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The covariant string field theory is presented in its full detail for the open-bosonic-string case.

The previously reported gauge-fixed action and Becchi-Rouet-Stora (BRS) transformation are comp-

leted by adding the quartic string-interaction term constructed explicitly here. The properties of the

3-string and 4-string vertices are fully clarified. %e thus establish the nilpotency of the full non-

linear BRS transformation and the BRS invariance of our gauge-fixed action. This, on the other

hand, establishes also the gauge invariance of our gauge-unfixed action and the group law of the

gauge transformations, which were also reported previously. The general N-string ampbtudes are

computed explicitly at the tree level and sho~n to reproduce correctly the usual dual amplitudes for

the on-shell physical external states. In particular eve prove that the on-shell physical amplitudes at

the tree level are completely independent of the string length parameter a. The zero-slope hmit of

our covariant string action as well as of the BRS transformation is calculated completely off the

mass shell. The resultant action has the same form as the usual covariant Yang-Mills action

—
~ trE„„' as for the gauge-invariant part, and the nontrivial a dependence appears only in the

gauge-fixing terms.

I. INTRODUCTION

The remarkable rogress made in the last two years in
superstring theory ' has revived physicist's interest in
constructing string field theories in a manifestly covariant
manner, either in gauge-invariant form or in gauge-fixed
Becchi-Rouet-Stora- (BRS) invariant form. The construc-
tion of such string field theories is indeed very desirable
for various purposes; for instance, to discuss compactifi-
cation of extra dimensions, to reveal gauge symmetries
and the geometry of string field theory, to develop effi-
cient Feynman rules for higher-loop string diagrams, and
so on.

The vital power of the covariant string field theory
clearly resides in the point that it enables us to reveal non-
perturbative aspects of the theory. For example, without
field theory, it had never been suspected that the string
theory could be formulated in a completely geometry-
independent manner. 3' Further, it would be possible only
in the framework of string field theory to confirm the ex-
citing possibility suggested first by Freund that all the
consistent superstring theories come from the unique bo-
sonic string theory in 26 dimensions.

This task of constructing a covariant string field theory
was initiated by Siegel for free cases of open and closed
bosonic strings, based on the Kato-Ogawa ' BRS forrnal-
ism ' of the first-quantized string. Subsequently,
gauge-invariant actions have bccn proposed by Inany au-
thors for a free bosonic string and for a free super-
string '3

At the end of last year we reported a manifestly covari-
ant field theory of an interacting bosonic string in two

short papers' ' (hereafter referred to as I and II) for the
open- and closed-string cases, respectively. There we con-
structed a gauge-fixed action and proved its invariance
under a nonlinear nilpotent BRS transformation. It was
also noted that it correctly reproduced the usual dual am-
plitudes for the string scatterings of physical modes.

Subsequently, in Ref. 18 (referred to as HI), we present-
ed a gauge-invariant action with local gauge symmetry for
both open- and closed-string cases on the basis of the
string vertex functions constructed in the above gauge-
fixed action. [We became aware of a recent article by
Aref'eva and Volovich' in which they also found the
same gauge-invariant action as ours up to an 0(g ) term
for the open-string case.] It was recognized that the nil-
potency of the previous BRS transformation almost

simultaneously guaranteed the local gauge invariance of
the new action. The group structure of local gauge
transformations was also fully clarified there.

Our formulation is based on the string vertex functions
which may be regarded as a natural covariant extension of
those of light-cone gauge string field theory, and the
string field contains, in particular, the "length" parameter
a as its argument. A similar vertex eras adopted also by
Neveu and West in their slightly different approach to
gauge-invariant string theory. A very different and
more geometrical approach to gauge-invariant string field
theory was proposed by Witten for the open-bosonic-
string case first and extended to the open-superstring
case recently. In his theory, the string field contains no
string length parameter and the vertex has quite a new
structure in which the string midpoint plays a special role.
Other proposals for gauge-invariant interacting bosonic
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string field theories have been made in Refs. 29—33.
The purpose of the present paper is to give full details

of our covariant string field theory in a complete manner
and to show that it is actually a satisfactory theory. In
particular, since the proofs for various statements given in
I and II had to be very short by the nature of Letter arti-
cles, we fully spell out their details here. Further the
quartic open-string interaction term, whose necessity was
pointed out in I, is determined explicitly for the first time
in this paper. For length reasons we are obliged to con-
fine ourselves to the open-string case in this paper. How-
ever there should be no difficulty for the reader in con-
vincing himself of the correctness of the closed-string
field theory given in II after reading this paper. In any
case we will present the full details for the closed-string
case in a separate paper.

This paper is organized as follows. In Sec. II we ex-
plain some basic properties of our string field 4 and BRS
operator Qe and notations used in this paper. The full
nonlinear BRS transformation of open string field 4
schematically takes the form

5 4=Q 4+g4 V+g 4 V' '

5'@—+g5e@+g 5e@,

referring to the 3-string and 4-string vertex functions V
and V' ', respectively. The 3-string vertex V is construct-
ed in Sec. III in such a way that the reason becomes clear
why the ghost factor should be multiplied to the naive
overlapping 5 functional. The 0 (g ' } nilpotency
{5&,5eI =0 is proved there to hold actually in d =26
with this 3-string vertex.

Section IV is devoted to the construction of the 4-string
vertex, with which {5q,5ii I@ is proved to vanish again in
d =26 leaving particular "surface terms" corresponding
to end-point 4-string configurations. In Sec. V those "sur-
face terms" are shown to be canceled exactly by the spe-
cial terms from (5ii ) 4 which were called "horn diagram"
contributions in I. (In connection with this the authors
must apologize for making an erroneous statement in I
that the horn diagrams vanish by themselves on the basis
of the observation that they contain two ghost factors at
coincidental interaction points. They are, however, found
to be multiplied by divergent determinant factors to give
finite contributions after all, and are canceled by the con-
tributions from the 4-string vertex as stated above. ) For
this cancellation to occur, the coupling strength of the 4-
string vertex term (as well as its measure contained) is
fixed relatively to the 3-string's one g; that is, the require-
ment of BRS nilpotency or the gauge invariance deter-
mines the relative weight of the 3-string and 4-string in-
teraction terms.

The other terms in (5s ) @vanish by the mechanism ex-
plained in I, i.e., the caneellations between pairs of dia-
grams connected by the duality. This duality property is
essential also for guaranteeing the O(g ) and O(g ) nil-
potency. We complete the nilpotency proof of our BRS
transformation in Sec. V. The useful and important prop-
erties of the vertex functions proved there are summarized
in the last subsection by introducing a convenient notation
of "string products. "

We present the gauge-invariant action and the gauge-
fixed BRS-invariant action in Sec. VI. Although they
were identical with those reporte)d already in III and I,
respectively (except for the quartic interaction term not
discussed in I), we cite them here as well as the group law
of local string gauge transformations in the present nota-
tions for completeness. We omitted the discussion of the
gauge-fixing procedure which can be found in III.

In Sec. VII we show that our theory with gauge-fixed
BRS-invariant action actually reproduces the usual dual
amplitudes for general N-string scattering at the tree level
provided that the external string states are on-shell and
physical modes. In particular the explicit calculations of
4-string tree amplitudes are presented in detail. Based on
the general N-string amplitudes obtained there, we prove
that the on-shell physical amplitudes at the tree level are
completely independent of the length paraineters a, of
external strings aside from the overall conservation factor
5(g„,a, ). A discussion is given there that if such an a
independence holds beyond the tree level one can con-
sistently define physical states free from a parameters in
such a way that the physical S matrix defined over them
satisfies unitarity.

We calculate in Sec. VIII the zero-slope limit of our
string theory and find a very encouraging result. The
gauge-invariant part has no explicit a dependence and
reproduces exactly the same form as the Yang-Mills
theory, and all the explicitly a-dependent terms appear
only in the gauge-fixing and the corresponding Faddeev-
Popov terms summarized in the form SoF+Fp ——5e(X).
Although being zero-slope limit, this proves the desired a
independence of on-shell physical amplitudes at the full
order level, since the on-shell physical amplitudes are in-
dependent of the choice of gauge-fixing terms as is well
known ' '" in the usual Yang-Mills theory.

The final section is devoted to the discussion.
We add Appendixes A—I in the final part of this paper.

Most of them deal with various technical details of the
proofs for the statements given in the text. However, Ap-
pendix A is intended to give some basic definitions and
properties of the Neumann functions associated with
light-cone diagrams, which will probably be very helpful
for the reader to understand the whole content of this pa-
per. So the reader is recommended to read it first.

