
PHYSICAL REVIE%' 0 VOLUME 34, NUMBER 8 15 OCTOBER 1986

Lattice theories of chiral ferxaions

Helen R. Quinn and Marvin Weinstein
Stanford Linear Accelerator Center, Stanford Uniuersity, Stanford, California 94305

{Received 4 April 1986)

%e present a Hamiltonian formulation for gauged nonanomalous chiral theories on a spatial lat-

tice. The formulation has the desirable properties that it provides exact chiral symmetry in the
massless limit, with a correct fermion spectrum and correct wreak-coupling perturbation theory for
QED. It can be generalized to non-Abelian theories. The disadvantage of the formalism is that it is

complicated and nonlocal {on the lattice} and hence not easily implemented in practical calculations.
However, it does provide an existence proof for a satisfactory chiral lattice gauge theory in the
Hamiltonian formulation.

I. INTRODUCTION

Lattice methods are an important nonperturbative tool
for analyzing gauge theories such as quantum chromo-
dynamics. Considerable progress in understanding quan-
tum chromodynamics has been made using lattice tech-
niques. Unfortunately the extension of these techniques
to theories involving truly chiral fermions, for example,
all grand unified theories, remains problematic.

There is a widespread belief, principally due to a
theorem proven by Nielsen and Ninomiya, that it is im-
possible to define a local lattice theory even for free chiral
fermions which does not exhibit spectrum doubling, and
which has a sensible continuum limit. In fact, this belief
is based on a misinterpretation of the results of Nielsen
and Ninomiya. We will show for the case of free fer-
mions that there exists a broad class of counterexamples
which do not violate the Nielsen-Ninomiya theorem but
which do contradict the broader interpretation which it
has been given. The Nielsen-Ninomiya theorem, however,
is not the only reason for the belief that there can be no
satisfactory formulation of lattice thtxiries of chiral fer-
mions. In addition to their result, there is the work of
Karsten and Smit which showed that a gauge theory for-
mulated with a long-range SLAC derivative may not sa-
tisfactorily reproduce continuum perturbation theory.
Their result was that Green's functions computed in naive
perturbation theory are not Lorentz covariant even after
all the usual renormalizations are performed. This result
was interpreted to be a consequence of the way in which
the free-fermion derivative was introduced. Combined
with the Nielsen-Ninomiya theorem this calculation has
been taken as sufficient evidence that no satisfactory
gauge theory of chiral fermions can be defined. We find
that while the calculations of Karsten and Smit indicate
the existence of a problem, the identification of the origin
of this problem is not correct. This is easy to demonstrate
for the case of noncompact lattice QED as was shown by
Rabin, but no comparable treatment of the compact case
has been presented to date.

This paper is devoted to a reexamination of the problem
of lattice chiral fermions focusing on an analysis of these
earher difficulties in order to discover at least one way of

avoiding them. We explain why spectrum doubling is a
misnomer for the consequences of the Nielsen-Ninomiya
theorem and exhibit a class of short-range derivatives on
lattices of finite extent for which there is no doubling. In
fact we establish the stronger result that for this class of
free field theories the only low-lying states are those
whose moments lie in the region near k=0. While these
examples of free field theories prove that the broadest in-
terpretation of the Nielsen-Ninomiya theorem is incorrect,
they encounter their own difficulties when one introduces
interactions. In 2 + 1 dimensions and higher such
theories have problems similar to those found by Karsten
and Smit for the long-range derivative in a gauge theory,
namely, Green's functions that are not rotationally invari-
ant even after all of the usual subtractions required by
continuum renormalization are performed. In analyzing
these difficulties we are lead to the conclusion that in-
teracting chiral thtxiries based upon short-range deriva-
tives do not exist; however the reason for this is quite
separate from the question of whether or not the theory
exhibits spectrum doubhng. In understanding the true
origin of the problems encountered in the interacting
theory we achieve a better understanding of how it is that
the long-range SLAC derivative manages to avoid these
problems. Turning to the case of a lattice gauge theory
we find once again that the problems encountered by Kar-
sten and Smit are not rooted in the doubling problem, but
are instead due to the way in which the gauge field cou-
pling to fermions is introduced. Once the true cause of
these difficulties is identified it is not difficult to see that
they can be avoided; however one pays a price i.n that the
resulting theory is considerably more complicated and
hence much less easy to compute with than the usual lat-
tice gauge theories. Nevertheless, it is possible to write a
lattice version of nonanomalous Abelian gauge theories
which has all the following desirable properties: (1)
Chiral symmetry is exact for zero-mass cases, with un-
doubled spectrum; (2) QED continuum weak-coupling
perturbative theory is reproduced in the limit a~0 (g
held small ), after the usual subtractions have been made;
(3) the prescription can readily be generalized to non-
Abelian theories.

It is unfortunate that the prescription which we have
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found is very unwieldy. While it does reduce to the usual

gauged version of the SLAC long-range derivative at
strong coupling it is even more nonlocal (on the lattice) at
weak coupling. It will be obvious from the final form of
our Hamiltonian that carrying out lattice calculations us-

ing this formalism will be an even more formidable task
than in other approaches. We do not offer this Hamil-
tonian as the basis of a simple computational procedure,
but rather to show that the problem of constructing chiral

gauge theories on the lattice has a solution, albeit an ugly
one. In the concluding section of this paper we discuss
the question of making approximations to this Hamiltoni-
an which can render computations more feasible while at
the same time retaining the essential physics of continuum
chiral symmetry.

The plan of this paper is as follows. Section II presents
a study of various free-fermion lattice field theories which
avoid the doubling problem. Section III studies local
current-current correlation functions in these free field
theories and shows why problems of rotational noninvari-
ance arise in Green's functions for short-range derivatives
and how they can be avoided if the range of the derivative
is taken to infinity. In Sec. IV we turn to a variant of
noncompact lattice QED which shows that a gauged ver-
sion of the long-range derivative can be introduced in a
way which explicitly reproduces standard weak-coupling
perturbation theory. (This section essentially reproduces
results of Rabin, i although the approach is somewhat
more intuitive. ) In Sec. V we turn to the compact theory
and suggest a gauging which preserves the good results of
Sec. IV. This generalization to the compact case is impor-
tant because it suggests that a comparable treatment for
non-Abelian gauge theories can be considered. Finally in
Sec. VI we review our results and discuss some open ques-
tions.

II. FREE FIELDS

If one attempts to formulate a Hamiltonian theory of
free fermions using the nearest-neighbor lattice derivative
one finds that, for a theory in d spatial dimensions, there
are 2" times as many states at a given energy as one ex-

pects in the continuum limit. This repetitive doubling of
the spectrum as one goes up in spatial dimension seems to
be a quite general problem. The theorem of Nielsen and
Ninomiya' has been discussed in several publications; it is
widely interpreted to show that any finite-range lattice
derivative suffers from this spectrum doubling While the.
theorem is correct, spectrum doubling is a misnomer for
the phenomenon which occurs. We will demonstrate that
it is simple to write Hamiltonian free jield theories based
on finite-range derivatives which do not exhibit spectrum
doubling and which have entirely sensible continuum
spectra.

A. Notation

In what follows we consider a lattice whose points are
labeled by d-tuples of integers j=(ji, . . . ,jz) where d is
the dimension of space. The physical spacing between ad-
jacent points is given by the parameter a, a quantity with
the dimension of length. In addition, we assume that the
integers j run in the range N&j (X for—

d

m=1
(2.1)

The lattice Fourier transforms of the fields g(j) are
given by

(2.2)

where it~=(~z, . . . , ~~ ) are the dimensionless lattice mo-

menta a„=2nnl(2l.ii+ 1), for —X(n (N.
The relationship between dimensionless variables and

their dimensioned counterparts is

(2.3)

(2.4)

The operators which converge weakly to the continuum
field %(x) are

%(x)=L "~ g e ~ P(kz), (2.5)

where L =(2X+ l)a.
We are careful to work in finite volume because this al-

lows us to count energy levels and thus explicitly check
whether or not spectrum doubling occurs.

