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Hamiltonian and Lagrangian constraints of the bosonic string
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We study the Hamiltonian and Lagrangian constraints of the Polyakov string. The gauge fixing
at the Hamiltonian and Lagrangian level is also studied.

The interest in string theory has increased in the last
two years because of its potential as a unified' theory of
all interactions. A characteristic property of all these
models is the double reparametrization invariance of the
action; this means that the associated Lagrangians are
singular. Recently the relations between the Hamiltonian
and Lagrangian formalism for constrained systems was
studied. In particular it was shown how to obtain the
Lagrangian constraints from the Hamiltonian constraints.
In this work we will apply this method to obtain the La-
grangian constraints of the Polyakov string.

The Lagrangian of the Polyakov string is
L = f d~W(&r, r). where
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The canonical momenta are
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and, therefore, the Dirac Hamiltonian is
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where A. p are arbitrary functions of the evolution parame-
ter ~. The stability of the primary constraints (4) requires
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which imply the primary constraints

Iloo=0 Ilo) =0 11))=0.
The canonical Hamiltonian density, defined unambigu-

ously on the surface of the primary constraints, is

In order to have a consistent Lagrangian density eve

need i/' —g and g)) to be different from zero, and there-
fore the relations (6) give two independent secondary con-
strR1nts:

Xi——,'(P +—x' ), Xi——(Px') .

The stability conditions for the secondary constraints (7)
are automatically satisfied due to the relations

IX;,II pj =0,
IX)(tr),X)(er') I =Xi(o )8 5(tr —tT')
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IX,(a),X,(a') I =X,(a)5.5(a—a )—X,(a )a..5(a-a );
thus the model contains five Hamiltonian constraints (6),
(7) which are first class.

The Hamilton-Dirac equations of motion are
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Note that these equations of motion contain three arbi-
trary functions associated with the gauge symmetries of
the Lagrangian (1}:

5x~=+a~~,
5g p= kg p+ert}&g p+8 erg&p+dpErg

where e', e', and A, are arbitrary infinitesimal functions.
These transformations can be interpreted as two
reparametrizations plus a %eyl dilatation, so that the
number of gauge transformations is the same as the num-
ber of primary constraints.

If we want to eliminate the arbitrary functions in the
equation of motion, we need to introduce, by hand, three
gauge-fixing constraints: for example,

4) ——goo —A(x, P), 4i ——go), @i——g)) +A(X,P), (11)

where 1), is any function of x and P. These constraints
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convert the primary constraints (4) into second-class con-
straints. Their stability requires

}l,oo——A, , Ql ——0, A, l 1
———A, , (12)

so that the k~p are determined and we have no arbitrary
functions in the equations of motion. For the variables x
and P eve have

x "=P~, P I'=xI' (13)

which are automatically satisfied because from (14) one
can obtain x' =0.

At this point the analysis continues as in the Nambu-
Goto string on the light cone. The number of physical
degrees of freedom at the canonical level is therefore
3X2+ D X2—5y2=2D —4.

Let us now study the Lagrangian formalism; the Hes-
sian IQatrix is

These equations are known as the conformal gauge equa-
tions of motion. Note that still we have two first-class
constraints: Xl, Xi, therefore if we want to work with the
true degrees of freedom, we need to introduce two more
gauge constraints such that Xl and Xz become second
class. Furthermore their stability must be automatically
satisfied because we have no arbitrary functions in the
equation of motion (13}. For example, let us consider

X3——x+ —P ~=0,
Xg——P' =0

which convert X~ and Xz into second-class constraints.
The stability of X&, X4 requires using (13),
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The Euler-Lagrangian equations of motion can be writ-
ten as
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where q "(o,r) denotes any of the variables
x"(o,~),gap(o, r) Th. e null vectors of the Hessian are ob-
tained as in
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where 4, are the primary Hamiltonian constraints (4).
Explicitly
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and P p are arbitrary functions of the evolution parame-
ter. These equations of motion are only valid on the sur-
face defined by the primary Lagrangian constraints. All
the Lagrangian constraints are the images of the canonical
constraints under the operator

+ I dx q "(cr)FL
5q "(cr)

5I. , 5

where EL' is the pull back of the Legendre application
FL: TQ~T'Q. The first generation of Lagrangian con-

straints is obtained by applying (21) to (4). In this we ob-
tain only two independent Lagrangian constraints

811x 800x
'2
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The application of the operator K to the secondary Ham-
iltonian constraints is automatically satisfied on the sur-
face defined by (22). Therefore at the Lagrangian level we
have only two constraints. This means that before the
gauge fixing the number of degrees of freedom in the
Hamiltonian and the Lagrangian formalisms are different.

Consider now the gauge fixing at the Lagrangian level.
Given a canonical gauge fixing one can obtain the corre-
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sponding Lagrangian gauge-fixing constraints using the
operators FL' and E. Thus we obtain

FL '(4i ) =goo F—L 'A, =8i,

FL '(@z)=got —=8z

FL (4s)=gii+FL'A=8, s,

(23)

E(4t) =goo —EA, =—8i,
E (42) =got

—=8z,
E(@s)=gii+EA,—:8i .

The stability of the 8; gives the 8; and the stability of 8;
determines the unknown accelerations by fixing the Pa)i in

Eq. (19). We still have a superfiuous degree of freedom,
which can be eliminated by projecting the canonical gauge
constraints Xq and X4.

FL'(Xq) =x+ x—r, FL "(X4)=x '

E(Xq) =x + x—wE(P ) = wE—(P ),
E(X4)=E(&' ) .

(25)
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The stability of FL'(Xq) and FL*(X4) gives E(Xq) and
E (Xs). Since E(X&) and E (X4) are zero on the surface of
constraints, they are not new constraints. Therefore, the
number of physical degrees of freedom is

3 X2+D g2 —2 —3—3—2=2D —4,
where the (2+ 3+ 3+ 2) corresponds to the two I.a-

grangian constraints plus the eight fixing constraints. It
is important to note that this matching of the number of
degrees of freedom at the Lagrangian and canonical levels
can only be obtained after fixing the gauge.
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