Before entering into the subject we give an important
remark on notational changes from the previous papers
I—III. There the string field 4[X,c,c;a] was a bosonic
quantity carrying no ghost number, and was expanded
with respect to the ghost zero mode eo into

(1.2}

(This is indeed the usual convention adopted by Siegel
and many other authors. } However, these ghost variables
c(a) and c(o) are something like "momentuin" variables
rather than "coordinates" and it is much more convenient
(and natural) to use their Fourier conjugate variables
i m, (o ) and i m, ( o ) in constructing vertex functions, in
particular, the 4-string vertex V' '. Therefore, we dared
to change our conventions and to adopt the Fourier-
transformed string field as our basic field 4:
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old

~@[X,c,c;a] in this paper .f [dcdc]exp i f do(n, c+m, c) @[X,c,c;a]=4[Xiir„iver, ;a] (1.3)

Here note that we have also changed the meaning of the variables c (o) and c(o) which actually stand for iver, (o) and

in, (o) in the old notations (and hence in , a-nd in; in our notations for c and c in the old ones). The definition of the

ghost number Npp is unchanged; c and c carry N pp
——+1 and —1, respectively, in both conventions (this X„p is the net

ghost number which may be carried by the coefficient fields as well as the coordinates c and c; do not confuse it with the

internal ghost number carried by ghost coordinates c and c alone; see Sec. VI). However, our string field 4 now becomes

Grassmann odd and has Npp ———1 since the integration measure [dc dc]" in (1.3) carries the ghost number Npp = —1

of dco' . Fortunately, this notational change induces no change for nonzero-mode oscillators c„,c„(n+0) and thus the

difference appeiirs only in the ghost zero-mode part in the bra-ket representation which will be used extensively in the

following. Equation (1.3) reads, in the ket representation,
» ' old

coe ' +co ———i~, + —+ —co + in this paper . (1.4)

As another notational change we reverse the o direction of the argument functions X(o), c(o ), and c(o ) for the func-
tional @[X,c,c;a] with a & 0:

@,id[X( ) ( ) ( ) )
@[X(o)»c(o)»c(o);a] for a&0»
@[X(ir—o ), —c (mo), c' —(n o);a—] for a &0,

with the understanding that 40id in the left-hand side
(LHS) is the string field on which the previous change is
already performed. This change (1.5} makes the overlap-

ping 5 functional of string vertices look like an anti-
parallel connection instead of the previous parallel one
and simplifies the oscillator expressions of the vertices. It
should be emphasized that these are mere changes of no-
tations, of course, and the previous results reported in
I—III are all correct and coincide with those in this paper
although they have apparently different expressions.

X"(o)= xi'+i g —(a"„—a" „}cos(no)1 . 1

V~ „,n

2 "+ (o )=P"(o}+X'"(o)= g a"„e+-'"

ir»»=

C+ (o)=i n, (o—)+c (o)= g c„e+-'"

7r»» m

C+(o) =c(o )+in, (o)= g c„e+-'"
»» = —»o

(2.3)

II. STRING FIELD

@=@[X„(o),c (cr),c(o);a] . (2.1)

The field 4 itself is a Grassmann-odd quantity with FP
ghost number Npp —1. Besides (——X„,c,c), 4 also de-
pends on another (unphysical) variable a ( —oo &a & ao )

which we ca11 the "string-length" parameter. The necessi-

ty of introducing a as an argument of 4 was pointed out
in I and will be explained in more detail in Sec. V. It
plays a role similar to p+ in the light-cone gauge formula-
tion.

In the open-string case, to which we will confme our-
selves in this paper, the string parameter o runs from 0 to
ir, and the coordinates (X„,c,c) are subject to the follow-
ing boundary conditions:

dX„(o)=c(o)= c(o)=0 at o=O, m .
do

(2.2)

It is convenient to introduce the osciHaior representation

The string field 4 in our mamfestly covariant formula-
tion is a functional of string coordinate X„(o) (p, = 1—d)
and the FP ghost and antighost (Hermitian Grassmann)
coordinates, c (cr) and c(o }:

where ag, c„, and c„satisfy the properties [we use the
metric ri""=diag( —,+, +, . . . , + )]

[a»»»am ] n 9 5m+»», 0» [c»»»cm l 5»»+m, 0»

O —n —+np C —n Cn~ C —n Cn (2.4)

a~o ——P~= —i
Bx~

Co=
Bco

The vacuum state of the oscillators is denoted by
~
0):

(a"„,c„,c„)
i
0) =0 (n) 1) . (2.5)

In (2.3), P"(cr), n;(o ), and n, (o) are the m.omenta conju-
gate to X"(cr), c(o ), and c(o), respectively:

5P„(o)= i—
5X"(o)

5 5
m.,(o ) = i, —n;-(o) = i-

5c(o) ' ' 5c(o)

(2.6)

Then, we can represent the nonzero-mode dependence of
the field functional @[X„,c,c;a] (2.1) equivalently by a
ket vector
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I
4(x,cp;a) ) = —cp I P(x,a) ) + I P(x,a) ), (2.7)

while keeping the "coordinate representations" for a and

the zero-mode variables x and co. In particular, we have
made explicit the dependence on the ghost zero mode co.
Similarly the Hermitian conjugate 4 [X&,c,c;a] corre-
sponds to a bra vector

(4(x,cp', a}
I

= —cp(P(x, a)
I + (g(x,a)

I
. (2 g)

Since 4 has NFp —1—,—P and P has NFp 0an——d —1,
respectively. In particular, physical modes of the string
are contained in the bosonic field P.

We can state the relation between the string field
@[X,c,c;a] in the functional representation and

I
4 (x,cp,'a) ) and (4(x,cp,'a)

I
in the bra-ket representa-

tion, more explicitly as follows. We denote the set of
coordinates {X&{o),c(o),c(o),a} by Z, and by z if the
"zero-mode" coordinates (X„,cp,a) are omitted. Then
the functional integration measure is defined by

r

a
C+~ = ~ 18~, C+rg~2 $8„v'2 8

88„

z z z =1,
(zIz )=5(z —z)

(2.11)

—= Q [5(x„—x„')i5(8„—8'„)5(8„—8'„}].
n=1

Now the relation between the functional and bra-ket rep-
resentations is given by

(n & 1) . (2.10)

The measure [dz] is Hermitian while [dZ] is anti-
Hermitian by our convention (dcp) = —dcp. [We define
the Grassmann integral as f dcpcp 1——. Then, the mea-

sure dcp is anti-Hermitian: (dcp) = —dcp, and
5(cp) =cp.] In terms of the eigenstates of z operators, the
completeness relation and orthonormality in the nonzero
mode subspace are given by

[dZ] =—dx dcp [dz],da
2'

(2.9)

(z
I
4(x,cp,a)) =4[Z],

(4(x,cp, a)
I
z ) =@t[Z] .

{2.12)

[dz) =—g (dx„id8„d8„),
n=1

with Fourier coefficients x„, 8„, and 8„of X, c, and c.
The variables 8„and 8„are related to the oscillators c„
and c„ in (2.3) as

%ith these relations understood, it is easy to rewrite the
relations in one representation into those in another.

The field 4 and its Hermitian conjugate 4 are not in-
dependent. We impose the following Hermiticity require-
ment:

@t[X„(o),c(o),c(a);a] (Q=@)[X„(o)c(o),,c(o); —a]=@[X„(n.—cr), —c(n o),c(m —o); —a]—,
where 0 is the twist operator:

{Q4)[Xq(o),c{o),c(o');a]=4[Xq(ir a), c(m —o—),c(n —o);a],—

Q(a„,c„,c„)Q '=( —)"(a„,c„,c„) (n =0,+1,+2, . . . }, Q=Q =Q ', Q IO) = IO) .

In terms of the bra-ket representation, the Hermiticity condition (2.13) is expressed as

(2.13)

(2.14)

2&@(x2 6 p a2)
I

= f dxidc o" &~(i»)
I @(xi,c p",ai) )»"'

21T

where (8 (1,2)
I

is given by

(2.1S)

R(1 2)
I
=5(xi —x2)5(c p"—c p ')2~5(a&+a2)i&0

I 2&0 I
exp —g —a'„" a'„'—c'„"c„' ' —c '„'c„"'

n&1
(2.16)

( R (1,2)
I
[c'"(o ) —c' '(o) j=0,

& Z(1,2)
I
[c"'(o}—c"'(o)]=0,

(2.17)

where X",c",and c '"' are given by (2.3) with (a„,c„,c„)
replaced by (a'„',c„'"',c '„').

and the subscript r in, (OI means that „(OI is a bra vec-
tor of the rth oscillators (a„'"',c„",c '„'). Note that
&R (1,2)

I
satisfies the properties

( 8 (1,2)
I
[X"'(cT)—X'2'(cT)] =0,

e'=Qe {
I
e)'=Q

I
e)), (2.18)

In the open-string theory we can incorporate the Yang-
Mills group quantum numbers by letting 4 be matrix
valued. From the requirement to be explained in Sec.
III, there are three possibilities for such groups: namely,
U(X), O(N), and USp(2N} (Ref. 39). In the U(N) case
(orientable string) 4 is an XXN matrix in the fundamen-
tal representation. In the case of O(N) or USp(2N)
(nonorientable string), we have to impose the nonorienta-
bility constraint on 4:
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where T denotes the transpose with respect to the matrix
index of 4. When 4 is expanded in terms of component
fields of definite mass, Eq. (2.18) implies that the even-

mass-level fields (m /2=0, 2,4, . . . ) belong to the an-

tisymmetric representation while the odd-mass-level fields
(m /2= —1, 1,3, . . . ) belong to the symmetric representa-
tion. When 4 is matrix valued, C) implies the Hermitian
conjugation also with respect to the matrix index; in par-
ticular, the bra vector & 4

I
carries a Hermitian-

conjugated matrix index relative to
I

C) &.