B. 1 + I dimensions: Short-range derivatives

I.et us begin by studying the simplest case, namely,
1+ 1 dimensions. In this case we use two-component
Dirac fields. Consider the Hamiltonian

4 (p)= i g — [g (j)o,Q(j +I)](1+@)

[f (j )o,Q(j +2)] +H.c. ,
(p —1)

4p

(2.6)
where we have adopted periodic boundary conditions; i.e.,
we have implicitly assumed that g(X+ 1)=tP( N). —
Since (2.6) is translationally invariant it is diagonal in
terms of the Fourier transforms of the 11(j) and has the
form

A = g 8'(a )[11 (~ )o,g(~ )], (2.7)

m =1, . . . , d, so that our theory is set on a lattice of fi-
nite physical volume, L, with L =(2%+ 1 )a.

%e use dimensionless variables, except where otherwise
noted. Since the physical Hamiltonian 0 has units of en-

ergy, we introduce the dimensionless Hamiltonian A de-
fined by

10=—A
a

In addition all fields are scaled by the appropriate powers
of a so as to render them dimensionless and yield simple
lattice commutation and anticommutation relations.

In particular, lattice fermion fields are denoted g(j)
with
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where 8'(a~ ) is defined by

8'(tcz ) = sin(xz )+ sin(2az ) . (2.8)
( I+p) . (p —1) .

2p ~ 4p

Note that the minimum and maximum values of a& are
+27/'N /( 2X + 1 ) alld Icy changes iii increments of
1/(2%+ 1).

First, let us examine the nearest-neighbor case, p= l.
Figure 1(a) shows the spectrum for this case. In order to

(a)

more clearly exhibit the behavior of all derivatives con-
sidered we only show the plots of g'(a) for the region
0&v&m since 8I'(tt) is always an antisymmetric function
of x. The important thing to notice about the nearest-
neighbor case is that for every low-lying state near a~ =0
there is a degenerate state near a~ =n. This is true spec
trum doubling. Figures 1(a) and l(b) which plot the same
function for p, &1 demonstrate that this is not a general
feature of a short-range Hamiltonian. Here, for @=0.1,
0.01, we see that the energy as a function of tt is not sym-
metric about ~ =m /2.

To understand the important features of this spectrum
expand (2.8) for ~ near zero and m. Expanding in az for

~ p ~
&&Nwe obtain

+qy+j+eq~+qt+ i +
~+

~+
~+

+
+ I

+
+ I+

+
I

oublhng

glOR

++
+~

+

++
++

+g

8'(a&)=a.&+ (5 3p)K—
& +O(xz ),

12@

whereas fo«~ ~ and
I p I

&&+wehave

8'(n 5~)=— +05p

p

where 5& is defined to be

(2.9)

(2.10)

(2.11)

I = 101
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I
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I

+
+
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If we restore dimensions of energy to the problem by de
flilllig

I
k =—~ (2.12)

1 a 'k~'—8'(k a)=k +0
a ~ ~ p

(2.13)

and for k~ near n./a

then we see that the physical energy 8'(az)/a for kz near
zero 1s

L = 101
p, = 0.01

y++y
+ +

+ +
+ +

+ +
4

+ +

+
I +

+
+

I +
+

~+i.~++
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+

+
I
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+

FIG. 1. (a) The spectrum of the nearest-neighbor derivative
(@=1)showing true spectrum doubling (I.=2%+ 1=number
of sites). (b) The spectrum of the next-nearest-neighbor deriva-
tive for p. =0.1. Note the larger slope and correspondingly
lamer density of states for x near m. The energy of the last state
is approximately m/pL. (c) The spectrum of the next-nearest-
neighbor derivative for p=0.01. (Note the change of vertical

scale. )

—8'(n —5 )=p ' +0 a2p
a ~ g a

(2.14)

since (2N+ 1)a =L, Eq. (2.14) implies that the lowest
state for a~n occurs at an energy E,„=n /pL. Hence,
if we take n ILL ~ oo as L~ 00 the spurious states move
off to infinite energy, and the only states which remain at
finite energy are a single species of chiral fermions with
an ordinary relativistic dispersion law for their energy as a
function of momentum.

At this juncture it behooves us to ask "%'hat has hap-
pened to the Nielsen-Ninomiya theorem'?" Despite ap-
pearances to the contrary the formal result stated in their
theorem has not been violated. ~that the theorem really
says is that the function 8'(a) is a periodic function with
period 2nwhen consid. ered as a function of a continuous
variable —00 &x'( oo. The function (2.8) clearly satisfies
this property. However, in finite volume x is not a con-
tinuous variable. The continuum. result depends upon
how the limits L, ~00 and p~o are taken. Notice that
even if L~ oo first, so that a. becomes a continuous vari-
able, there is no true spectrum doubling. This is because
the density of states for the branch a=a is p, , whereas it
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is unity for s =0. What one has are two species of parti-
cles with very different speeds of light.

Having established that there are loopholes in the
Nielsen-Ninorruya theorem we now hasten to point out
that this does not mean we are out of the woods. While
the next-nearest-neighbor theory successfully defines an
undoubled theory of free chiral fermions, it does not pro-
vide a satisfactory interacting theory for d & 1. The
reason for this is that once interactions are introduced one
has to do loop integrations (i.e., sums over intermediate
states}. Although the contributions to loop integrals com-
ing from the states corresponding to ~=ir are damped by
energy denominators which are on the order of n./pL,
there may be so many states at this energy that even tak-
ing the energy denominators into account the sum over
these states diverges. When this happens, as it does in
more than 1+ 1 dimensions, it can yield noncovariant
contributions to Green's functions which survive even
after the usual continuum subtractions have been per-
formed.

The real problem with short-range derivatives has noth-
ing to do with doubling of the low-energy spectrum but
rather with the number of states in the region having en-

ergies on the order of rr/a. For the next-nearest-neighbor
case one sees clearly from Fig. 1 that there are, in the lim-
it p, ~O many more states at infinite energy than at finite
energy; moreover, these states have features which are in-
trinsically not rotationally invariant. ' To establish this
fact observe that for the Hamiltonian (2.6) the region of
the spectrum which is linear in ~ corresponds to

~

a
~

& v p. The remaining spectrum, which we refer to as
the spurious region, is all at high energy in the limit a ~0
and pL ~0, and the number of states in this region is of
order (n Vp, )L/a.—It follows that if one takes the con-
tinuum limit to mean a ~0 and pI.~0, then the majority
of the states will lie in the spurious region.

In Sec. III we will exhibit the exact nature of the nonin-
variant contributions to current-current correlation func-
tions in more than 2+ 1 dimensions and show that these
spurious states do indeed cause a problem. Furthermore,
such effects are unavoidable for any finite-range deriva-
tive. While it is true that the width of the region in which
I' is a linear function of a can be increased somewhat by
taking additional terms, it is only by including terms of
infinite range that we can make the spurious region shrink
rather than grow as p~O. We will show that this shrink-
age of the spurious region as p~O is the crucial in-
gredient in obtaining a satisfactory continuum limit.

C. Longer-range derivatives

One way to study the width of the region in which the
spurious states contribute is to adopt a damped version of
the SLAC derivative. Recall that the SLAC formulation
of the chiral fermion theory gives a Hamiltonian of the
form~= i g p (j)crgN &)5'(j —i), (2.15)

j,l

where the function 5'(j —i) is defined to be

(2.16)

In the limit N~oo this function has infinite range, fal-
ling off like ( —1)j/j. For finite N, note that

5'(j —1+2N + 1}=5'(j —I) (2.17)

4 (p)= i g—g g (j)cr gg(j+r)e ""5'(r)+H c.
j = —Nr=1

(2.19)

As before, 4 (p) is diagonal in xz with an energy-
momentum dispersion given by a function 8'(~~), of the
form shown in Fig. 2 for various values of p. The impor-
tant difference between this case and the next-nearest-
neighbor case is that the width of the spurious region is
only on the order of v p, , and so in the limit p, ~O the re-

gion of physical momenta with a dispersion E(k~)=k~
grows instead of shrinking. Eventually, for p —+0, the
dispersion law becomes the correct relativistic formula for
massless particles in 1+ 1 dimensions.

