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The problem of singular perturbation coefficients for n~ao that appear in the second-order

QCD calculation of the moment of the deep-inelastic structure function Fi is investigated by app1y-

ing the optimized perturbation theory (OPT). Special emphasis is paid to the connection with the

kinematical analysis based on the resummation of singular terms. The main results of the present

paper are as follows. (i) The simultaneous application of the generalized two-scale OPT to the
factorization- and renormalization-scheme dependences of F2 not only absorbs the most singular
ln n terms in the perturbation coefficients into the effective mass scale with which the coupling con-

stant runs, but also sweeps up the less singular inn terms to end up with a suppressing "form fac-
tor "(ii). Applying the single-scale OPT to the renormalization-scheme dependence of the g depen-

dence of the structure function Rq -at 1nF2/ti lug, all the singular terms are completely absorbed

into the effective mass scale, leaving the nonsingular perturbation coefficients, The R 2 thus optim-
ized and the R2 obtained from the Eq optimized as in {i)are shown to agree remarkably well more
than expected formally and also to agree numerically very well. (iii) Results (i) and (ii) agree up to
the most singular terms with those obtained through the kinematical analyses of Brodsky and

Lepage and of Amati et cI.

I. INTRODUCTION

The quantum-chromodynamic (QCD) perturbation ex-
pansion in terms of the strong coupling constant
a =g, /4n has been observed to break down near phase-
space boundaries. For example, in the conventional calcu-
lations based on the minimal-subtraction (MS) scheme or
on its variations the next-to-leading order term for deep-
inelastic structure functions behaves as a ln (1—x) near
the boundary of phase space x-1. Or, equivalently, in
the QCD series for the Mellin-transformed moments

1

+i(Q )—:J d*x" 'F, (x,g''t

8= A„a "(1+r,„a+r2 „az+ . )

higher-order coefficients r; „(i& 1) contain terms that be-
come logarithmically divergent as n ~ oo (e.g.,
ri „-ln n). These terms bein~ singular as x~1 (or
n ~ oo ) have been pointed out' to be of kinematical ori-
gin, i.e., to come from the phase-space boundary effect in
the phase-space integral of relevant Feynman diagrams
In fact the origin of, at least, the most singular terms has
been understood with such kinematical analyses.

I.et us briefiy see the consequences of the kinematical
analyses in actual calculations up to the next-to-
leading order. In the case of hadronic structure functions,
it is well known that conventional calculations in the
MS-oriented schemes, the second-order coefficient r

& „ in

Eq. (1) behaves in the large nregions asi-
ri „ri „ ln n +r

&
'„ inn +0 (1)——.2

The first term proportional to ln n has been shown to
be beautifully resummed to all orders of a within the
leading-double-logarithmic approximation, and has been
absorbed into the effective coupling constant running with
kinematically rescaled effective mass. Thus after the
resummation of a lnzn terms, the second-order correction
term becomes free of the most singular lnzn term. As for
the second term in Eq. (2) proportional to inn we have not
yet succeeded to deal with it along the line of kinematical
consideration. In the case of the photon structure func-
tion, the second-order coefficient behaves, as n ~ oo, as

r& „ri'„ inn+——0(1), (3)

and the leading-logarithmic resummation of the kinemati-

cally singular terms can absorbs only a portion of the inn

term into the modified leading-order expression. Thus
kinematical consideration concerning the resummation of
singular terms as n ~ ao successfully works for the most
singular a lnzn terms, but not for less singular terms.

Here let us turn to the other problem inherent in the
QCD perturbation theory. It is well known that any
finite order QCD pe-rturbation calculation depends essen-

tially on artificial choices of two calculational schemes:
the renormahzation scheme (RS) and the factorization
scheme' ' (FS). The problem of the scheme depen-
dences of QCD perturbation theory should be analyzed in
principle, as we have already shown, ' by taking simul-
taneously the RS and FS dependences into account. In
fact the resolution of scheme dependences of the photon
structure function can be carried out only when both (RS
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and FS) dependences are considered simultaneously. '"
There are, however, many physical quantities that are be-
lieved to be independent of FS, e.g., the Q dependence of
the hadronic structure function and the ratio of the gluon-
ic to electromagnetic decay widths of the heavy quarkoni-
um, for which the RS dependences can be studied by it-
self.