The BRS operator Qa in the first-quantized theory '

plays an essential role also in the second quantization:

Qa ~n f do[in, [—,'(P'—+X' )+i(c'c rr,'m—;)]

5a I
@&=Qa I @&, (2.25a)

5ao&C
I =&eIg, =(5', Ie&)'.

Because of the property Qa ——0, 5a is nilpotent [when
d =26 and a(0)= 1].

(2.25b)

(5a) =0. (2.26)

and

&Z(1 2)
I (g,"'+g,'") 0— (2.27)

[II Qa]=o (2.28)

The BRS transformation (2.25b) for the bra vector follows
from (2.15) by making use of the formulas

—c(P X'+c'm, +m~c))

dC+
do C+ A+—+2i C+

4 + o do

In terms of the oscillators, Qa is written as

(2.19)

and by noting the fact that the 5a operation anticom-
rnutes with every Grassrnann-odd quantity, in particular,
with dco. For a nonorientable string the BRS transforma-
tion (2.25) preserves the constraint (2.18) owing to the
property (2.28).

By carrying out the co integration in (2.24), we get

S = —5 f dltr&g(1)I$(1)&

Qa g C —)) i g [QN —m Am+(n +m)Cn —mCm]

+a(0)5„0 (2.20)

where:: denotes the normal ordering and a(0) (intercept
parameter) is a constant. Kato and Ogawa found that
the nilpotency of Qa,

Qa'=o (2.21)

is satisfied only when d =26 and a(0)=1. It is con-
venient to make the co and co (=I3/Bco) dependence of
Qa explicit and to rewrite it as

5a I 4 & =Qa I4'&+M I 0&

5a I 0& = L
I & &+Qa—I &&

(2.30)

III. CONSTRUCTION OF NONLINEAR BRS
TRANSFORMATION I; 3-STRING VERTEX

=f d 1 tr[&$(1)
I
L

I
$(l) &+ &1()(1)

I

M
I
g(1) &],

(2.29)

where
I P & and

I
1() & is defined by (2.7), and 1 and d 1 here

denote (x,a) and dx(da/2m), respectively. The BRS
transformation (2.25) is expressed in terms of I(I}& and

Ig& as

Qa ——COL+cpM+ga . (2.22)

A. Nilpotency requirement of the BRS transformation
Here, Qa stands for the part of Qa which contains neither

co nor eo, and

L = ——,'pi —g [a „.a„+n (c „c„+c „c„)]+1,
(2.23)

M=2 g nc „c„.

Free string action in the second-quantized theory was
given by Siegel:

SD= —Si f d))r(C()) co 4())l
BCO

= —Jd((r(C'()) co,()g @())),
I3co

(2.24)

where l and d I denote the "zero-mode variables"
(x,cc,a) and their integration dx dco(da/2ir), respective-
ly, and tr represents the trace of the matrix index of @.
Here, 5a is the BRS transformation at the free level de-

fined by ~B ~B +g~B +g ~8 (3.1)

The purpose of this section is to extend the homogene-
ous BRS transformation 5a (2.24) to a nonlinear one 5a in
such a way that the nilpotency (5a)i=0 is preserved. In
the light-cone gauge formulation of the open-string field
theory, it was necessary to introduce the 3-string and
4-string interaction terms in the action in order to repro-
duce the correct dual amplitudes at the tree level. Fur-
thermore, if one considers the loop diagrams, one has to
mix the closed-string system with the open-string one. '

Correspondingly, in our manifestly covariant formula-
tion also, we expect 5BN to consist of terms which are
quadratic and cubic in 4 and possibly also terms which
contain the closed-string field. The reason of this will be-
come clear from the relation between the action and 5B4
discussed in Sec. VI.

In this paper, we try to construct a nilpotent BRS
transformation 5a restricting to pure open-string system
in the following form:
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where g is the coupling constant and 5&4 (5&C&) is quad-
ratic (cubic) in 4. It turns out that (3.1) is enough to
reproduce correct dual amplitudes at the tree level. It is
an open question whether one is actually obliged to in-
clllde tile closed-string terms 111 5s when the loop dia-
grams are taken into account.

Now, from the requirement of nilpotency, (5s ) =0, the
following conditions should be satisfied:

(5s) =0,
I5g, 5s j =0,
(5s) +I5s,5s j =0,
I5s,5s j =0,
(5s)~=0 .

(3.2)

(3.3)

(3.4b)

(3.4c)

The first condition (3.2) is satisfied when d =26 and
a(0)=1. In this section we construct (a part of) 5s from
the condition (3.3}. In the next section Sq is constructed
so that it almost satisfies I5s,5s j =0. In Sec. V we shall
fully determine 5& and 5& from the conditions (3.4). As
we shall see, each of the conditions (3.3) and (3.4) holds
only when d =26.

B. The form of the 3-string vertex

Now, let us consider 5s. We assume the following
form for 5ii I

4):

4 I
@(3)& =f d I d 2& C'(I)

I
& C'(2)

I I
V(1» 3) & (3.5)

where 1, 2, and 3 denote the sets of "zero-mode" variables
(x„,co",a„) (r =1,2, 3) and

dr: dx—,dc o"'(da„/2m) .

(3.7)

A natural choice for V would be the following one sug-
gested by the light-cone gauge string field theory:20

%hen 4 carries the Yang-Mills group quantum num-
ber, the right-hand side (RHS) of (3.5) also implies the
matrix multiplication of &4(1)

I
and &4(2) I. [We as-

sume that
I

V(1,2,3}) has no matrix indices. ] Here, we
cannot take an arbitrary group and representations. First
of all, the Hermiticity condition (2.13) or (2.15) requires
that the Lie-algebra elements be Hermitian or anti-
Hermitian. Second, because of the form of 5& (3.5) the
Lie algebra should close under a simple multiplication
(not a commutator). From these conditions we are led to
the three allowed groups U(N), O(N), and USp(2N), and
representations explained in Sec. II.

Now, from (2.25) and (3.5), the requirement (3.3) leads
to the following condition on the vertex V(1,2, 3}:

V(1,2, 3) cc5 g a„
0(0«m ~a, t

5[BiX'"(o'i)+BOX' '(cr2) —X' '(a3)]5[Biaic'"(oi)+82azc' '(o2) —abc' '(o'3)]

X5[Biai c '"(cr, )+82a2 c "'(a2)—a3 'c "'(cr,)],

Bi(cr)=8(mai —o), 82(cr)=—8(a—irai),
(3.8)

and hence also for

0'"'(o, )=a, 'A'+'(cr„), a,C+'(0, ), a„C'+'(o„) .

From the expression (2.19) of Qz and these connection
conditions, it is naively expected that V(1,2, 3) of (3.8)
satisfies (3.7}.

3

2

Here, ~e are considering the case a~,a2~0 and a3«..O.

The RHS of (3.8) expresses the splitting of the string 3
into the strings 1 and 2 at the point o3 na2/I a3-—
(ai+a2 ——

I ai I
) [see Fig. 1(A)]. The extention of V to all

the regions of a„ is given in Fig. 1. The factors of a„ in
front of c'"'(cr) and c "(a) in the 5 functionals of (3.8) are
chosen so that every term in the BRS charge Q~

' operat-
ed on V can be properly transformed into those in Qs

'

and Qs '. In fact, the 5 functionals in (3.8) also imply the
following connection conditions for the conjugate vari-
ables P&(a), m;(cr), and m ,(cr):-

B,O"'(a, )+B,O'"(a, ) —O"'(~, ) =0
with FIG. 1. The structures of overlapping 5 functionals in 3-

st~&g «rt» ««&«& «)
I
a3

I

=
I
a~

I + I a2 I

I
a~

I
=

I a2 I+ I
a3 I

»d (C)
I aiI =

I a3I+ I a~
I

resp«ti«-
ly.
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C. Oscillator expression of the 3-string 5 functional E (1,2,3)=i g gÃ"„y"„y"'
In order to see if this is fly the case, we need a more

precise definition of the 5 functionals of (3.8};a represen-
tation by oscillator modes. The oscillator expression of
the bosonic part of the 5 functionals of (3.8) has been well
kno%'n and 1s given by

n&1 rs
m&0

n, m &1
7;S

y() y() +. y~ y() I.
n&1

(3.14)

~
Vx(1,2, 3)&=(2~)'5 gS, exp[E.(123}]Io&

Ex(1,2,3}:——,
' g N „" a'„a '

n, m pp
r, s

nim&1 n&1

(3.9)

(r) —(s) ~ ( —) (r)t ( —) (r)Iy„,y j=in5„+ ()5, y „=y

—(r+1)I =a'rf 0 a'r+1V 0

(3.15)

where the rescaled oscillators y'„"', y '„"', and I are defined
by

(r} ~ (r) —(r) —1 —(r)
n =&~a'rCn ~ 7n =&r C n

r, s

1 Pr

a!r 2
(3.10)

Qr (r+1) Qr+1 (r)
Cp — Cp

ar

where the Neumann functions Ã „are given by

We can also show that
~ Vpp & of (3.13) satisfies the con-

nection condition (see Appendix B)

ar a' s& nm = —a'1a'2&3 +
Pl nfl

N"„N' (n, m &1),
[e)O' "(oi)+e2O' '((rz) —0' '((rp)]

~
Vpp(1, 2,3) & =0,

(3.16)

0("(cr,)=a„c'+'(o, ),a„c'+'(cr, ) .
rs& nO= —Cs

a!