D. Higher dimensions and mass terms

The generalization of the preceding formulas to d+ 1

dimensions, with fermion mass terms, is straightforward.
The generic Hamiltonian is of the form

P = g —i[gt(j+rn„)a„g(j)D„(r)—H. c.]
],p, v

+m g f (j )pg(j ), (2.20)

where m stands for the dimensionless mass m =ma. The
functions D,(r) for v= 1, . . . , d can be chosen either as in
(2.6) or (2.19). The matrices a and P are a„=yoy„and
p=yo, where the y's are the Dirac matrices for d+ 1 di-
mensions. Because we wish to study QED perturbation
theory we consider four component massive fermions.
Clearly, this formulation ean also be used for truly chiral
gauge theories by introducing the projections (1 yq)/2
and setting m =0. The chiral symmetry is manifest in the
m =0 ease and so the restriction to purely left-handed fer-
mions is not a problem.

The Hamiltonian (2.20) is easily diagonalized in
momentum space. The energy-momentum dispersion re-
lation is

8'(ai, . . . , ~g)=+[Di(~i) + . +Dd(~g) +m ]'~

which means that the SLAC derivative describes fermions
on a periodic lattice, i.e., on a ring containing 2%+ 1

points. We observe that (2.15) can be rewritten as a sum
of terms with range 1 & r & ¹

N A

i—g g g (j )oip(j +r)5'(r)+H. c. (2.18)
j = —Nr=1

As in the nearest-neighbor case ee have implicitly as-
sumed that g(j+r}=f(j') where j' is the integer in the
range —N &j'&N obtained by reducing (j + r) modulo
(2N+ 1).

We will now introduce a damped form of this Harnil-
tonian:
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(2.22)

which can at best be interpreted as a species of fermion
which propagates freely in the x and y directions but pays
a price of at least n/pl. for motion in the z direction. It
is the existence of such intrinsically noncovariant regions
of the spectrum which leads to noncovariant behavior of
Green's functions. While the discrete rotational invari-
ance of the lattice is retained when one sums over the con-
tributions from all such regions, we find they lead to
terms of the form g,. q; Inq;, which are not invariant
with respect to smail rotations even in the limit tt ~0.

For the damped SLAC derivative, (2.19), we wiii show
that no such terms survive, provided we choose
p=o(1/N ) in the hmit E +oo. —

X[f (kt), tNa'm}], (3.2)

IH. CURRENT-CURRENT CORRELATION
FUNCTIONS

In general, for a free-field theory there is an ambiguity
as to which lattice operators should be chosen to represent
the continuum currents %t(x}y&%(x). We will choose an
operator whose Green's functions mimic the divergence
structure usuaBy encountered in the discussion of weak-
coupling lattice perturbation theory. The operator we
study is the charge-density operator

p(j}= & (0'(j),4(j}j (3.1)

which has the Fourier transform

p(tt~)= —,
' g 5(a~ —at —tt +2nn)

FIG. 2. (a) The spectrum of the damped SLAC derivative for

the case @=0.01 (I.=2N+ 1=number of sites). (b) The spec-

trum of the damped SLAC derivative for the case @=0.002.
Note the shrinkage of the spurious region, (c) The spectrum of
the damped SLAC derivative for the case p =0.002.

where Di(~i) is the discrete Fourier transform of the
function Dt(r)

The 2 doubling of the nearest-neighbor theory has been
lifted in (2.21). In the region of momenta where all com-
ponents a„are dose to zero (2.21) describes the spectrum
of a massive fermion with speed of light 1. When the
form (2.6) is used for D the states for which all com-
ponents x are near m look like a second species which
propagates with speed of hght I/p. However, there are
2 —2 regions where some components of ir are near zero
and others near m which do not correspond to any sort of
relativistic spectrum. For example, for a„and «„ near
zero but a, =n./a —ir, we have a low-lying region of the
spectrum which behaves approximately as

where n=(n i, . . . , nd } is a vector whose components are
integers. The operator p(j) is the time component of a
four-vector operator which satisfies the lattice equation

Bt
(i)—+5~(pn )j~(i+pn )=0, (3.3)

e l~tp( j} g—A t (3.5)

As defined, the operators p(j, t) are normal-ordered prod-
ucts of free fields, and so have vanishing vacuum expecta-
tion values. Such we are working in a Hamiltonian for-
mahsm these Green's functions can be calculated using
familiar Feynman rules with the follovnng exceptions.

(1}Time is continuous, so xo integrations run from —ao

to ao.

where tz=l, . . . , d and p is such that —N &i~+p &E.
The spatial components of j are intrinsically nonlocal.
(Explicit expressions for them are given in Ref. 8; howev-

er, since it is sufficient to study the behavior of the time-
time components of the current we will not need them
here. ) The correlation functions of interest will be the
time-ordered products of the free field currents:

&~= ( T(p()', t'}p(),t))),
where the operator p( j,t} is defined by
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g(ao, e&)—m

where

(3.6)

g(a.o, ir ) =y pro+ g y"D„(a„), (3.7)

where D„(a„}is the general function appearing in the def-

(2) Space is discrete and finite, so momentum sums
range over the discrete variables ~~=2np/(2K+ I) for
—%&@&X.

(3) The free-fermion propagator is given by

inition of the Hamiltonian (2.20).
(4) The overall momentum-conserving 5 functions at

each vertex are ordinary 5 functions of the zero com-
ponents of momenta, but periodic 5 functions for spatial
components of momenta.

A. The problexn with loops

We want to examine the Fourier transform of the
time-ordered product of two charge densities. (Six: Fig. 3.)
For d spatial dimensions the unsubtracted expression for
the charge-density —charge-density correlation function is
given by

gd (q, qo) = J dko g 5(r —p —s —(2%+1)n)I(a~,ir„,x„ko,qo),
(2n +1)'a' (3.8)

where

p 2g+) P 2~+I I (3.9)

a s
I. 2K+1

I =Tr y0
(qo+ko}yo+a 'y;D;(ir„) m—
0 1

0 —1koy +a y;D;(az} m—

Our problem is to estimate the contributions of the
spurious regions to (3.8) in the limit a~0. The detailed
discussion of this calculation, while straightforward, is
tedious and is relegated to the appendixes. Here we will
simply summarize results and note certain salient features.

For the case of 1+ 1 dimensions the expression corre-
sponding to (3.8)—(3.10) is naively logarithmically diver-
gent in the continuum limit; ho~ever, current conserva-
tion guarantees the vanishing of that divergence and no
subtractions are needed. Table I lists the dependence of
the most singular contributions from various regions of
the a sums on the parameters p, 1., and a for the case of
the next-nearest-neighbor derivative (2.6) for 0 & q
&v p/a. If we take the limit

a —+0, I.—+00,

i.e. , N~oc with 5=const,

(3.11)

I
D«~)

I
&+

2~ tl —0(v)l2%+1 (3.12)

TABLE I. Contributions to the current-current correlation
function in 1 + 1 dimensions given by the next-nearest-neighbor
derivative for Q &qa &v p, . The contributions listed are the
dominant terms in the limit a ~0, L ~ 00 with p = (5a /L) and
5 held fixed.

then all spurious contributions vanish, as required. It is
clear also that the restriction

I q I & ~p. /a is satisfied for
all finite-physical external momenta in the limit (3.11),
and so the inequality holds for all cases of interest. The
results for negative q are similar.

For the damped SLAC derivative me see in Fig. 2 that
the function D„(a ) can be well approximated by the linear
behavior D(a.)=x up to a of order rr(1 —vp, ). The ana-
lytic behavior of the function in the spurious region
beyond this point is complicated; however we show in Ap-
pendix A that the minimum value of D(~) in this region
occurs at ~z ——2m%/(2N + 1), where it is bounded by

Region
' 1/2

Contribution

Usual continuum result

0 q +0(p
P

from v p, /a limit

FIG. 3. Fermion-loop graph encountered in the computation
of the current-current correlation function.



Thus, using this derivative in 1+ 1 dimensions, me can
also obtain satisfactory results in the limit (3.11) provided
5K 1.