If we restrict, for brevity, our attention to the problem
of RS dependences in the QCD calculations, the effective
coupling constant a can be defmed, for example, as

o(&) d» ~ dx =ln
p(x) 0 bx~(1+ex) A

P{x)=bx (I +cx+cix+cix +. ),
where b and c are RS-independent constants, while

cp c3 . . as well as lnp, vary depending on the RS chosen.
As was proven by Stevenson the renormalization scale
lnp, and the RS-dependent perturbation coefficients c;
{i& 2) can be chosen as parameters labeling the RS depen-
dence. Returning to the QCD series for the structure
function (1), the coupling constant a and the coefficients
r; „(i& 1) depend on the RS chosen as functions of in@,

and c;. Thus any finite-order calculations for Fz(Q ) de-
pend on the RS. Because of the equivalence of all RS's, it
seems apparent that, without further information in addi-
tion to the RS dependences, we have no definite criterion
to choose any specific RS, except that the result neatly re-
flecting the renormalization-group (RG) invariance of the
all-order expression might be favorable. ' It is also obvi-
ous, if we take account of the aforementioned singular
behaviors as n~ oo of the perturbation coefficients, that
the desirable perturbation series is as follows. All the per-
turbation coefficients r; „are free of singular terms as
n ~ cc', thus, the QCD series makes sense as a perturba-
tion expansion in terms of the effective coupling constant
a.

Now the question we should ask is whether we can find
such a calculational scheme that satisfies the above-
mentioned two requirements: (i) The perturbation calcu-
lation in the scheme neatly reflects the RG invariance of
the full-order expression; (ii) the perturbation coefficients
calculated in the scheme are free of singular terms as
n~oo, that might be of kinematical origin. This prob-
lem has been partly investigated in the analysis of the
photon structure function, ' where we have shown that
the optimized perturbation theory (OPT) based on the
principle of minimal sensitivity (PMS) may have dealt
with the large second-order corrections at least in the
most singular terms in the large-n limit. In the following
we make a detailed investigation of the above problem and
show explicitly that the OPT based on the PMS actually
realizes such a desirable scheme in the calculations of
deep-inelastic structure functions. It is to be noted that
the present analysis is concerned not only with the most
singular terms but also with the less singular terms in the
limit n~oo.

In Sec. II the large-n behavior of the optimized QCD
series for deep-inelastic structure functions is studied.
Analysis of the hadronic structure function is done in two
stages. First, in Sec. Il A the perturbative QCD result for

the Q dependence of the structure function, which is free
of the FS dependence, is investigated. The optimization
of the RS dependence is carried out through the original
single-scale OPT, studying consequences about the struc-
ture of the optimized QCD series. Second, in Sec. II 8 the
same analysis is done for the optimized series for the
structure function itself after the simultaneous optimiza-
tion of the RS and FS dependences by employing the gen-
eralized two-scale OPT. In Sec. IIC we compare the re-
sults from the above two analyses and show that they
agree remarkably well more than expix:ted formally. A
brief survey of the analysis of the photon structure func-
tion in the large-n limit and the comparison of it with the
hadronic structure function case are presented in Sec.
IID. Finally in Sec. III conclusions and several discus-
sions are given.

II. LARGE-n BEHAVIOR OF THE DEEP-INELASTIC
STRUCTURE FUNCTION

A. Single-scale OPT analysis of the RS dependence alone

Original single-scale OPT (Ref. 9) can be applied to
physical quantities being independent of the FS. This is
because the FS dependence is closely connected with the
RS dependence and each of them (FS and RS) cannot be
treated separately. Thus we here consider the Q2 depen-
dence of the structure function, which is free from the FS
dependence. "" For later convenience, however, we
start from the perturbative expression for the structure
function Fz. Up to the next-to-leading (second) order, the
structure function is given by'

F2(Q )=AHa "(1+r,„a), (6)

where the coupling constant a is defined by Eq. (4) with
the second-order P function

P( a) =ba'(1+ca),

namely,

~

b
~

ln =—+c ln
1 ca
a ]+ca

The scheme-labeling parameter to this order is the renor-
malization scale in@ alone. Then the Q dependence of
the structure function can be calculated in the second-
order approximation as

d InFz(Q~)
R2(Q )= =a(1+hi „a),bd„d ln

~ ), pf
=& +~/, pg~dpg

Applying the single-scale OPT to R2(Q ) we get the
consistency equation

= —b,
d 1AP

which can be integrated to give

h) „——bin —+p„,
p
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where p„ is the scheme invariant that can be calculated in

any scheme. The optimization equation hermes

C
(Iii,„),p, ————. (24b)

c+2{1+ca}lit„——0.
Thus we get the optimized solutions as

(Ii) „),,=—
2(1+ca,p, )

'