5„
&oo=&o

5,i 5, g

Q3 Q3

3

, ro ——g a, ln(a, ~,

CX1G2 g"„(ci,ci,c3)—:(1,—1,0) (n & 1),

(3.11)

Despite the above naive expectation, our vertex

~
V,(1,2, 3) & =2~5 pa„~ Vx(1,2, 3) &

i
Vpp(1, 2, 3)& (3.17)

&+1 /
e ' (a~=a„ao——a)),

Ar

I (nx)f„(x)= n!I (nx —n +1) P =&rPr+1 —&r+1Pr .

[The properties of N „"~ are summarized in Appendix
A. The formulas (3.11} correspond to a special choice
Zi ——1, Z2 ——0, Z3 ——ao for the parameters Z, of the
Mandelstam mapping (see Appendixes A and D). How-
ever, as shown in Sec. 4 of Appendix A,

~
Vx& of (3.9)

and
~

Vpp& of (3.13) are independent of the choice of
Zi 3.] In fact, we can show that

~
Vx(1,2, 3)& given by

(3.9) satisfies the connection conditions

turns out not to give the desired vertex
~

V(1,2, 3)& of
O(g) BRS transformation (3.5). First of all,

~
Vo& of

(3.17) does not carry the correct FP ghost number:
~

Vp &

has Xpp = —1, but
~

V& in (3.5) should carry Npp ——0 be-
cause the field 4 and the measure d 1 d 2 ~ dc o"dc 0

' have

Npp = —1 and + 2, respectively, and the BRS transfor-
mation 5s' should raise Npp by 1. Second,

~
Vo& does

not satisfy the O(g) nilpotency condition (3.7). To see
this and to find the correct vertex, let us perform the
operation of g, Qs"' on

~
Vo & of (3.17}.

D. Calculation of g, g)')")
~

V() &

[eiO"'(o'i)+820' '(oi) —0' '(cry)]
~
V„(1,2, 3)&=0,

(3.12)

The proof is given in Appendix B.
The oscillator expression of the FP ghost coordinate

part of the 5 functionals in (3.8) is quite similar:

In calculating (g„Qz")
~

Vo&, we move the annihila-
tion oscillator part in Qs to the right of exp(Ex+Epp) in

~
V() & by making use of the formula

Qse I0&=e (Qs+[Qa E]

+ i [[Qa E] E]+ (3.18)

i Vpp(1, 2, 3)&=5 g a, 'co"'

Xexp[Epp(1, 2, 3)]
i
0 &, (3.13)

and obtain an expression consisting solely of creation and
zero-mode operators. The result of this manipulation is
equivalent to making the following replacement, for ex-
ample, for (A+) in Qs of (2.19):



COVARIANT STRING FIELD THEORY

A+A+~(A'+ '+[A+,Er])(&'+ '+[&+,&x])

+[~+ [~+ &x]1 (3.19)

where in the RHS A+ ' denotes the creation and zero-

mode operator part of A+. We now notice an important
fact; the quantities in the RHS of (3.19} are singular as
they approach the splitting point. For example,
A'+'(o=m —e/ai) behaves near the splitting point o=n.
as

al tr n&0 m&0 n)1

1 r (r]e+' A1CX2CX3 / + n —n (3.20)

and we also have

ai [A' [A' ' E ]](o)= g nmN„" e+-""+ (3.21)

where use has been made of the formulas

e ino+~ 1 e —i'Ir/4

Q1 „~1 e 0

1/2

in' i& —im/4
taaa

nm ——e
~1 n&1 a~0 2

m —sX'X~
+s

(3.22)

[These formulas are obtained from (A23) and (A24) in
Appendix A.] The quantities (d/do)C+ and C+ have
similar singularity at the splitting point.

In order to treat such singularities more systematically
we follow Mandelstam's technique used in his proof of
Lorentz invariance in the light-cone gauge string theory.
First, note that the BRS charge Qii of (2.19) remains in-
variant if we make the substitution

A(p) =
3 '+'(o„ig, )—,

CEr

/I'"'(o„+i g', },
&r

a,C'+'(o „—i g„),
C(p) =

a„C'"'(cr, +i („),
(3.25)

A+(o)~A+(cr+ig), C+(o)~C+(o+ig},

C+(o)~C+(a+i'),

or equivalently, in oscillator language,

(3.23)

C(p) =
C'~ (o„—if„),

C ' (o, +i),},

(an~cn~cn )~e (an~en ~en } .

The replacement (3.23) just corresponds to the time
development by an imaginary time r=ig at the first-
quantization level. Then, by attaching the strip of the
g(0 region to each string of Fig. 1(A), we can consider
the complex p plane of Fig. 2;

I

I

I

I

a, (g, +icr, )+ip„, 0(Im(p) (~
~
a3 (,

p a„(g„io„) iP„,——m
~

—a,
~

(Im(p) (0,

(g„(0,0(o„(~}, (p, ,p, ,p, }=(o,~a„~
~
a,

~
) .

(3.24)

On this plane we define (operator-valued} functions by
FIG. 2. The original contour Cz of integration I,'3.26)

representing g, &
Qs" on the p plane (light-conc diagram}.
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where upper [lower] equalities correspond to the region
0(lm(p)(ir

~
ay

~ [ n—(ai ( &Im(p)(0]. Taking ac-
count of the g translation invariance of Qii, the sum of
the BRS charges g, , Q~' can now be rewritten as

g Q,"=—i g, etc(p) —W() )'
p

2dC(P) C
GP

(3.26)

where the contour of integration Cz is depicted in Fig. 2.
(The contribution from the horizontal part of the contour
cancels between the two contributions from Imp ~ 0.) The
coordinates (A (p), C(p), C(p) ) should be taken as
(A'"', C",C") when p is in the strip of the rth string.
However, when (3.26) stands in front of

~
Vo} each of

(A (p), C(p), C(p)) can be regarded as a single (operator-
valued) analytic function of p with a cut structure of Fig.
2, since it smoothly continues from one strip to another
across the boundary.

Since, as we mentioned above, (A, C,C) is singular at
the splitting point and has no singularity elsewhere, the
contour Cz of Fig. 2 may be deformed to a small circle
enclosing the splitting point (Fig. 3). Then taking into ac-
count the singularity arising from the first term in the
RHS of (3.19) [cf. (3.20)j

'(p)+ [& (p),&z]I'-(p —po) (3.27)

where po is the splitting point, we find that g, Qii'
~

Vo)
is nonvamshing and contains a piece proportional to
C(po)

~
Vo). (The lower splitting point at p=po contri-

butes C(po)
~
Vo}. However, it is equal to C(po)

~
Vo}

since the difference C (po) —C (po ) cc C+ (g,„,)—C (o;„,)0:c(cr;„,} vanishes at the splitting point [cf.
(2.2)].)

One way to remedy this defect and at the same time
raise the Fp ghost number of

~
Vo ) by one as is desired is

to take

FIG. 3. The contour C~ can be deformed to infinitesimal cir-
cles enclosing the interaction points po and po.

as the vertex of the 0(g) BRS transformation (3.5) (Ref.
16}. The necessity of a ghost factor in the 3-string vertex
was first pointed out by Siegel. [Although
(1/dp)C(p)

~
Vo) is divergent at p=po like A(p)

~
Vo),

C(po)
~

Vo ) itself has a finite value. ] Then the above non-

vanishing piece does not contribute to g, Qz"
~
V} be-

cause [C (po)]z =0.
The singularity arising from the second term on the

RHS of (3.19), [A (p), [& (p),Ex]]-(p—p, ) ', gi~~~
another kind of nonvanishing contribution to

g, Qii"'
~
Vo). We show below that this is also canceled

in Q„Q&"'
~
V} when d =26.

E. Proof of Q„Qii'i V) =0

p(z)= g a„ln(z —Z, ) . (3.29)

For this purpose it is convenient to make a change of
variables from p to z connected via a Mandelstam map-
ping

I
V(1 2 3)}=C(po) I

Vo(1 2 3)} (3.28) Then we have

3

g Q,'"'~ V}=g, Zz C(z) —A(z) +2 C(z) C(zo)
i Vo), (3.30)

where the contour C, is depicted in Fig. 4, zo is the split-
ting point [p(zo) =po], and the new functions A (z), C(z),
and C(z}of z are defined by

A(z) = A(p(z)), C(z) =C(p(z)),&p(z)
QZ

should be distinguished by their arguments z or p.) By
this change of variables the cuts of Figs. 2 and 3 disap-
pear and (3.30) can be evaluated by calculating the residue
of the pole at z =zo. Here, it should be noted that a part
of the singularity of the integrand (3.30) at z =zo is con-
tained in [dp(z)/dz] '. In fact, since p(z) is stationary at
the interaction point z =zo,

(For notational simplicity, we denote the newly defined
functions by the same symbol as the old ones. They

dp(z) &r =0,
GZ g —go ZO —Zq

we have an expansion

(3.32)



34 COVARIANT STRING FIELD THEORY 2369

The operator 0 (= A, C, C, etc.) surviving after the con-
traction stands for the quantity

'+ [o Ex+EFp] (3.38)

and consists solely of creation and zero-mode operators.
A(z), C(z), C(z) and their derivatives with respect to z
are now nonsingular at z =zp due to the factor (dpidz) in
(3.31). The singularity of (3.27) has moved to (dpidz)
in (3.30). The contractions of (3.37}implies the quantity

Oi(p)02(p) —=8(g —g)(0
~
Oi(p)Oz(p)

~
0),

+8(g —g)(0
~

O (p)O (p)
~
0),

+ [Oi (p), [02(p), (Ex+ EFp )]]-, (3.39)

where the suffix c denotes the connected part and a-
(+ ) sign in the RHS should be taken when both 0, and
02 are fermionic (otherwise). For example, from (2.3),
(3.25},and (3.14) we have

C(p)C(p) = 8(g, —g) g e ' '+1
n&1

FIG. 4. The contours C, of integration (3.30) on the z plane:

The first one corresponds to C~ of Fig. 2 and the second to the

reduced one of Fig. 3.