In higher dimensions the current-current correlation
function is divergent and requires subtraction. In the
spurious regions for the next-nearest-neighbor derivative
the slope of the function D(a) is of order 1/p; therefore,
each subtraction introduces a factor (qa/p). These in-

verse powers of p are dangerous; they can serve to
enhance the spurious contributions so that no satisfactory
choice of limit can be found. The most singular contribu-
tions come from the regions where one component of N,

say a;, is in the spurious region near n, and the remaining
components are in the linear region near x=0. In this
case, for the next-nearest-neighbor derivative, we obtain
contributions to the Green's function which behave like

aa 1 —a ln 1+ 1 —aq;I.'Fi

p
(3.13)

Clearly, there is no way to take the limit p~o so these
contributions disappear.

How can this problem be avoided'? lt may appear that
the damped SLAC derivative suffers from a similar prob-
lem; however, one must be careful. In this case the spuri-

ous region has a width of order v p. Thus we can choose
to take the limit

'2

P=~ — for a~O
L

contributions from various regions. (All other contribu-
tions can be found by exploiting the symmetry of the
theory under discrete lattice rotations. ) In the limit (3.14)
only the usual contributions survive.

In this section vie have examined the quantity h~ using
a definition of p such that the coupling to all fermion
modes is the same. In the interacting theory in Ao ——0
gauge %Ye %v111 be 1nterested ln the quantlt1es such 88
which are calculated in the same way as given here for h~
except that the numerator factors of yo in (3.10) must be
replaced by the I;a;, the vertex functions for the photons
in the perturbation theory.

IV. NONCOMPACT QED

The previous section proves there exists a current whose
correlation functions, calculated using a damped SLAC
derivative, behave satisfactorily in the limit a~O. Yet
Karsten and Smit found unsatisfactory results for the
SLAC derivative in weak-couphng perturbation theory.
How can we reconcile these seemingly contradictory re-
sults? The answer is that the current whose correlation
functions are well behaved is not the one to which the
photon couples in the version of lattice QED considered
by Karsten and Smit. The current which we discussed
couples equally to all a modes of the fermion, whereas the
vertex obtained by Karsten and Smit behaves like

and I.~Do with 5=const .
(3.14) D„(k +q) D„(k)—

I „(k,q) =gyq
sin(q„a /2)

(4.1)

In this case the number of states in the spurious region
remains finite as a~O and so their contributions to
Green's functions must be treated as discrete sums rather
than as integrals. Furthermore, as can be seen in Fig. 2
the slope of (~) is never of order 1/p in the allowed region
of a. Instead, the function develops a discontinuity at
a.=m which must be carefully treated. Appendix 8 details
our analysis of the (3+ 1)-dimensional current-current
correlation function, including all of the subtraction terms
required by continuum renormalization. Table II defines
the regions of momentum space which must be treated
separately and Table III shows the dominant behavior of

Equation (4.1) describes a coupling to photons which is
proportional to the slope of D(k) and so, in the limit
(u~O, the coupling to fermionic states with k+q pm/a
but a &ir/a becomes arbitrarily strong. Thus, the contri-
butions from the spurious regions to loop integrals are
enhanced by factors of order 1/p and survive the limit
a~O, p~O. It is this behavior and not spectrum dou-
bling which lies at the root of the problems first discussed

by Karsten and Smit.
As with spectrum doubling, there is a way out of this

problem. It is suggested by the work of Rabin, who gave

TABLE II. Regions of momentum space treated separately in calculating the current-current corre-
lation function in 3 + 1 dimensions using the damped SLAC derivative for n V p & qa.

Number
of states

Spurious

Normal

Spurious

Spurious

Umklapp (normal)

Spurious

n= —1

——+—&k& ——+7T 7T' P' P
a I. a a

n~@ m——+ ~k &. —(].—v p) —qa a a
——

C,

'1 —v p) —q (k & ————qa a I.
—+——q &k & —(1+My, )—qa I.
—(1+Vp) —q &k & —(1—i/p)
a a

—(1—v p)~k ~ ———
a a L
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TABLE III. Dominant contributions to the current-current correlation function in 3 + 1 dimensions

(three times subtracted) given by the damped SLAC derivative in the limit a~O, I.~m with

p, =5{a /L), and 5 held fixed.

U

S

S
S

Type of region

ky

N
U
U
N
S
S
S
S
U

U
U
U
S
S
S
U
U
U

Order of dominant contribution

q da a(1 —a}ln a(1—a)q +m /m

q a

q a
a

pq a

pq a
(q~'"q'a

~p q'a
pqa

pq a

an answer which is applicable only to the case of noncom-
pact QED. I.et us review the substance of Rabin's solu-
tion and then turn to a generalization of it which is more
suitable for a compact gauge theory and thus for generali-
zation to a non-Abelian theory.

It is helpful to begin with a review of some elementary
properties of noncompact lattice QED. The Hamiltonian
version of noncompact QED is defined in terms of link
fields Ai and their conjugate variables Ei which satisfy
the equal-time commutation relations

[E&,A& ]= i 5& &—, (4.2)

The important difference between (4.3) and (4.4) is that
(4A) defines a theory of interacting degrees of freedom for
g +0 whereas (4.3) is a free field theory. For this reason
the theory based upon (4A) has some of the features of a
non-Abelian theory (at least for g ~~ 1).

Both theories have an invariance under time indepen-
dent gauge transformations wherein

5EE ——0, 5AE ——VER. , (4.5)

where A.(j) is a function defined on points on the lattice.

where l and l' stand for two links on the lattice. For the
pure gauge theory the Hamiltonian can be chosen to have
one of two forms. The first form of the Hamiltonian is
the one which trivially reproduces the ordinary free-field
theory of photons simply transcribed to a lattice:

H =-,' gE, '+-,' g8~'. (4.3)
E

Here, i denotes a link variable and 9' denotes a plaquette
variable; i.e., Ei is the electric field variable associated
with the link i, and 8@ is the magnetic variable associat-
ed with the plaquette H. If we denote the links bounding
the plaquette 9' by ii, lz, li, and 14, respectively, then
8~ =Hi, +Hi, —Ai, —Ai, . The second form of the Ham-

iltonian is more complicated and produces a large number
of slightly different copies of compact QED; i.e.,

2

H = g Ei gc—os(8~ ) . (4.4)
~ 2R

If i is the link joining the points j and j =j+u then
Vki, =l,(j ) —A(j). The generator of this transformation is

the unitary operator

U(A, )=exp i QEiVIA,
E

(4.6)

V E(j)=0 (4.8)

is equivalent to the statement that physical states are in-
variant under arbitrary gauge transformations. The gen-
eralization of this result to include charged matter fields
is straightforward. In this case a general time-
independent gauge transformation not only shifts the
fields Ai by the gradient of a function A, (j), but it also
multiplies the matter fields by a phase factor e'~ "'. If we
let jo(j) be the time component of the conserved elec-
tromagnetic current, then an arbitrary gauge transforma-
tion is generated by the unitary transformation

U(A. )=exp i g [ —V E(j)+jo(j)jA(j) (4.9)

We identify —V' E(j)+jo(j) as the generator of arbitrary
gauge transformations, and once again the statement that
physical states are gauge invariant corresponds to impos-
ing as a state condition that Maxwell equation which is
lost when quantizing in Ao ——0 gauge.

The next question which arises is "%'hat does the pure
gauge theory Hamiltonian look like when one restricts at-
tention to the sector of gauge-invariant states?" One way
to answer this question is to observe that even on a lattice
the operators EE and AE can be written as a sum of a gra-
dient and a curl; i.e.,

which can be rewritten, using the lattice analogue of in-
tegration by parts, as

U(A, ) =exp i g (V—
' E)(j)A(j) (4.7)

3

The lattice divergence of the link variables EI is defined
as the directed sum of Ei's over the links touching the
point j. Equation (4.7) shows that V E(j) can be identi-
fied as the generator of local, time-independent gauge
transformations. From this it follows that imposing the
Maxwell equation
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+k +El (4.10)

where El is a function whose lattice curl vanishes and El
is a function whose divergence vanishes. (For details of
this decomposition see Ref. 9 and papers cited therein. )

Obviously, a similar decomposition holds for At. Fur-
thermore, it is clear that the transverse part of At must be
a function of B~ alone.