[R2 {Q')]»t =aopt [I+(Ii1,N)optaopt 1

2, +coopt
'P' 2(1+ca,p, )

'

(13)

~n[F2{Q )] pt=~ (aopt } "[1+(ri„}optaopt] (25)

Namely, through the optimization those terms giving the
most singular contributions as n~ao are absorbed into
the optimized coupling constant a,p, defined at the re-
scaled mass-scale p»t. Thus in the optimized @CD series
for R2(g ), Eq. (15), all the singular terms are completely
absorbed into the rescaling of the effective mass scale,
leaving the nonsingular perturbation coefficient (tii i „),p, .
Note, however, if we look at the "optimized series for
FN(g2) n

the optimal renormalization scale p,,pt and the correspond-
ing coupling constant a», are the solutions to the coupled
equations

[bfln
adopt

ib iln
A

C

2(1+ca op, )

1 aop,+c ln
Cop) 1+eopt

(16)

(17}

(bi „) p,
————+O(a),

[R2(Q )],p, ——a,p, 1 ——a», +O(a )opt opt
2

opt (19)

ln
POpt

1 C
p, +—+O( ),

and the optimal coupling constant a,p, becomes, in the
limit n

where

ln ln(p, ,pt/A )

j b
~

ln(tu, pt/A) ln (p»t/A)
(21)

t;t=gn '"g2{n)[1+o(a)],
e 3cl2bf {n )

(22a)

(22b)

f2(n) ~ 0.1734 (nf ——4), {22c}

and nf is the number of quark fiavors.
The perturbative second-order coefficient r, „[or i'2 i „

through Eq. (10}]has been already calculated in the MS or
MS scheme, where, for large n,

(ri „)Ms„~ ri „ ln n+ri'„ inn+0——(1), (23a)

or

(b t. )Ms otm=b t". »n+«'» (23b)

which should be compared with the optimized coefficients
that behave in the same limit n ~~ as

(ri „),p,
—=d„[(Iit „),p,

—c]=— inn +0(1),4c
(24a)

In order to study the large-n behavior of the optimized
series we consider the small-coupling limit' a 0. Then
the optimized solutions (14)—(17) become

the perturbation coefficient (ri „),p, still contains terms
being singular as n ~ oo, i.e., ( ri „),p, -inn, and the "op-
timized series (25)" still formally loses its sense as n ~ oo.
We have been careful so that we have not applied here the
single-scale OPT to F2 itself. The "optimized series for
F2" means the F2 evaluated by substituting various op-
timized quantities for R 2.

In the general ith-order approximation, application of
the single-scale OPT to R2 gives in the limit n ~00 the
optimized results as [up to O(a)]

or

c(i —3)
ltN)OPt 2( 1)

(26a)

where f2(n} is given in Eqs. (22b) and (22c). As for the
higher-order coefficients (Ii;„),pt or (r; „}opt (i )2) we
cannot say much at present without information about the
higher-order calculations for the P function, anomalous
dimensions, and coefficient functions in some calculation-
al schemes.

We can carry out the same analysis even for the photon
structure function if we consider its Q dependence and
formally obtain the similar result.

B. Taro-scale OPT analysis of the RS
and FS dependences simultaneously

Optimization analysis of the structure function F2(Q )
itself that depends both on the FS and RS simultaneously
can be carried out through the generalized two-scale OPT.
Such analysis has been already completed for the nonsing-
let (NS) component of the structure function in the gen-
eral ith-order calculations. ' In this case besides the pa-
rameters labeling the RS, the renormalization scale lap
and the P-function coefficients' c; and c; (i &2), there

(ri „),p, ——— inn+0(1) .4c(i+1)
(26b)

3 b i —1

In this case again the most singular terms as n~ oo are
absorbed into the optimized coupling constant a,'p,
=a (@opt), which shows the same large-n behavior as the
second-order case, Eqs. (21}and {22),namely

i2,"p,=gn '~ g;(n)[1+0(a)], (27a)

g, {n)=exp — f2(n),
c i+1
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Fz(Q )=A„a "(1+ca) " '" (1+ri „a),

where A„ is the scheme-independent constant and the two
coupling constants a and a are defined as '2's [see Eqs.
(4} and (5}]

~b
~

ln =—+clnM 1 ca
a ]+ca (30a)

appear parameters labeling the FS: the factorization scale
lnM, and the perturbation coefficients of anomalous di-
mension for spin-n operator d; „:—y'„/b (i & 1 because the
leading-order coefficient do „=—d„ is a scheme invariant).
Factorization of the moment can be carried out in terms
of the Wilson operator-product expansion (OPE) as

F,"(Q')= W„(a (M))K„(a(p)),

where 6'„ is the matrix element of the operator with spin
n renormalized at M and 4„ is the OPE coefficient func-
tion corresponding to the subprocess hard-scattering cross
section.