8(g g ) g &"~&s &r ~
mrs

n&1

ar ps n~r+~~$

n, rn &0
(3.40)

pp —p(z}=a(z zp) +b(z ——zp) +c(z —zp} +
where p and p are assumed to lie in the region of the rth
and sth string, respectively, and

(3.33) g=g+icr . (3.41)

where

1 &r
pp p(zp), a =—g„(zp—Z„)

(3.34) 1
2 N(p p)

1 z 1

n'as g', ir dp z z
(3.42)

The RHS of (3.40) can be read off from Eqs. (A7) and
(410}in Appendix A defining E„ to be equal to

dp(z)
dz

1 1 3b+
2a z —zo

Hence, [dp(z)ldz] ' is I.aurent expanded as
Equation (3.37b) is an immediate consequence of (3.42)
and (3.31). Derivation of (3.37a) is quite similar.

Now let us turn to the calculation of (3.30). First, we
have a term with no contractions. Taking into account a
pole in (dpidz) of (3.35), it gives a contribution to
(3.30)

9b
(z —zp ) + . (3.35)

8a . 1 dc
2n' C(zp) —A (zp) +2 (zp)C(zp) C(zp)

2Q dz
(3.43)

In expression (3.30} we make a manipulation corre-
sponding to (3.18) and (3.19). This is equivalent to taking
contractions of pairs of factors in

1'

which vanishes due to [C(zp)] =0 as we mentioned be-
fore.

There are three kinds of terms with one contraction:
C(z) —A (z) +2 C(z) C(zp)

dz

in all possible ways by making use of the formula

A„(zi)A„(zz)=—1 1

(3.36)

(3.37a)

(II dz (z)dp
dz

C(z) —A (z)A(z)

+2 (z)C(z) C (zp ), (3.44a)
dC
dz

1 1
C(zi )C(z2) = ——

7T Z1 Z2
(3.37b} f dz (z)dp

dz
C(z)2 (z)C(z)C(zp),

dC
(3.44b}
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ItI dz (z)dp C(z)2 (z)C(z)C(zo) .dC (3.45a) = i-.d —2
2

1 dC b dC
, (zo)—, (zo)~ dz' 4a2 «

Care must be taken in evaluating (3.44a) and (3.44b} since
they contain the contraction of operators at the coincident
point. In order to separate out the short-distance
operator-product singularity, we go back to the expression
(3.26) in p variable and shift the coordinate p of one of the
contracted operators to p —a5 (5=const). Then we
have, instead of (3.44a) and (3.44b),

3b c+,—,C(zo) C(zo),
4a a

. 1d C(3.45b) =i— (z(i )C (z(i),
& dz

(3.48a)

(3.48b)

dp(z')
dZ

C(z) —A (z)A(z')
.2dC . 3b dC(344')=i

2 (zo)C(zo) i
2 d

(zo)C(zo) (348c)
o dz g dZ

+2 (z)C(z') C(zo), (3.45a)
dC Summing up (3.48), the contribution to (3.30) of terms

with one contraction is found to be given by

dp(z)
dz

C(z')2 (z)C(z)C(zo),
dC
dz

(3.45b)
1 dC b dC

(d —26)i — (z(i)C(zo)+ (z(i)C(z(i)
8a dz2 8oz dz

where z' and z are related by

p{z')=p(z) —a5 . (3.46)

dp(z')
dz

1 1 1 b I+(z' —z)z 8(i e' 16a e2

3b e 1+ —+0(1)
16a 4a

r

+0 —,—+0 —,(3.47a)
e 1 5

5i~i 5 e

Note that the factor [dp(z)/dz] ' in (3.44a) has changed
to [dp(z')/dz'] ' in (3.45a). Pole residues of (3.45a),
(3A5b), and (3.44c) are calculated by making use of the
formula

(3.49)

This indeed vanishes when d =26. %e have now comp-
leted the proof that the vertex

~

V(1,2, 3) ) given by (3.28)
actually satisfies the 0(g) nilpotency condition (3.7).

In the above proof the normal ordering of the BRS
charge Qa was automatically incorporated by the pro-
cedure of performing the contour integration before let-
ting 5-+0. This procedure also implies a(0) (intercept pa-
rameter) =1 very implicitly. ' ' In Appendix E we
present yet another proof of (3.7), in which Q„Q&"

~

V) is
evaluated directly by using its oscillator expression. In
this proof we can freely vary a(0} in Qa, and we find that
both d =26 and a(0) =1 is necessary (and sufficient) for
the vanishing of g, Qii"'

~
V) .

dp(z)
dz

1 1 1—+0 —+0—
4(i e-i 5 e

(e=z —zo } (3.47b)

and (3.35), respectively. [Equations (3.47) are shown in
Appendix C.] We evaluate (3A5) by performing the con-
tour integration first with 5 kept finite, and hence the
0(e/5, 1/5) term does not contribute. The 0(5je) term
vanishes after taking the limit 5~0. Thus we have

F. Final form of 3-string vertex

Now that the vertex
~

V(1,2, 3) ) is found, our next task
is to rewrite it into a form which is manifestly symmetric
under the cyclic permutation of three strings. The prefac-
tor C(po) in (3.28) may be any of n,in,'"'(o) (r =1,2, 3) at
the splitting point o=ol"' (e.g., crl"' m, O, irc(i——/~ ai

~

for
r =1,2,3, respectively, in the case ai, (zz~O, (xi&0 of Fig.
2). In front of

~
VFp(1, 2, 3)) of (3.13), in "'(oi"') is

rewritten as

v m~("'(o("')=, , + g {c„"+c("'„)cos(no,")
~c0 Il)1

(„, + g c'"„cos(no,'"')+ g c("cos(no("),ZFp(1, 2, 3)
~O n&i a~1

( (+i g —5 cos(noI"') —g g~„cos(mol') y"„
a, „, n m&1

5

+~(r)
g- (r)

Co
(3.50)
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and m(" is shown in Appendix 0 to be equal to

(s)

3

=5"(a, i
—a, +i)/a„+ g e"' (e' =+1) .

(3.51)

From (3.13) and (3.51},the FP ghost coordinate part of the vertex
~

V(1,2, 3)}becomes

3 -(t)
v rra, in'"'(rrl")

~
VFp(1, 2,3)}=a„,, +w'"' 5 g co" exp i g N'„' y"„y"' +i g N'„'Oy"„

Bco g=i as gnarl gal t
s, t s, t

3

=g(1—co"w"}exp i g & ~y' "y'"-~
s=1

s, t

for any choice of r ( =1,2,3). This is due to the following relations for w":
3

a,w" i g—Ã„Oy „=a,w ' i g—Ã„Oy „, g a„w " =0.(r) ~ «(t) (s) ~ ts (t) 2 (r)

nial np1 r=1
t t

Therefore, we reach the final expression for the total vertex
~

V(1,2, 3)}(Ref. 16):

~
V(1,2, 3)}=p(ai, ai, a3)v n[a„in&'(o'i" )]

~
Vo(1,2, 3))

3

=p(ai, ai, a3)g (1—c 0"'w'"')exp[F(1, 2,3)]
~
0)5(1,2,3),

(3.52)

(3.53)

(3.54)

where

F(1,2, 3)=Ex(1,2,3)+i g Ã„y'"'„y" (3.55)

3 3

5(1,2, 3)=(2n.)"+'5 g p„5 g a,
r=1 r=1

(3.56)

In EcI. (3.54) we have multiplied a function of a„, p(ai, ai,ai}, which is not determined from the requirement
Q„Q&"'

~
V}=0 alone. In Sec. V, we show that another condition (5ii) + I5a, 5ir I =0 of (3.4a) determines p(a) to be

given by

3
1

ii(ai, ai, ai) =exp
r=1 ~~

with ~o defined in (3.11}.
The vertex (3.54) clearly satisfies the cyclic symmetry:

~
V(1,2, 3)}=

~
V(2, 3, 1)}=

~
V(3, 1,2)},

(3.57)

(3.58)

which is indeed a very important property in constructing gauge-invariant action and BRS-invariant gauge-fixed ac-
tion.