With this decomposition in hand it is straightforward
to write a Hamiltonian for noncompact QED which has a
well-behaved continuum limit:

H =Ho —I g 0 (j)ap% (/+re�)Dp(r)exp /g g 3/'
P,P l'

+HT, (4, 11)

g& stands for the set of links along the line joining j and

j+rp, where

Ho= g (Ei +Et ) , gc—os(Bs ) (4.12)

and HT is given by

HT g4' (j——)e ' %(j+p)(e ' —1) .
i+I

(4.13)

is satisfied and E, by definition, can be written as

for gauge-invariant states

1
~ao+2

so we can rewrite (4.12) as

(4.15)

(4.16)

2

Ho ———g g jo(j),jo(j')

icos(Bs ) .g T2

2
(4.17)

The first term is easily recognized to be the Coulomb in-
teraction between two charges at the sites j and j' (a quan-
tity which rapidly passes to its continuum form) and the
remaining terms in the Ho are explicitly gauge invariant.
As for the remaining terms in the Hamiltonian (4.11) we

see that the factor of e'" can be dropped since the only
effect of this operator is to change the eigenvalue of E

It is now easy to answer the question just posed: "%hat
does the Hamiltonian look like when projected into the
sector of gauge-invariant states'l" Since a gauge-invariant
state is one for which the equation

(4.14)

for a gauge-invariant state and we have now chosen to
rewrite this change completely in terms of the change in

the charge density jo(j) which is caused by the operators
4 (j) and %(j). Hence, without ever fixing the gauge,
beyond making the choice Ao ——0, we have obtained the
Coulomb-gauge form of the Hamiltonian in the sector of
physical states T.he important features of this Hamiltoni-
an are the following.

(1) The free-fermion part of the Hamiltonian is arbi-

trary; in particular, D„(r) can be taken to be the damped
SLAC derivative.

(2) The coupling to transverse photons, which together
with the Coulomb interaction constitutes the entire in-

teraction Hamiltonian, is strictly local on the lattice; that
is, it is independent of the form of D„(r).

It is easy to verify that with a coupling of this form the
results of the previous section for the dependence of the
current-current correlation function on tt, I., and a are re-
tained and the limit (3.14) is satisfactory.

g ~p«h g UI
paths l Ep

path
paths

(5.1)

~here the sum over paths runs over all possible paths
from j to j+np and co~,h is any suitably chosen weight-

ing factor. The usual gauged derivative corresponds to
the choice top«&

——1 for the straight line path and top«h
——0

for all other paths. Let us instead consider the weighting

—g2n 2(l)
~path =

lap
(5.2)

V. COMPACT QED

The major objection to the treatment presented in the
previous section is that it introduces fractional flux on
links of the lattice and hence cannot be used for a com-
pact theory. However an important physical point has
been learned —gauge invariance does not dictate a rela-

tionship between the form of the derivative D„(k) and the
form of the vertex I „. In (4.1) we have seen that it is this
relationship which leads to a problem when we gauge the
SLAC derivative by introducing a straight line of unit
flux between the fermion fields.

Although the discussion of the noncompact theory does
not directly tell us how to modify the Lagrangian of the
compact theory, it points out the fact that there need be
no tight connection between the gauge-invariant fermionic
derivative terms and interaction between the fermions and
the transverse gauge fields. Consider then the most gen-
eral form for the gauge-invariant derivative in a compact
gauge theory:

/gal~ g /~a„g „„-D„(n).
J~~iP

n&(1) =number of times the path P traverses the link l in a positive direction

—number of traverses in a negative direction . (5.3)
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At strong couphng this weighting is clearly dominated by the shortest path —however for weak coupling the string be-

comes very nonlocalized. Now let us examine the coupling to any plaquette variable 8+ given by this prescription.
Consider any plaquette and isolate the contributions to the sum over paths coming from terms which carry flux

(p, q, r, —p —q r) —into the four corners of that plaquette. The coupling to 8~ is

QO

I s ——
, g co(p, q, r) g (4n+3p+2q+r)e ' "+ ~+ q+"'s

(p qr) n = —«N

where

(5.4)

Z= g to(pqr) g e ' "+'~+ s+"'s
(p, q, r)

(5.5)

The factor to(p, q, r) is the sum of the weightings of the parts of the paths which do not touch the reference plaquette H
(modified by an n-independent term from the reference plaquette weighting). For small g it is instructive to rewrite this
sum using the identity

Pl = Xe X (5.6)

One then finds

g to(p, q, r) g (2@m)sinmm
1 p, q, r m=1

dO

g co(p, q, r) 1+ g cosmm
p, g, r m =1

&P +29+~ —m2e /g2

2

3P +2$ +P m 2Q/g 2

2

(5.7)

—m /g2
We see explicitly that every term in the numerator is smaller by at least a factor of e ~s than the equivalent term in

the denominator. Hence, as g~0, I' vanishes faster than any power of g. This is then a compact equivalent of the re-

sult given in the previous section; i.e. it is a prescription for rendering the derivative gauge invariant which does not in-

troduce a coupling to the plaquette variables 8~ to any finite order in g.
Since the plaquette variables 8~( =VX A) are the transverse degrees of freedom of the gauge field, this calculation

shows that any term in the fermion derivative which is rendered gauge invariant by the introduction of such a weighted

sum of strings does not introduce any coupling of the fermions to the transverse photons of the theory. Thus we can ob-

tain a theory which has both a long-range derivative and an acceptable coupling for transverse photons by the following

prescription:

X -...IIU
gggg= g Pf~aqU. „-Q -+ g P.j~aqf „-D„(n). ~ path

nial

paths

(5.8)

where the weighting (5.2) is used for all n p 1. This gives
the propagator

D;(k)=k; (5.9)

gA;(q)1;(k, q)f (k')a;f(k)5&(k' k —q), —

where

(5.10)

1;(k,q) =cos(k;a) . (5.11)

(Here transverse photons are simply chosen to be the A;

for those directions iraq. )

The important feature of the coupling (5.11) is that the
magnitude of the couphng to fermions with k near ~la is
not enhanced relative to that to fermions with k near
zero. Hence the calculation for n;; in this theory parallels
tfiat given for b~ in Sec. III. One simply replaces the

while the vertex for the transuerse photons arises only
from the nearest-neighbor term in (5.8) and thus has the

2—«path
~path =e (5.12)

numerator factors yo in (5.10) by the quantity I;a;. The
arguments given in the appendixes can all be repeated
with this vertex structure and the conclusions are un-
changed. Hence this theory gives the usual weak-coupling
perturbation theory results when the continuum limit is
taken as described in Sec. III.

Although this is a very attractive result, the generaliza-
tion of the calculation just given to a non-Abelian theory
is nontrivial. Our counting made use of the Abelian na-
ture of the gauge field. Each string was weighted by
exp( —g E ) where E is the field created by the string
operator acting on the flux-free state. The state created
by the action of successive U operators on a link is not
unique in the non-Abelian case so an equivalent weighting
is not readily achieved. Fortunately, we believe that the
strong result achieved above is not necessary in the non-
Abelian case, because such theories are asymptotically
free. Consider instead a weighting
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where L~„h is the length of the path in question. A cal-
culation of the coupling to a given plaquette variable 8@,
similar to that given above for the weighting (5.12) shows
that 1" vanishes at least as fast as g . In an asymptotical-
ly free theory such nonleading contributions to perturba-
tion theory are presumably irrelevant in the a —+0 limit.

VI. CONCLUSIONS

Although the calculations of the preceding sections of
the paper were carried out for a theory of massive fer-
mions it is obvious that we could have dealt with a chiral
theory from the outset by setting the parameter
m =ma =0 and projecting all fermion fields onto fields of
a single definite chirality. Hence, we assert that we estab-
lished that there do exist schemes for defining purely
chiral gauge theories on a lattice.