Following the analysis given in Ref. 12, we first study
in detail the calculation up to the so:ond order:

(+p),pt=&„(o,p, ) "(I+c&,p, ) (34)

aopt = 1 ln 1n(M,p, /A)+0
~

b
~

1n(M,p, /A) ln (M,p, /A)
(35)

M,„,=Qn '~ gz(n)[1+0(a)], (36)

and g2(n) is defined in Eqs. (22a)—(22c). The following
fact is worth mentioning. In comparing Eq. (33c) with
Eq. (20), i.e., the two coupling constants a,„I—:a(M,~, )

p,~i) (Ref. 19), we recognize that th
transmutation of the large nsing-ular terms in the pertur-
bation coefficient into the effective mass scale agrees up
to 0(a) between the two cases. Namely, the two optimal
coupling constants defined at such rescaled masses agree
well [see Eq. (54) below].

In order to see how the singular terms are dealt with in
the present case, let us expand the second factor in Eq.
(34). Then we get the perturbative expression of (Fi),~,
similar to Eq. (1),

The optimized coupling constant a,~, =a(M,~, ) is the
solution to Eq. (30a) with M replaced by M,~„and be-
comes, in the limit n~oc,

~

b
~

1n~= —+c ln
I

A a

ca
(30b) [Fz(Q )],~, =A„(a,~, ) "[1+r",„tt,~, + ], (37)

Applying the two-scale OPT to Fi(Q ) we first get, by in-
tegrating the consistency equations, ri „as a function of
scheme-labeling parameters

where the second-order coefficient r, „ is given by

~l, n= 2«n ~

r i q =bd„ lfl —di «+d„pg (31) inn+0(1) .
n ~ /b/

(38)

1,na —a+ ' a =0, (32b)

ln(1+ ca) —ca =0 . (32c)

By solving a set of six equations (30a)—(32c) simultane-
ously we can get the optimized solutions for M, p, di „,a,
a, and r~ „, thus determining the optimized structure
function completely.

In order to study the large-n behavior of the optimized
series, we again consider the small-coupling limit
a =a =0. Then we get the optimized solutions as

(r, „),p, ——0 or (4'„),p, ——1,
cd~

+&(o),(d i,„),p,
=—

(33a)

(33b)

ln
Mop,

where the scheme invariant p„ is defined in Eq. (12). The
optimization equations become, after simple manipula-
tions, a set of thrtx: equations:

(32a)

Namely, in the present case, though the most singular
terms proportional to ln n are completely absorbed into
the mass scale, those terms proportional to inn are still
remaining. Thus the perturbation series (37) may lose its
validity as n becomes large and a,~, Inn becomes of order
1. This situation is quite reminiscent of the results in Sec.
II A and those found through the kinematical analyses. 2'~

There, although terms of order a ln n can be resummed
up to be absorbed into the effective mass scale with which
the coupling constant runs, less singular terms of order
a inn are still remaining without any "prescription" to
deal with such terms.

Note, however, that the optimal solution in the present
case is not Eq. (37) but the compact expression (34). This
fact indicates that through the simultaneous optimization
procedure for both RS and FS dependences double resum-
rnation of potentially dangerous terms are carried out;
namely, the most singular terms of order a ln n are
correctly resummed up together with its higher order
terms and absorbed into the effective mass scale, and at
the same time remaining less singular terms of order a ln n
are also resurnmed up into the compact expression (34). It
is worth stressing that the physical effects coming from
the two types of resummations of singular terms are dif-
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ferent. By taking notice of the fact that both c and d are—d„ /2
positive-definite quantities, the factor (1+ca», )

arising from the second resummation is a suppression fac-
tor, i.e., works as a kind of "form factor. " We know
many examples where potentially dangerous terms are
resummed up to arrive at a suppressing form factor.