In the case of 5q in (2.25) the BRS transformation for the bra vector, 5s (4 ~, obtained from the Hermiticity condition
(2.15) coincided with (5~

~
4}} . This must also be the case for the present O(g) BRS transformation 5&, namely, the

following relation should hold:

5ii(4(3)
~

=(5s
~
@(3)})= I 12d 1(V(1,2, 3)~(@(2)}

~

N(1)} . (3.59)

(3.60)

The LHS of (3.59) is calculated from (2.15):

5n (@(3}
~

=I d 3'(8 (3', 3)
~
(5s

~

4(3') })0' '

1 2 d1' 2' 3' 8 3', 3 8 2', 2 8 1', 1 V 1,', 2', 3' 0"'0' '0' ' 4 1 4 2

where in the second equality we have expressed (4(r)
~

in 5a
~

@(3 ) } in terms of
) 4(r)} again via the constraint (2.15)
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(4(r')
~

=f dr(R (r, r')
~

C((r) &0(" '= —f dr (R (r', r)
~

0("'
~

4(r) & .

Since (R (1,2)
~

of (2.16) enjoys the property

(R(1,2)
i
(a„"'+a' '„)=0, a„=o.„,y„,y„,

(3.61}

(3.62)

and the coefficient of y „ in w" of (3.51) changes its sign under a„~—a„(r=1,2, 3) while p( —ni, —a2,
(K3 ) =(M(ai, ai, a3 },the following relation holds:

f d 1'd2'd3'(R(3', 3)
~

(R(2', 2) [
(R(1', 1)[[V(1',2', 3')& =( V(1,2, 3) [ .

From (3.60) and (3.63), Eq. (3.59) reduces to

f did 2(v(1,2,3)
~

II'"II("fl'"
i
+(I) & i

+(2) & = f d2d 1& V(1,2, 3)ii+(2) &
~

+(I) & .

(3.63)

(3.64)

If we remember the original meaning of the twist operation (2.14), it is clear that the operation of Q"'0'2'Q( ' on
~

V(1,2, 3)& simply implies to reverse the cychc order of strings 1,2,3; i.e., we have

O'"O( '0' '
i
V(1,2, 3)&=

i
V(3,2, 1) & . (3.65)

Hence Eq. (3.64) actually holds by this relation. For a nonorientable string, our 0 (g) BRS transformation 5ii preserves
the constraint (2.18) again owing to Eq. (3.65).

IV. CONSTRUCTION OP NONLINEAR SRS TRANSFORMATION II; 4-STRING VERTEX

A. Form of the 4-string vertex

Construction of 0 (g ) BRS transformation 5+ is quite similar to the previous one 5ii although somewhat more labori-
ous. First, we assume the following form for 5i(4:

5' ~

C(4) &=-f d 1 d2d3(c(1)
i
&+(2)

~
(+(3)i~ V'"(1,2, 3,4)& .

Then, we have

4

I5a»aI I
C'(4)&= f dld2d3&~'(I)

I
&@(2)

I
&@'(3)

I 2 Qa
1'=1

In this section we first try to construct
~

V' '(1,2, 3,4) & so that (4.2) vanishes, i.e.,

g Qs"
i

V' '(1,2, 3,4)&=0.

(4.2)

(4.3)

[0(4((~ ) 0((((~ )]
~

V(4)
& 0

However, it turns out that the resulting vertex
~

V' '
& almost satisfies (4.3) but gives a bit of a nonvanishing contribution

to (4.2). In the next section we shall calculate (5ii) and show that it just cancels the nonvanishing piece of (4.2) and
hence that the nilpotency condition (3.4a) is satisfied.

In analogy with the 4-string vertex in the light-cone gauge string field theory, ' the vertex
~

V' '& is expected to
satisfy the following connection condition (Fig. 5):

n. Ja
/

4o-
oi —— (0&o &oo),

[0"'(~,) —0(2'(~, )]
~

V"'&=0, ~(= —,~,=a(' fa,
/

[0("(~,}—0"'(o,)]
~

V"'&=0, ~,= ', ~,= " (0«q&q, ), (4 4)
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1

ll n )

i
I)

in 5 functionals in 4-stringFIG. 5. The structure of overlapping
vertex.

FIG. 6. The light-cane diagram of 4-stringrin vertex and the in-

C in (3.26}for the 4-string case.tegration contour ~ in

or( —,+, —,+), (4.5)

ddition to the conservation con ition „a,—. nin ad ition o
'

ion of the interaction point(4.4), pro parametrizes the position o e i
and varies over

cr =n max(0,
( a4 (

—aq),

cT~ =—K ml n( a),
~
a4

)

the ar ument for finding the correct
~

V' '& isNow, e g
y vious subsection. First,

~ ~

" '(1,2,3,4) & i f i
to the one in t e yreviou

the simple "5 functional"
connection condition (4.4) is given by

4

( V,")(1,2, 3,4;a, )&=(2~)"+)S gq,
r=1 r=1

Xexp(EX '+EFp) ( 0) &,

E"'=-' X„a „a(4)rs (r) (s)
X

n, m &0
r, s

(4)rs (r) —(s)EF'p=& g &a~ 7' .7'-
e&1
mpp

r, s

0

t e 4-stringwhere X„ is t e euhe Neumann function for th

I

(4.6)

rin the case a),a3) 0 az a4(a 0. InHere, we are considering, a
the general case, a, cannot be arbitrary but s o
an alternating sign rule,

sgn(a), az, aq, a4) =(+,—,+,—

'"' are de-A ndix A), and y„and y „configuration (see ppe
3.15). This vertex Vo again

'

vertex V' '& of (4.1) because (i) it lacks the FP

i . . wh Vo '& in (4.6) fails to satisfy
the sin ularity at the interaction poin. a

e
'

h
'

s section using the ex-
th t (")

~
V,"'&

e lines o the previous sec
'

pression (3.26) show that
n ieces proportional to C(po an po,nonvanishing pieces

th contour C is given1 . In the present case t e conrespective y.
3-string case C(po) andln Fig.

' . 6. Differently from t e -s
h' because the interaction

e e
' f t 'ng (except when

t e ual in this case ec
e end oint o some s ri

h d'ff C( )r cr ) and hence t e i eG'p=o' or 0'+' ~c a ) does not vanis .'
h. Therefore, the above

o ~ q'~ V' '& are not totallycan-nonvanishmg pieces o
celed by multiplying either C(po or C po . oweve,
show below that the vertex

dcrQf(oo)[C(po)+ C(po)]~

V' '(1,2, 3,4) = cr o

x
~ V() '(1,2, 3,4;cro)& (4.7)

(r)bl measure f(pro) is annihilated bywith a suitable measure
'

hin contributions rom O..p ——leavin only nonvanis in
4 7) is for later convenience. ][The factor n /2 in . is

(r) v(4)B. Calculation of g, Qg ~
V

The calculation of

s"' [«po)+«po)] I Vo (1» » 0s 0
' ' ' 1234cro)& (4.8)

r=1

t the same manner as for the 3-stringcan be done in almost t e sa
ondin to (3.30) wevertex in t e p eh r vious section. Correspon ing o

have

g Qa"'[«zo)+«zo )] I
Vo" &~m, ,

C(z) [C(zo)+C(zo)]
~

V() '& 49C(z) —A {z)'+2 —

d
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Note that in the 4-string case the interaction point zo,
which is a solution of (3.32) for

(o(z)= g a, ln(z —Z„) (4.10)

is comp/ex, ' and the contour of z integration of (4.9)
should be performed around zo and zo (Fig. 7). The pole
residues of (4.9) are calculated by taking contraction of all
possible pairs of factors in (4.9}by making use of the for-
mulas (3.37}. Let us write down the contributions of vari-
ous contractions to the integral (4.9) around the point zo.
First, the term with no contraction contributes

+0

(.
PL z P)

FIG. 7. The contoor C, on the z plane corresponding to Cz
of Fig. 6. It can be deformed to infinitesimal circles enclosing
the interaction points zo and zo.

