertex contribution to the decay rate of
parapositronium has been calculated in the Coulomb
gauge without the use of expression (3) for the vertex
function. The use of expression (3) simphfies the calcu-
lation tremendously. Consider the expressions

6» mH», H» 1+——u (1—x), ——

mHr, Hr x+2u (1———x), ——

bz=m Hz~ Hz=s[1+u (1—x)]+2u(1 —s) .

The R factors are easily evaluated, and one obtains

(16a)

(16b)

(16c)

(16d)
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1 — 1 —xs (1—u)
Hz

2xs u (1—u)
(Hz)'

The integrations here have been done, arith the result

I

ror image vertex correction diagram) this is exactly the re-
sult of Ref. 7.

(g+mg) = D+ —41n2+2A +2B
4m 4

where 3 =m /g ——,'ln (1+F2) and 8=—1

+~2 ln(1+ W2). Multiplied by 2 (to account for the mir-
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