Now let us consider briefly the general ith-order ap-

proximation. In Ref. 12, it is shown that the application
of two-scale OPT gives, in general,

«»)»t= 1 '

namely, that the optimized structure function takes the
form

[F2(Q )],~,=A»(a) "(1+ca) "exp dx g di»x X CI~X
I=O

1+ri „a—1+51n n/ln(Q/A), (41)

where 5 is a factor of order 1. Thus the perturbation ex-
pansion may be valid for n satisfying

where the quantities with overbars represent optimal
values of corresponding qiLantities, e.g., a —=a»„etc. The
optimal coupling constant a again shows the same leading
large-n behavior as in the previous cases, ' Eqs. (21) and
(35}. How the optimized formula (40) improves the naive
perturbation series (1), we cannot fully answer without in-
formation for higher-order coefficients. However, we

may say that the most singular terms of order a ln2n are
resummed up into the effective mass scale, and the next-
singular terms of order a inn might also be resummed up
to give rise to the optimal two-loop anomalous dimension
di „. These resummations leave the singularity-free op-
timal coefficient r i „

Concerning less singular terms that may appear in the
higher-order coefficients r; » (i &2} we can say nothing
conclusive, but it is suggestive that the last factor in the
optimized formula (40} works as a kind of suppressing
form factor. This observation may indicate the following
possibility: Remaining less singular but potentially
dangerous terms, say, of order a inn, etc., in the higher-
order coefficients are successively resummed up to be ab-
sorbed in order into the optimal scheme-labehng parame-
ters c; and/or d;» (i &2), depending on its hierarchies,
i.e., depending on the order of the coupling constant, in
which the physical structure function may show responses
to their variations. This successive resummation may
sweep and garnish all singular terms in the perturbation
coefficients r, „ to end up with the suppressing form fac-
tor In orde.r to see whether such a possibility is in fact
realized or not, calculations of higher-order terms are
awaited.

At this point one might wonder, although the singular
terms in the perturbation coefficients r;„are swept up
and, as a result, convergence of the perturbation series is
formally improved, whether the perturbation theory as a
whole is really improved or not. This is in fact the case at
least for the hadronic structure functions. In the original
MS calculations, perturbation series (1) becomes, in the
large- n limit,

On the contrary, the optimized perturbation series for R i
in the single-scale OPT [see Eq. (15}]becomes

1+ li i „a(M)-1+5'/ln(Qn 'i /A), (43)

where 5' is also of O(1), and thus may be valid for n
satisfying

inn (ln(Q/A) . (44)

y„(a)=d»a 1+ ' a (45)

d]n c
d» 2

Namely, the second-order coefficients (r, „)», and
di „/d„become independent of n Thus we. can say that
the OPT based on the PMS greatly enlarges the applicable
region in the perturbation expansion. Above observation
is based on the second-order analysis, and we expect that
the situation is quite the same as for the higher-order cal-
culations and for the higher-order coefficients.

C. Coxnparison of the two OPT analyses

%'e have already seen that the two OPT analyses, i.e.,
the two-scale OPT applied to the structure function Fi it-
self and the single-scale OPT to its Q -dependence R2,
have given almost the same "optimized" solutions when
we consider the same quantity, i.e., the structure function
Fi expanded in the same form of the perturbation series
(1). In both cases the optimized second-order coefficient
( ri »)», is given by

(ri „)»,= —, cd„+O(a), — (47a)

thus showing the same large-n behavior:

In the two-scale OPT analysis of Fz, the perturbation
series for the OPE coefficient function 4'„[sm Eq. (33a)]
becomes trivial,

1 + ( r i, » )»ta opt 1 7

and the anomalous dimension becomes'

inn ([ln(Q/A)]'~ (42)
(ri „)»,= — inn+0(1) .
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It is therefore interesting to study to what extent does this
"equivalence" hold between the two OPT analyses. For
this purpose we compare here the optimized second-order
results for the Q dependence of the structure function.

Through the single-scale OPT analysis of Rz we have
obtained

2+ coax
P. GPt i 2(1 )

t (4&)

where the optimized coupling constant a=—a (p,p, ) is the
solution to the equation coming from Eqs. (16) and (17):

Eqs. (48) and (51a):

~Re=(R2).pi2 ,
—(Rz).pi i .

From Eqs. (49) and (52) we get the relation satisfied by
the two optimal coupling constants n and a, which be-
comes, in the sIHall coupling regions,

a=a[1——,'c a + —,', c a +,",Oc a +O(a )] . (54)

By using this expression we get the very nontrivial result

~R",= ——,', "a'+O(a'), (55)

i
b

i
ing —p„=—+c ln

1 ca
1+ccrc

+ 2(1+ca) (49)

dt, n
R2 ——a 1+ ' a +

d»

~In
a 2(1+ca ),

1+7] nQ dn
(50)

(R2),p, 2
———ln(1+ca)

c

(51b)

where in Eqs. (51a) and (5lb) we have written, for brevity,
the optimized coupling constants a,p,

—=a (M,p, ) and
a,p, =a(p, p, ) as a and a, respectively, and a is given by
the solution to the equation coming from Eqs. (30a), (31),
and (32a)—(32c):

~

b
~

in+ —p„=—+cln2 ca
a 1+ca

ln(1+ca)
CQ

Note that we have nat applied here the two-scale OPT to
R2, but to the structure function F2 itself. The "optim-
ized" result for R2, Eqs. (5la) and (51b), is calculated by
using the optimal quantities determined through the two-
scale OPT analysis of F2 as mentioned above.