Unfortunately, we learned that in order to get results
free of lattice artifacts not only does the fermionic deriva-
tive have to have infinite range but also the introduction
of gauge fields has to be written so that for each term in
the fermion derivative we sum over an infinite number of
string configurations. Obviously, for strong coupling the
string configurations which do not correspond to the
straight line routing of the fiux between fermions are
severely damped; hence, whether or not one uses the Ham-
i1tonian which we have proposed, the strong-coupling re-
sults will be unmodified. The problem, as always, is what
happens as we try to approach the weak-coupling region
of the theory.

We will now argue that for couplings on the order of
unity or less we expect there to be a significant difference
between the behavior of the theory we have written down
and a straight-line gauging of a theory based upon a
SLAC-type of derivative. Furthermore, we will argue
that the necessity for summing over multiple string con-
figurations reflects an aspect of the problem which tran-
scends the desire to get weak-coupling perturbatian theory
to work out correctly; namely, the desire for a
renormalization-group-invariant formulation.

A. Exponential damping and the renormalization group

We will show that starting from a theory based upon a
SLAC derivative simple renormalization-group ideas
force us to gauge the thcery in the manner just discussed.
To see this, imagine that we begin calculating for a small
value of the lattice spacing and a small value of the cou-
pling. Since we are dealing with an asymptotically free
theory, we can imagine writing a trial ground-state wave
function which is essentially a Gaussian free-field wave
function for gluon and fermion degrees of freedom corre-
sponding to momenta near w/a. Integrating out these de-
grees of freedom we obtain an effective Hamiltonian for
the remaining degrees of freedom: i.e., a theory with a
new coupling and a larger lattice spacing. WL'le carrying
out such a calculation for a non-Abelian theory is some-
what problematic, for compact QED the process is entire-
ly straightforward.

The question we wish to ask is how the gauged fermion
kinetic term changes under such renormalization-group
transformations. It is easy to see that one effect of in-

tegrating out the high-momentum modes of the gauge
field is to modify the weighting factor by an amount
exp( —

g~vL~th ) where ~ is some calculable constant. For
a choice of couth which is unity for straight lines and zero
otherwise this result means that in one renormalization-
group transformation the fermion kinetic term goes over
to the form of the exponentially damped SLAC derivative
with a damping factor p =g 7 Tl.lls, however, is a disas-
ter since although in a non-Abelian theory g ~0 as a ~0
it does so only logarithmically; thus, given the results ob-
tained in the previous sections, in this sort of theory the
fact that lattice artifacts will survive the continuum limit
would appear to be unavoidable.

In the case of a more general tooth the situation can be
quite different. The reason for this is that now we are
faced with the question of what is the mean length of a
path joining terms in the fermionic kinetic term. This is
not a trivial question since in computing this quantity one
has to take into account the competition between the
damping factor e g ', which tends to favor the shortest
paths, and density of entropy factor, the number of paths
of length L joining a given pair of points, which grows
with the length of the path and favors longer paths.
Clearly, it is quite possible that as one varies g the entro-

py factor can win out and the mean path length can grow
rapidly. In fact, in a moment we will argue that this will

happen for g &g 1; however, let us first take a moment to
see why this is important.

Suppose for a moment that for points separated by a
distance less than some fixed value Lo the sum over paths
joining these two points is dominated by paths of length
Lo, whereas for points separated by more than this dis-
tance the sum is dominated by the straight line joining the
points. Now consider a single renormalization-group
transformatian of the form just discussed. As before, the

~rL
gauge field factor is rescaled by a factor of e ', but
now this means that all terms in the kinetic part of the
Hamiltonian which involve fermion fields separated by a
distance smaller than Lo are rescaled by a common fac-
tor. Hence, in this case one once again gets an exponen-
tially damped SI.AC derivative; however, now the damp-
ing scale is set by Lo and nat 1/g ~. This is important
since this provides a way of decoupling the factor tM ap-
pearing in our formulation from g and thus invalidating
the general renormalization-group argument that indicates
that lattice artifacts must survive the continuum limit. In
fact we will now argue that there is a value of g belaw
which the mean path length joining two fixed points
diverges, which puts us back into the situation of the un-
damped SI,AC derivative.

Now let us see why there is a dramatic change in the
mean length of a path joining two fixed points as we vary
g . The mean length of the path for a term in H involv-
ing fermions separated by a distance r is given by

g ~pathL path

(L ) Psths

~path
paths

%e can obtain a crude estimate of this quantity by un-
derestimating the number of paths of length L ~ r as fol-
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lows: any path joining two points separated along some
lattice direction by distance r must have at least r links
along that direction. Of the remaining (L —r} links,
(L —r)/2 can be chosen in any of 2(d —1} directions
without any risk of retracing the same path. The remain-
ing ( L r)/—2 links must be chosen to bring the path back
on axis and so are not completely random. It follows that
there are at least 2(d —1)' "'~ distinct paths of length
I. between points separated by a distance r. This is a
gross undercounting of the number of long paths but it is
sufficient to show that the average path length diverges at
some finite g. For a weighting such as (5.12) we find

y Le girL2(—d 1 ){L r'j/2—

(L),& (6.2)
~

—g~wL (L —r) j2

I. &r

Clearly for

g & (1/2r)in[2(d —1)] (6.3)

this expression diverges for all r. This is of course the re-
sult we wished to establish.

B. Physical scales and confinement

For a non-Abelian gauge theory we believe that con-
finement occurs at some fixed physical length scale. This
suggests that the fact that (,L )„~00,which was impor-
tant to reproduce weak-coupling perturbation theory in
QED, may in fact be modified in such a theory. It is pos-
sible, even intuitively plausible, that the average length of
the flux strings does not diverge in physical units but is in
fact some finite multiple of the physical confinement
scale. This notion is suggested by the discussion of the
previous section.

Imagine a recursive procedure of successively thinning
degrees of freedom to increase the lattice spacing. Start-
ing with a form such as (5.12) at small lattice spacing we
evolve to stronger coupling as the lattice spacing increases
over many recursive steps. Eventually, at sufficiently
strong coupling, we expect that confinement means that
there is an energy cost for having gluon fiux stretch over
large distances in units of the confinement length.
Presumably, this means that at this point the argument
given in deriving (6.2) applies but with a value of g above
the critical value and so we expect (L),=L
hence we expect the effective form of the fermion deriva-
tive to go over to the damped form on a scale set by the
confinement length. Since we beheve that this form of the
Hamiltonian will apply to the study of the motion of
quarks within a hadron our earlier analysis would suggest
that the turning down of the spectrum for momenta near
x-m means the appearance of states with masses on the
order ~~~ confinement

Although we referred to states of this sort as spurious
in our earlier discussions, because they did not appear to
have a rotationally (or at least approximately) invariant
spectrum, the states of the recursed Hamiltonian need not
be lattice artifacts —they can be finite-mass hadronic
states of QCD. The reason this can be true is that many
recursive steps are needed to go from weak to strong cou-

pling and the SLAC derivative will, along the way, evolve
into a form which involves off-axis terms as well as on-
axis terms and which is essentially rotationally invariant.
We raise this rather speculative point because of results
which we obtained in an earlier paper where we analyzed
chiral-symmetry breaking in the context of a strong-
coupling version of the SLAC derivative. ' Our results
did not require an infinite range for the SLAC derivative
and would be valid also with a weighting such as (5.12).
The result of the calculations described in that paper were
that the chiral symmetry of the theory is spontanceusly
broken, implying the existence of a massless multiplet of
pseudoscalar Goldstone bosons and also massive multi-
plets of particles which we identified as a p, p', and a pos-
sible n' multiplet. The relevance of this calculation to the
present one is that if these states are written in terms of
the "free" quark modes of the coarse-grained lattice then
the massless states contain no quarks from the region
~=a but the massive ones all contain at least one quark
from this region.

The combination of these earlier results with our admit-
tedly speculative argument suggest that those features
which are essential for obtaining the correct free spectrum
and weak-coupling perturbation theory may be less impor-
tant when it comes to the study of the hadron spectrum.