C —A +2 C (C+C'), (4.11)

where A, C,C', etc., stand for A(zo), C(zo), and C(zo),
respectively. Corresponding to the contractions (3.45a),
(3.45b), and (3.44c) we have, in the present case,

contraction

dp(z) C(z)2 (z)C(z)C(z() ),dC
dz

(4.13)

+ — C (C+C'),
4a a2

(4.12a)

which gives

2i 1 dQ

zo —zo dz
(4.14)

g z

. 2d C . 3b dC
Q dz g dz

(4.12b)

(4.12c)

respectively. Besides these three, there is another kind of

In the above formulas a, b, and c are defined by (3.34)
with r summation from 1 to 4. Integration around zo
gives the terms (4.11), (4.12), and (4.14) with zo replaced
by zo (and hence a, b, and c replaced by their complex
conjugates). Summing up all these terms and putting
d =26 we are left with a nonvanishing result:

i y gg"'[C(zo)+C(z() )]
~

V() ') =(I)+(11)+(III),
'(r r=(

(I)= imCC' ——A —2 — C —-„A'2—2 C'
a dz a" dz i

V(4) )

(4.15)

a dz a dz a zo —zo dz a ' dz a' dz a zo —zo

However, we can prove the following remarkable rela-
tions:

These relations are shown in Appendix F. [The position
of the interaction point is determined given a set of values
Z( 4 of the Mandelstam mapping (4.10). Here, we are
taking a special parametrization

Z„=Z„(oo) (4.18}
(E(4)+E(4))

d 0'0

2d C 3bdC 2 1 dC'
Q d& g dz g zo —zo dz

(4.16)

d=4i C, (4.17)
do"0

where oo is the position of the interaction point [see (4.4)).

by (ro ——Iggp(zo) such that the interaction "time" in the (o

plane (Fig. 6), ro ——Rep(zo), remains unchan}(, ed when we
vary (ro in (4.18). The Neumann function X„',which is
determined by (A7), is a function of oo (and a„).] From
Eqs. (4.16) and (4.17), (4.15) is rewritten as
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4

g Qa'[«zo)+«zo }]I
Vo" &

~ r=l

Therefore, if the oo integration measure f(cro) in (4.7) sat-
isfies

=4 [C(zp)C(zp } I Vp
'

&]
d cTo

d 9b 6cf (cro) = Im
3

—
2 f(crp),

2a a
(4.20)

+2Im — C(zp)C(zp }
I

Vp '& . (4.19) then Q„Q~"'
I

V' '& with
I

V' '& given by (4.7) becomes a
"surface integral":

g Qa"'
I
V"'& = —i—f. «o „[f(ao)«zo)«zo )

I
Vo" &]=—i—[f(ao)«zo)C(zo )

I
Vo" &].',=.'

r=1 2 — doo
(4.21)

4

f (cro) =J(cro)exp —g Ã pp' (4.22)

In order to calculate (4.21) we need to know a concrete
expression of f (crp). The measure f (crp) cannot be freely
determined from the condition (4.20} alone. It must be
chosen so that the conditions for the nilpotency of the
BRS transformation, (3.4), are satisfied. As we shall see
in the next section, these conditions are equivalent to the
requirement that our theory reproduces the dual ampli-
tudes correctly, and it turns out that we should take the
following f(cro):

the expression of the amplitude

o oo~ Zr oo (4.28)

with J(crp) given by (4.23). Hence, J(op) is the Faddeev-
Popov determinant for the gauge fixing of projective in-

variance.
The measure f (crp) in (4.22) is invariant under the pro-

jective transformation (4.25) (cf. Sec. 4 of Appendix A).
When we take a special gauge which fixes the three of Z„
(Z„zb,z, ) to constants, f (crp) becomes

1 Z1 Z1 Z1

1 Z2 Z2 Z2''=1 Z Z' Z'
3 3 3

1 Z4 Z4 Z4

Z,' —= Z, (crp) . (4.23)
d

d crp

II dz

f (0'o) =
V,b,«o

4

exp —g Fop"" (4.29)

dV.s =dz.d»dZ. ~IZ. ZallZb —Z. llz. —Z. I—
(4.30)

The meaning of the determinant J(crp) is as follows: Con-
sider the Koba-Nielsen amplitude of the 4-string scatter-
ing

f ff dZ, S(z„) . (4.24}

AZ, +8- '=CZ, +D
(4.25)

The infinitesimal form of (4.25) with parameters 5a, 5P,
and 5y is given by

5Z, =5a+5PZ„+5yz, ' . (4.26)

In the region of Z, which corresponds to Fig. 6, we take
some gauge Z, =Z„(crp) parametrized by the position of
the interaction point. By following the standard
Faddeev-Popov technique of inserting

As is well known, we must fix the gauge freedom existing
in (4.24) under the projective transformation37

We show in Appendix G that f(cro) given by (4.22) or
(4.29) actually satisfies the condition (4.20).

Care must be taken in evaluating (4.21). At first sight
one might think that it vanishes because when cro cr+, ——
the interaction point is the end point of some string
at which C(zo) —C(zo ) ~ c (cr;„,) =0 and hence
C(zo)C(zp )

I
=0 (cf. Figs. 12 and 13 in Sec. V).

[Actually when cro cr+, we h——ave zo ——zo, namely,
dp(z)ldz =0 has a double root at z =zp.] However, this
argument is incorrect because f (cro) is in fact divergent at
crp=cr+ and a careful calculation gives a finite nonvan-

ishing result for (4.21). We defer the actual calculation of
(4.21) to the next section since we encounter the same situ-
ation (i.e., 0&( cc ) also when we consider (5& ) .

It should be commented finally that the consistency of
the O{g ) BRS transformation with the Hermiticity con-
dition, 5e(4

I
=(5e

I
4&), is again guaranteed by the

property

&'"&"'II"'&'4'
I
V'4'(1»»4) &

=
I

V

J[Z„]f dg f da g 5(Zg Z, ( )}a=—1
r=l

(4.27) (4.31)

and factoring out the gauge volume f dg, we are led to
which implies that the orientation of string is reversed by
the twist. Also important is the cyclic symmetry of V' '.
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I
v"'(1,2, 3,4) &

=
I

v"'(4, 1,2, 3) &

=
I
v"'(3,4, 1,2)&

=
I

V i(2»3»4»1) & .

[Note that f(oo) as well as the other parts in
I

V' '& in
(4.7) has cyclic symmetry as can be seen from (4.29).)

V. COMPLETION OF THE NILPOTENCY PROOF
OF BRS TRANSFORMATION

We complete the proof of nilpotency of our BRS
transformation in this section. We shall see that the nil-

potency is guaranteed in fact by a particular mechanism
realizing dualip; that is, we know from light-cone gauge
string field theory that a full dual amplitude is generally
realized by a sum of several distinct types of diagrams,

each of which contributes to a different part of integra-
tion region of Koba-Nielsen variables. ' This implies, in
particular, that the Koba-Nielsen integrand at a boundary
of two integration regions is realized commonly by two
distinct types of light-cone diagrams in their limits that
the interaction "times" of two vertices coincide. It is ex-
actly such diagrams that appear in the BRS transforma-
tion taken twice. Therefore cancellations can occur be-
tween those pairs of diagrams and the nilpotency of the
BRS transformation is satisfied.

A. OSp(d/2) structure of vertices

Before going to the nilpotency proof, we make here a
comment on the OSp(d/2) symmetry which the ex-
ponents of both the 3- and 4-string vertices possess. The
3- and 4-string vertices were given in (3.54) and (4.7) in
the previous sections in the forms

I
V(1» 3) & =p(o,'i, a2»o'3)G(o'I)

I
E(1,2, 3) &5(1,2,3),

I

V' '(1,2, 3,4) & = f doaf(oo)G(al)
I
E(1,2,3,4) &5(1,2, 3,4), (5.1b)

5(1,2, 3,(4))=(2m) +'5 gp, 5 ga„5 g co'
r

»

I
E(1,2, 3,(4)) & =exp[(Ez+EFp)(1,2, 3,(4))]

I
0&,

(5.2a)

(5.2b)

3or4 oo

(E~+EFp)(1,2, 3,(4))= g g N„" ( —,'a"„a'" +iy"„y'" )
rs=1 em=0

(5.2c)

Here G(ol) stands for the ghost factor at the interaction
point:

G(0, )=i~~a„n '(o,'") (5.3)

rs & M (r) W(s)Ex+EFP = g NT»a»»»»»»» 'i)~~a
n, m &0

r, s

in terms of the OSp(d/2) metric

(5.4)

with r being any of the strings participating to the vertex.
The exponents (5.2c}actually have OSp(d/2) symmetry

and can be written as

This OSp(d/2) symmetry is important below. Since
the fermionic degrees of freedom play a role of negative
dimensions, as is well known, the internal degrees of
freedom in this covariant theory effectively reduce to
d —2 dimensional and, if d=26, coincide with the physi-
cal dimension 24 in the light-cone gauge string field
theory. [It may be necessary to remark that the
OgS(d/2) symmetry for the zero modes is illusory; indeed
a o

——(ao ——pi', yo, TO) is not truly a covariant vector
since the yo component alone is zero by y =imac . ]

B. (5g)

MÃ
o
—i 0,

In this notation the creation and annihilation operators
a",y,T are combined into an OSp(d/2) vector a

~ =(~" r T ),
which indeed satisfies OSp( d /2)-invariant (anti)com-
mutation relations by (2.4) and (3.15):

We now calculate (5s) and show that it vanishes leav-
ing contributions of particular diagrams which just cancel
the nonvanishing surface terms of I 5&,5ii ] in the previous
section.

The 0(g) BRS transformation 5ii take the form, by
(3.5) and (5.1a},

5ii I
4(3}&= J d112(4(1}

I
(4(2}

I
G(ul ) I

E(1,2, 3) &

X (p5)(1,2, 3),

M[a,a„]+=mal 5 +„o.
with (p5)(1,2, 3)=—p(ai, ~2,~3)5(1,2, 3).
equivalently rewritten for the bra state as

1S
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5g(4(3)
i
= f 12d 1(V(1,2, 3)ii@(2)& i

4(1)&

= f 12'11'&~(2')
I
&C(1'}I f 1211&~(2,1,3) IQ' 'IR(1, 1'}& IR(2, 2'}&

= f d 112(4(2)
(
(4(l) (G(farl) f 12'd l'(E(2', 1',3)

~

(p5)(2', 1',3)Q' '(R(1', 1)& (R (2', 2) &,

where use has been made of Eqs. (3.59), (2.15), (3.65), and (5.1a) as well as G =G and

G(1) ~R(1,2)&=G(2) ~R(1,2}& .