Now let us see the difference between the two results

The same quantity can be calculated by using the various
optimized quantities determined through the two-scale
OPT analysis of F2. Substituting the solutions to Eqs.
(32a)—(32c) into the expression

I"

which should be compared with the ordinary expectation
that ARz is to be O(a ), coming from the formal
analysis. Thus we can expect that the difference between
the two OPT analyses, Eq. (53), may be very small. This
expectation is in fact reahzed through the numerical com-
parison. Taking account of the purpose of the present pa-
per we present here only sample data for convenience to
get the idea of the order of magnitude of b,R z. For exam-
ple, at Q =20 GeV the difference (53) is less than 0.02%
even at n =50, where we take AMs ——0.2 GeV, or,
AMs ——0.224 GeV, and nf ——4.

D. Photon structure function

We have already carried out the optimization of the
photon structure function F2r and studied its conse-
quences in Ref. 13, where it has been stressed that the
second-order QCD formula for F2„can be optimized
only through the generalized two-scale OPT. In this sub-
section several remarks and discussions are given by con-
centrating our focus on the main subject of this paper, the
large-n behavior of the structure function, and by com-
paring the photon case with the hadronic structure func-
tion case. Because we are interested in the large- n
behavior of Fz „we shall consider only the asymptotically
dominant pointlike contributions that can be calculated
purely from QCD without suffering from any unknown
matrix elements of local operators.

Working within a class of schemes where the hadron-
ic two-loop anomalous dimensions vanish, we get the gen-
eral second-order expression for the photon structure
function' (NS denotes the nonsinglet contribution)

Fr: bF$ „/e——

0 1+d»GG (»Gy 1+cad

(1+2„+)(1+2„) "' (1+0„+)(1+6„)"' a

dn 66 dn 6y+6p(E„'g cE„p) "' (1+8—„,~)— '
&„,Ga +&Q„',a

n+ n- dn+dn—

dn y6
( +&„,~)+

n+ n- n+ n—

+5Nsl~„, Ns d
(1+&,,Nsa) +&Ns(&., Ns —«.,Ns) (1+&., Ns ) —b&&&»,r

o 1 1+ca o

1+ n, NS dn, NS
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where d„;=y„;/b (i=NS, Q, G) are the hadronic one-
loop anomalous dimensions, and K~; and K„';
(i =NS, Q, G) are the photonic one- and two-loop
anomalous dimensions, respectively. The two coupling
constants a and a are defined by Eqs. (30a) and (30b). Pa-
rameters denoting the FS and RS dependences are M (the
factorization scale), )u (the renormalization scale), and K„';
(i =NS, Q, G). By studying the structure of the optimiza-
tion equations we find' that among these five parameters
only two of them can be chosen as independent optimiza-
tion variables: the first one is M, and the second one is
any linear combination of p, K„' Ns, and K„' ~. Thus there
are only three choices of the optimization variables: (A}
(M,p); (8) (M, K„'Ns); (C} (M,K„' ~). In the large-n limit
choice (C) gives the same result as (8), and we have essen-
tially only two choices: (A} and (8). Parameters not list-
ed are fixed at the outset, which do not affect the final op-

timized result for the physical quantity F„. Thus in the
following we take two choices (A) and (8) with the
remaining parameters fixed as

(A) (M,p); K„'Ns=K„'e K„'a=o—,

(8) (M,K„' Ns ); p =M, K„'
p
—K„' a ——0—.

(57a)

(57b)

In keeping appropriate large nterm-s for various quan-
tities we can carry out the optimization procedure in the
large-n limit. Studying in the small coupling limit we get,
in both cases (A) and (8), the same optimal scale M», [or
the optimal coupling constant a», —=a (M», )]:

ln ln(M, ~, /A)0
ln (M», /A)

(58)

where

M, , =Qn '~ Ii (n)[l+O(a)],
hi(n) ~ 0.1148 (nf 4) . —— (59b)

In order to compare the optimal result with that of the
conventional calculations, e.g., in the MS scheme, we
present the optimized structure function in the small cou-
pling limit:

QgF,,»t= +b..», +O(a) .
Q opt

Then we get in the limit n~oo the optimized second-
order coefficient as F y FP+FH (64a)

at which the effective coupling constant a», =a (M», ) is
defined.