C. Practical calculations

Given the discussion of the previous sections we would
argue that any theory which attempts to deal with truly
chiral theories, must eventually deal with a gauging of the
fermion derivative term which contains a sum over arbi-
trarily long strings. Obviously, this is not the sort of term
which lends itself readily to carrying out practical calcula-
tions. The question then arises as to how to implement
our results within the framework of a practical computa-
tional scheme.

First, we would like to point out that the formalism we
have introduced is explicitly Hamiltonian in nature and
we do not know how to generalize it to a Euclidean path-
integral approach, except in the obvious way as a theory
of a finite-spatial lattice with continuous time. It makes
no sense to take our prescription for a spatial lattice and
use the same prescription to write down a Euclidean for-
mulation. The introduction of long range in the time
direction in W leads to a non-Hermitian Hamiltonian
which would seem to be extraordinarily difficult to under-
stand.

One can, of course, introduce an asymmetric formula-
tion of a Euclidean theory which takes a finer mesh for
the time direction than the space direction, and use only
nearest-neighbor terms for the time direction. Naively,
this would appear to lead to a single doubling of all of the
propagators. %'e have not studied this theory so we can-
not make any statements about decoupling of the spurious
states in the continuum limit. A more attractive alterna-
tive is to adopt the Monte Carlo techniques of Blanken-
bet:ler and Sugar" who work directly with the transfer
matrix computed from the Hamiltonian.

Yet another possibility is to eschew Monte Carlo tech-
niques and directly attack the Hamiltonian theory by
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strong-coupling perturbation theory, ' nonperturbative
methods like the r expansion, ' or whatever other method
comes to hand.

In any such approach it will be necessary to truncate
the full Hamiltonian and study one's results as a function
of the truncation scheme. For example, one could work
with the nearest —next-nearest-neighbor fermion derivative
and include sums over strings of length up to some length
I.o. One could then study quantities which are expected
to scale early, i.e., ratios of masses, and see how they de-

pend upon the parameters p and 1.0. Rehable answers
will be those which are insensitive to the choice of these
parameters. The virtue of this sort of approximation
scheme is that we know the specific form of the Hamil-
tonian being approximated and presumably can obtain
control over the dependence of the results obtained on the
approximations. Furthermore, we have reason to believe,
from the strong-coupling calculations which have been
studied previously, that the masses of the true physical
states uphill indeed be relatively insensitive to p and I.o.

D. A sword about anomalies

Up to now we have studied the question of how to write
a satisfactory lattice gauge theory for the case of a
nonanomalous chiral symmetry. This is because we know
that in the continuum it does not make sense to gauge an
anomalous chiral symmetry. Presumably, although it is
not apparent from what we have said in this paper, the
same is true for our lattice models; even though one can
carry out the entire construction we have just described
for theories of this type. Probably, what goes wrong is
that in such a theory it is not possible to find a range of
couplings which will allow us to take the limit a~0 and
define a satisfactory continuum theory. Analysis of this
question requires a thorough study of the dynamics of
models of this type and goes beyond the scope of this pa-
per.

There is another question related to anomalies which
usually comes up in the discussion of fermions in lattice
gauge theories, and that is that there is a widespread belief
that such theories cannot exhibit anomalies in any global
symmetries. It is therefore believed that the U(1) problem
cannot be solved correctly in a lattice theory. This belief
is based upon a collection of notions which our discussion
has shown to be fallacious. The first fact is that for any
theory of massless lattice fermions there is, even for a
current which would be conserved in the continuum
theory, an exactly conserved lattice chiral charge. The ar-
gument then goes that this means there must exist an ex-
actly conserved chiral current corresponding to this
charge in the continuum limit of the lattice theory. In an
earlier paper by one of us' it was shown that this argu-
ment was fallacious for a lattice version of the (1+ 1)-
dimensional Schwinger model based upon a SLAC deriva-
tive. While there is an exactly conserved chiral charge in
this lattice theory it is not the integral of a current density
which has a finite continuum limit; moreover, the only
axial-vector current which does have a continuum limit is
not conserved. Applying our present analysis to a
(1 + 1)-dimensional theory shows that the effects of
damping by a scale factor proportional to g do not pro-

duce lattice artifacts in the continuum limit of such a
theory; hence, our results provide additional supports for
the arguments presented in Ref. 14. Obviously, a parallel
discussion of theories in higher dimension will require
more care and remains to be given. Nevertheless, there is
no reason to believe that there are any nonperturbative ef-
fects which will change the fact that computations in our
present formulation of lattice gauge theories of massless
fermions go over to their continuum form if the limits
a ~0 and g ~0 are taken properly.

Another misconception which leads to the conclusion
that one can have no anomahes in theories with lattice
fermions, is that species doubling produces contributions
which cancel the ordinary fermion contribution to the
anomaly calculation. Obviously, from what has been
shown in this paper this argument applies only to the case
of the nearest-neighbor derivative. Even in the pathologi-
cal case of the nearest —next-nearest-neighbor derivative
we have seen that the density of states in the doubled re
gion is very different from that in the normal region and
no detailed cancellation of contributions is possible for
general values of p.

E. Final remarks

We would like to conclude by emphasizing that the ar-
guments which we have presented in this paper show that
it is in fact quite possible to formulate lattice gauge
theories which allow the introduction of chiral fermions
in a straightforward manner. In addition, this same
method allows us to discuss ve:torlike gauge theories of
massless fermions in a way which preserves global chiral
symmetries and allows a direct attack on the problem of
spontaneous symmetry breaking and the dynamical origin
of nonelementary Goldstone bosons. Admittedly, the
Hamiltomans which we propose appear more difficult to
deal with than the more familiar versions of lattice gauge
theories; however, this may be illusory. It could well be
that the fact that this class of theories preserves all chiral
symmetries allows for a more direct attack on questions
of dynamical symmetry breaking than is possible in
theories in which one explicitly breaks these symmetries
and then attempts to discover how to take the continuum
limit in such a way that the symmetry is restored.

In addition to this remark we would also like to point
out that while we believe on physical grounds that the
complexity of our Hamiitonian is unavoidable, that aspect
of our discussion is heuristic and should not be taken at
face value. Since this paper shows that something which
was heretofore widely believed to be impossible is, in fact,
possible, we encourage others to have another look at the
problem in the hope that they will find something we
have overlooked and arrive at a simpler formulation of a
satisfactory theory.
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APPENDIX A:
j. + 1 DIMENSIONS —NEXT-NEAREST NEIGHBOR

After evaluating the traces, Feynman parametrizing, and
performing the «0 integration, (3.8) yields

The results of Table I are obtained from the current-
current correlation function given in (3.8). In 1+ 1 di-
mensions (d= 1) this quantity requires no subtractions in
the continuum theory because the apparently logarithmic-
ally divergent terms cancel by current conservation.
Hence we make no subtractions on our lattice expressions.

'(q, q ) = ff Q 5(«„—« —«, —2nn).
2N +1p, r, n

1

A'E Kp, Kp (Al)

[D(«„) D(«—z )][(1 a)D—(«z ) —aD(«„)]F(«„,«~) =
[aD («, )+(I—a)D («z)+m —a(l a)q—o a j

(A2)

27TS
m =ma, qa =K, = 2/+1 (A3)

N —s

5(r —p —s)

We wish to study fixed finite external momenta q. For
the sake of discussion we examine q~0, which means
0 & s «N. Then the delta function restricts the n sum to
contributions from n =0—the nonumklapp terms, and an
n = —1 contribution when p +s ~ N. Thus we can
rewrite the sums in (Al) as

g 5p(«„—«p —«q —27Tn )

The three contributions are thus
~P

cafes)o~ i i ~ d«F( «+«g~ «)

~region II -2mN/(2N + 1)
d«F («+«g, «)

(A10)

Mp, (21' + 1 ) 5
2' 2'

In each region of the sum there are an infinite number of
terms in the limit a —+0 and hence we can make the re-
placement

1 1
dK

(2N + 1) 2m

p =N —s+1
5(r —p —s +2%+1) . (A4)

We can further divide the contribution of the first term in
(A4) by looking at the behavior of D(«). We have, for the
case of the next-nearest-neighbor derivative,

(2~N —s]/(2N+1]
+ KF K+Ks~K

and finally the umklapp contribution

J

(Al 1)

(A5)

D(«)=« for «&v p .