Results (61}and (63) and their x-space counterparts are
exactly the same as those obtained through the analysis of
phase-space boundary effects. In both (OPT and
kinematical} analyses, only a part of leading large -n terms
in the second-order coefficients, which is O(inn) in the
photon case, can be swept up with the rescaling of the
coupling constant, in clear contrast with the previous
OPT analysis of the hadronic structure function case (Sec.
II 8) where, not only the leading singular terms of
O(ln n} are completely absorbed into the coupling con-
stant, but also the remaining less singular terms of 0 (inn)
are swept up giving the suppressing form factor. Namely,
while in the case of the hadronic structure function, the
two-scale OPT analysis sweeps and garnishes all the
singular terms in the perturbation coefficients, thus
resolving completely the problem of large perturbation
corrections in the limit n ~ oo', in the photon case it can
give only the same results as the kinematical method,
leaving part of the large nsing-ular terms even in the op-
timized perturbation coefficient. Then we naturally pose
the following question: Has the optimized solution given
above in fact not solved the problem of large corrections
in the large-n (or large-x) limit?

At this point it is worth noticing the fact that the
remaining singular term of O(inn) in the optimized coef-
ficient, Eq. (61), comes entirely from the optimized coun-
terpart of the last term in the original second-order ex-
pression (56), i.e., —b5r(8„&)»„and that this is the very
term that comes from the contributions coupled to the lo-
cal composite operators constructed from the photon field
operator (contribution P). All other terms in (56), whose
singular perturbation terms are completely swept up
through the optimization, come from contributions cou-
pled to those constructed from the quark and gluon field
operators (contribution H). Namely, those singular terms
that can or cannot be swept up through the optimization
have their proper origin of contribution P and H, which
can be calculated separately but is, needless to say, not
separately invariant under changes of schemes. Within
the second-order QCD calculations, the contribution H
consists of the leading- and second-order terms, while the
contribution P consists of only the second-order term that
is nothing but the leading term for the contribution P.
Thus if we separate the total series F~r, (56), into two

p 0series F„and F„as

b„»,/a„= —', inn +O(1), (61) ~ pF„= b6„8„r, — (64b)

which should be compared with the result in the MS cal-
culation ' in the same limit:

b„Ms/a„=(b/4+ —', ) inn +O(1) .

F„=(all other terms)

Q~ +b„+O(a) (a=a=0),
0

(64c)

Q M, , =Qn '~ h (n), (63)

We can easily recognize that through the optimization
part of the singular second-order coefficient, i.e., the first
term in Eq. (62), has been absorbed into the rescaling of
the effective mass scale b„»,/a„=O(1),

F„"»,/a„= —,
' inn+0(1), (65b)

then the result of the optimization carried out in Ref. 13
says that



34 LARGE-n BEHAVIOR OF THE DEEP-INELASTIC STRUCTURE. . .

namely, that the two-scale OPT (in this case, also the

kinematical method) can solve the large-n problem of the

QCD perturbation series for the photon structure func-

tion.

III. CONCLUSIONS AND DISCUSSION

In this paper we applied the optimized perturbation
theory (OPT} to the deep-inelastic structure functions, or
their Q2 dependences, and studied the consequences main-

ly bringing into focus how the large-n (or large-x)
behavior of the perturbation coefficients changed through
the optimization and as a result how applicable region in
the QCD perturbation expansion was enlarged. Here we
briefly summarize our main results and give some discus-
sions. First, the application of the OPT to hadronic struc-
ture functions solves not only the problem of scheme
dependences but also the problem of singular perturbation
coefficients as n ~ ao as follows.

(i) Applying the original single-scale OPT to the pertur-
bative QCD calculation of the Q dependence of the
structure function Rz, Eq. (9), that depends only on the
RS, we find that the singular part of the perturbation
coefficient hi „, behaving 1nn, are completely absorbed
into the effective mass scale (22a) or (27a) at which the
optimal coupling constant is defined, leaving only the
nonsingular term (hi „),~„Eq. (24b) or Eq. (26a). If we
look at the "optimal" structure function {25) that is calcu-
lated by using various optimal quantities for R z, however,
the "optimal" perturbation coefficient (ri „),~, still con-
tains terms of 0 (inn), Eqs. (24a) or (26b); thus, the "op-
timal series" (25) still loses its sense as n ~ oo.