%e rvill study the limit
r

D(«„)= (I+p) . (1—p) .
S1OKr + s182Kr

2p 4p

In the region of small «, this function is well approximat-
ed by the linear behavior

2eN/(2N + 1)
d«F(«+a; 2', «) . —

2+N —s + 1)/(2N + 1)

(A12)

All that remains to obtain the results given in Table I is to
estimate the dominant contributions from each of these
expressions in the limit (A7). To do this, it is useful to
note that

D(«+«, )a
p, =5 —= for finite 5, N +00 . —

In this limit any finite physical q satisfies
r

or«, «vp. (A8)

«, [(1+@)cos« (1—p)cos2«—]=D(«) + +0
2p

K
=D(«)+«,8(«) +0

p
(A13)

Thus we can further divide the sum over p into the re-
gions

In region I we use the linear approximation (A6). This
g1VCS

1 ~p (qa)[(1 —2a)« —aqa j
~region I= T. ~i [(«+aqa)2+a(1 —a)(q a —qo a )+m ]

Shifting the integration variable and exploiting the K~—K symmetry this can be rewritten as

(A14)
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da ~i 2a(l —a)q a
fcsloll i 2 0 [mJ ( I )(

i 2) 2+ 2o 2]3/2

+ vt +~ qa f(1—2a)a —2a(1 —a)qa]dk
[0 —a(1—a)(q —q )a +m a ] /

m a—(1—a)(qo —q )
(A15)

I J

where the second integral has been estimated by setting a =~)u over its entire range. The first term represents the usual
continuum contribution. The remaining contributions vanish in the hmit (A7).

The contributions of region II can be treated using (A13). We find

1 2~%/(2N+) )—(I—a)qo B2(rr)
krcsjjog n Jda 4q o a( 1 2a ) f 1lCreyon 8 '/2(x, go)

+ ~j+asa qgB (x)[(1—2a)D (~)+2a(1—a)quB (rr)]
dK

~p-aqa R /i(rr, qa)

2eN/(2N +1)-equ
+

2eN/(2N + 1)—(1—a)qa
K

qaB (z)[(1—2a)D (a')+2a(1 —a)qoB ()r)] +08 /i(a, qa) p

where

R(~,qa)=D (s)+a(1—a)(q2a2B~ —qo a )+m2a

The second two integrals are estimated by taking the maximum value of the integrand within the range multiplied by the
range. The contribution of the second integral is bounded by a term of order q a /Ip while the third integral gives con-
tributions of order )M.

The first integral is best treated by dividing it into the regions

In the first of these regions we set cos)c= I —y, the resultant integral is then bounded by

dx
2a(1 —a)q2a p,

dy & dy +higher order in p[—3y+2y +Is(2 —y)(l —2y)] q a p, 2 9
0 m' l —castv ja —qo) y (2 y) [y +p(2 —y)] 3K 8 4y

(A17)

In the second region we set cove= —1+y. The contribution of this region is then

4&s p y)d [2(2—y)'] 0( )
(2N + 1)' ' y'(1 —y)'

where

(A18)

P

a=1+eos 2rr[N —(1—a)s] =0
2%+1

2m[s (1—a)+ —,]
(2%+1)

Finally, in region III, the umklapp region, we can expand both D(a) and D(a.+a; —2m) about their values at a =m. This
gives

0'
D x=m 1—

2%+1
o m — ( —2s+o) nD(a+a; —2m. ) = 1&o &2(s —1) .
p 2%+1 " '

p 2%+1 '

Thus the contribution of the umklapp region is

( —s)[(1 a)sr+a(s o—)]-
~region III=P 0(p) .

[a(s —o) —(1—a)o' ]
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Hence we have shown that only the usual continuum con-
tribution survives in the limit (A7).

APPENDIX 8:
THE DAMPED SLAC DERIVATIVE

minimum value of D(ic) in the spurious region occurs at
~ii 2——mN/(2N+ I ) and is given by

D(zpi )=)i~ 4p(2N + 1) +0 (p, )M N ) ))i' 2I—J,N .

In order to evaluate the loop contributions using the
damped SLAC derivative we need first to derive certain
properties of the spectral function D(imp ). The Hamiltoni-
an defined in (2.19) gives

C(p, ) &~ i(» —a; )m i (» —»)m-
)iie " e ' +e+ r=-N

(81)

where )rp
——2'/{2N+ 1) and the normalization C(p) is

chosen so that the slope of D(ir} is 1 at s =0. We are go-
ing to study the limit

T 2

z, N~oo 5 fixed.
(2N +1)'

In this limit pN is of order 1/N, and hence vanishes as
X—+ ~. A little algebra gives

D(imp)=Cap 1 pN+ — g F(r)2%+1,
p —i/2

F(N+ —,
' s)+0(p—, (pN) ),2N+1

(83)

1 —( —1)"cosii„/2
F(r)=

2 sin )~, /2

(810)
The current-current correlation function of interest, Eq.

(3.8), is quadratically divergent in the continuum theory
and hence requires three subtractions. %e will make the
same three subtractions and study the resulting expression
in the limit (82). In order to define precisely what we
mean by the various contributions in Table III, we adopt
the following procedure: (1) evaluate the traces, Feynman
parametrize, and perform the (finite) )~0 integrations; (2)
divide the sums over each of the spatial momenta into the
regions given in Table II; (3) treat each such region as a
separate expression to be three times subtracted at
(qo, q) =0.

This yields the results of Table III. (Because the boun-
daries of the various regions are q dependent the sums in
the subtraction terms may run over a different range than
those in the original expression. ) Of course, provided the
subtraction is done correctly, the answer does not depend
on how the contributions are distributed between entries
on our table. However it is important to note that a
correct subtraction procedure treats the umklapp contri-
bution separately. Let us outline a one-dimensional exam-

ple of a twice-subtracted sum just to make all of this
clear.

Consider the unsubtracted expression

B (q) = Q F(ii&,~„)5p(Ki+ii, +2mn —s', ),
p, n

where q =2irs /(2N + 1),

Now

g F(~)= +0(1)1 2N+ I

+ r=1
(85)

B (q)= g F(xp, imp+)(, )
—N

+ g F(Kp, lcp+Kq —217) .
N=s+1

(811)

xV+1F(n+ —, —s)= +0(1) .2N+1 s=iy2 w (N+1 —p)

Hence

Now subtract twice. The contribution of the first sum in
(811) is

N —s

(B„„.„,)'= g F(~„~p+~, ) +F(~p,~p—)

D(x'}=)(— +0()M,)(i, N ) .
m(n a)—

Thus

da 2P 0( 2N2)
~(m )i}'—

The maximum occurs at

(87)

(88)

F(i(p, imp+)(„)
27TS

+ N r

2%$+ F(xi', x~),2N+ I

while the second sum gives

N
2

(Bpegiog ii ) = g F(KprKp +Kg —2m )
N —s+1

r=0

(812)

{89)

For )i greater than m. —V2)M/m the slope of D()i) is
negative —this spurious region is of width 1/N and hence
contains only a finite number of mom enta
=2am /(2N + 1) even in the limit N ~ oo. The

2''s
F()i', a N ) .2%+I' (813)

Since the umklapp region is of width q the contribution of
region II is explicitly of order q before any subtraction.
The second subtraction introduces a boundary term which
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is different for the umklapp and nonumklapp contribu-
tions and hence does not cancel out when the two regions
ale added.

The results given in Table III are then obtained by a
straightforward step-by-step procedure. In the spurious

regions the denominator D(a) is replaced by the bound
(810) while numerator factors of D(a) can be replaced by
the upper bound (

~

D(a)
~
~n). In both the normal and

the umklapp regions, after subtractions the sums can be

replaced by integrals using the prescription

2~'yI 2++ & ~

dK
2~mri2w+ & i

(814)

However, the number of states in the spurious region
remains finite in the N~ao limit; hence, these regions
must be treated as discrete sums even in this limit.
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