{ii}Applying the generalized two-scale OPT to the per-
turbative calculation of the structure function F& itself,
Eq. (29), that depends both on the RS and FS simultane-
ously, we find that the most singular incan terms present in
the conventional second-order coefficient ri „[see, Eq.
(1)] together with a part of less singular inrt terms is ab-
sorbed into the effective mass scale (36},and in this case
the remaining less singular lnn terms are also swept and
garnished to end up with the suppressing form factor [see
Eqs. (34) and (40)]. Thus the two-scale OPT can com-
pletely solve the problem of large perturbative corrections
in the limit n ~ oo at least within the second-order calcu-
lations.

(iii) The fact that the optimized perturbation coeffi-
cients that appear in the optimized QCD series for Rz in
case (i) and for Fz in case (ii) are both completely free
from the inn singularities, seems to be interesting. The
point to be noted is that the physical quantity R2 or I"

z is
just the quantity to which the single- or two-scale OPT
can be apphed and is in fact applied.

(iv) The above results are quite similar to those obtained
in the kinematical considerations. ' In fact, the treat-
ment of the most singular terms in the kinematical
analysis completely agrees with the above OPT results.
Because the kinematical analysis has not dealt with the
remaining singular terms we cannot thoroughly study the
relation between the kinematical approach and the OPT,
but the treatment of the less singular terms in the two-

scale OPT, (ii), is quite suggestive for the possibility of
further resummation of a inn terms.

(v) In order to compare the single-scale and the two-
scale OPT we calculated the same physical quantity in the
two OPT analyses, i.e., the "optimized" results for the Q
dependence of the structure function, Eqs. (48) and (51).
Note that Eq. (48) is truly the optimized result for R2,
namely, it is obtained by applying the single-scale OPT to
R z itself, while Eqs. (51a) and (51b) are not, namely, they
are calculated by using the optimal quantities obtained by
applying the two-scale OPT to the structure function F2.
The two "optimized" results are shown to agree remark-
ably well up to the 0(a ) accuracy level; namely, their
difference is of 0(a } [see Eq. (55)]. This fact is quite
nontrivial because the difference is formally of 0 (a ).

Second, the application of the OPT to the photon struc-
ture function F2r gives interesting results that differ
slightly from the hadronic structure function case. As
noted in Ref. 13 the photon structure function can be op-
timized only through the two-scale OPT, whose optimized
results with respect to the effective mass scale or the cou-
pling constant completely agree with those obtained
through the kinematical analyses. ' In this case only a
part of leading singular terms that behave inn as n ~ ao is
absorbed into the rescaling of the effective mass scale
(59a), still leaving the singular inn terms even in the op-
timized perturbation coefficient, Eq. (61). This fact is
clearly contrasted with the hadronic structure function
case where the two-scale OPT completely sweeps up all
the singular terms. Thus in appearance the optimized
perturbation series for the photon structure function
seems to still suffer from the problem of large perturba-
tive corrections as n ~ ao. The real situation, however,
may not be as is worried about. This becomes clarified by
examining the structure of the perturbation series for Fz r
in more detail, namely, by reco nizing the fact that F2 „
consists of two terms F„and F„which can be calculated
separately, Eqs. (64a)—(64c). While the first term F„
contains the leading contribution inversely proportional to
the coupling constant, followed by the sub-leading-order
correction terms, the second term I'„ lacks the leading
contribution, starting from the next-to-leading constant
term, followed by the further higher-order terms. Thus
within the second-order calculation, though F„consists
of the leading and the second-order terms, F„consists of
only the second-order term that is nothing but the "lead-
ing" contribution to F„. The fact we have clarified in
Sec. IID is that through the optimization of the total
series Fz&

——F„+F„based on the two-scale OPT the
singular inn terms in the second-order coefficient for F„
are completely absorbed into the rescaling of the effective
mass scale, giving the nonsingular optimized coefficient
(65a), and the would-be troublesome optimized coefficient
of 0(inn) appears solely in the "leading" contribution to
F„,Eq. (65b). If we take this fact into account seriously,
then we can say that even in the photon case the two-scale
OPT may solve the problem of singular perturbation coef-
ficient.

From the above observations we may conclude as fol-
lows. The two-scale OPT not only resolves the calcula-
tional scheme dependences in the perturbative QCD cal-
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culations but also solves the problem of large perturbative
corrections as n ~ oo (or x ~ 1). Or, at least we can say
that the simultaneous resolution of the RS and FS depen-
dences through the two-scale OPT deduces an important
physical effect that may help us to understand the struc-
ture of the QCD perturbation theory.
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