The second operator of 5& on (5.5) yields two terms

(5I))'
I
~'(4) & = f 1112[(4&~'(1)

~
)&~(2)

~

—(@(I)
~
(5g &C(2)

~

)]G(ol")
~
E(1,2,4) &(p5)(1,2,4) .

(5.6)

(5.7)

(5.8)

which have relative minus sign coming from the Grassmann-odd property of (4(1) ~. Let us consider only the first
term for a while. It is written by using (5.6) as

f "11213(~'(1}
) (@(2) ( (@(3)( G(a )G(a )

~
&(1,2,3,4)&, (5.9)

with an effective 4-string vertex

i
b(1,2, 3,4)&= f d2'd 1'd5(E(1',2', 5) i(IM5)(1', 2', 5)Q"'(p5)(5, 3,4) iE(5,3 4)& iR(1', 1)& iR(2', 2)& . (5.10)

Taking into account the zero-mode dependence in
~

R & s also, we can easily perform the integration f 15 over zero
modes and a of the intermediate string 5, and obtain

i
b,(1,2, 3,4)& = 5(1,2, 3,4))M( —a), —a2,as)p(as, a3,a4) f 12'd 1'(E(1',2', 5)

~

Q' )
~
E(5,3,4) &

~

R (1', 1)&
~

R (2', 2) &,a

(5.11)

where the factor 1/as comes from the dco integration and ps, co'/as, and as are now understood to be p)+pz,—(1} —(2}c 0 /a)+c o /ap, and a)+a2, respectively.
Now we must perform the contraction of oscillator modes of string 5 in (E(1',2', 5)

~

Q"'
~
E(5,3,4) &. This can be

done by the help of the following general formula: '

0 exp —,
' g p X"„)p„+g a'"p exp —,

' g p X"„'p „+ y a")p 0
mn)1 m&1 m, n&1 m&1

(detM)
—1/2ex (

) $())g (2)M —1$ ())+$(2)M 1$ (1)+ ) $(2)M )g (1)$(2))eXP 2 2

(5.12)

which is valid for the bosonic oscillators p satisfying

[p,p„j=m5 +„0. (5.13)

A similar formula holds also for the fermionic oscillators (ghosts in this case) if the determinant factor is replaced by
(detM}+'~ . In the present problem, p 's are oscillators of string 5 and the matrices X'„' are the Neurnann function

8~ and 8~ are linear combinations of oscillators and zero modes of strings 1' and 2', and 3 and 4, respectively.
55 1} (2}

Thus (5.11) now takes the form

~
5(1,2, 3,4}&= [det(1 —X*N )] ' ' 5(1,2, 3,4)p(a), uz, —us))u(as as a4}

a5

&& f 12'd 1') &O
I z &Ol exp[Q(1'»' »4)l I o&s

1
o&~ I R(1' 1}& I R(2' 2) & (5.14)

Q (1',2', 3,4)= I quadratic form in oscillator modes and zero modes of strings 1',2', 3 and 4I,

X~„=~mN „(as,as, aq}V n, N „=(—) V rnid~„(a), u2, —as)vn( —)" .
(5.15)
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We must further take the contractions of oscillator modes
of strings 1' and 2' in the part

I d2'd 1'i {0I z {0IexpI:Q(1' 2' »4)l I0&~ l0&~

x
I
R (1', 1) &

I
R (2',2}& . (5.16)

It is, however, not necessary to make a detailed calcula-
tion fortunately. Noting the form (2.16) of

I
R (1,2) &, we

can again use the formula (5.12) and easily find that (5.16)
takes the form

exp[ Q'(1,2, 3,4)l
I o&i

I
0&z

I
o&3

I
0&~

3 / 3=9 distinct diagrams as depicted in Fig. 8 according
to the signs of ai 4. For instance, the diagram BA-1 in
Fig. 8 represents the case in which the 3-string vertices

I
V(5, 3,4) & and

I V(1,2, 5) & take the &-type and &-type
configurations (i.e., I a&I = Ia& I

+
I
a5 I

and
Iai I

= Ia2I+ Ia5I ), respectively. We can indeed con-
firm that

I 6(1,2, 3,4) & satisfies the connection conditions
implying the 4-string 5-functional structure by the help of
expression (5.10); actually, for the case ai 3&0, a4&0,
corresponding to the AA-type configuration in diagram
A -1, for instance, it is easy to show that

(Q': another quadratic form) (5.17) I eio (ai)+e~o (ai +e~o(&) (2) (3)

with coefficient 1. This gives sufficient information since
we know that the effective vertex

I
b,(1,2, 3,4) & is propor-

tional simply to the 4-string 5 functional, as is clear from
the 5-functional meaning of the 3-string vertices
{V(1',2', 5)

I
and

I
V(5, 3,4)&.

Since the 3-string vertex
I

V(1,2, 3)& represents three
different string configurations according to the relative
sign relations of ai

(A) lail = lail+ Ia21 (l3} lail = Ia2I+ lail
(5.18)

(C) Ia2I = Ia3I+ IaiI
as shown in Fig. 1, respectively, the structure of a 4-string
5 functional implied by I

h(1,2, 3,4)& is represented by

—0'"(a,)] I
a(1,2, 3,4) & =0,

CT
&2=

EX)

o —ir(a i+a2}

(5.19)

82(o ) =8(o —t'ai)8(ir(ai+a2) —o'),

e&(cr) =8(cr—m(ai+a2)),

mIa4I a—
0'g = e, (cr)=8(mai —o),

J ~

I

g ~
4 I
I ~

CA-1

I t
~ ~

AB-1
2 CB-1

4
~ I-

FIG. 8. The 3X3 configurations of 4-string 5 functionals appearing in the twice operation of BRS transformation on 4(4), coming
from the first term of (5.8). The solid-dotted double line represents the intermediate string 5 whose coordinates are integrated out.
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for expression (5.10) by using the connection conditions
(3.12) and (3.16) of a 3-string vertex

I Vo(1,2, 3) ) ~ ((M5)(1,2, 3)
I
E(1,2, 3) )

as well as (2.17) of
I
R (1,2)). Notice in this calculation

that the orientation of cr coordinates of strings 1 and 2
was effectively reversed by the presence of twist operator
0' ' in (S.10}and the natural answer (5.19) resulted. This
situation is already taken into account in Fig. 8 by revers-
ing the arrows of strings.

The 4-string t) functional is uniquely determined by the
connection conditions like (5.19) up to a multiplicative
constant factor and is generally given in the form

I V() '(1,2, 3,4)) =e " ' ' 'I 0)5(1,2, 3,4),
(5.20)

4 oo

g (4)ss( ( (s) (s) + ~(s) ~
(s)

r,s =1 n, m &0

by using again the 4-string's Neumann function N „(.4)rs

which is defined generally for N-string diagrams on a p
plane in Appendix A. Indeed the 5 functionals depicted
in Fig. 8 correspond one to one to the 4-string diagrams in
the light-cone gauge string field theory with the time in-
terval T of two interaction times shrunk to zero. As ex-
amples we give such diagrams in Fig. 9 corresponding to
diagrams A -1 and BA-1 of Fig. 8. So we can obtain

N „'
' in (5.20) directly from the formula (A7) referring to

such diagrams. Now noticing that the factor (5.16)
[=(5.17)] contains the vacuum term

I 0) = I0&i I 0)z I0&3 I0&4 (i.e., the term independent of
the oscillator and zero mode) with weight 1 in coincidence
with e " ' ' '

I
0) in (5.20), we can determine from (5.14)

the proportionality factor of
I

b,(1,2, 3,4) ) to the 5 func-
tional (5.20) and find

I

5 I

I

I

I
5(1,2, 3,4)) = [det(1 NX )—]

a5

x
I
vo"'(1,2, 3,4) )((4(a»(z2, —a5)

Xp, (a&,ai,c4) . (5.21)

Performing similar calculations also to the second term
of (5.8), we finally obtain, from (5.9) and (5.21),

BA-1
FIG. 9, The light-cone diagrams which reduce to the 4-string

configurations A -1 and BA-1 of Fig. 8 in the T~O limit.

(5,')'Ie(4)) = J d ld2d3(e(1}I (C(2) I (e(3)
I

r

x G(ol )G(oq ) [det(1 NN )] ' —' )M(a), a2, —a5))M(a5, a3,a4)
I vo '(1,2, 3,4))

CX5

+ G((TI")G(ol"} [det(1 —& "& }l ' ""((4(~2&3 ~7)p(&) &7 &4)
I

v()"'(1,2, 3,4) )
a7

(S.22)

The effective vertex
I
b.(1,2, 3,4}), or the 4-string 5 functional

I Vo '(1,2, 3,4) ), for the case of second term of (5.8) also
has the structure represented by nine distinct diagrams as shown in Fig. 10 similar to Fig. 8 for the first term, and the
light-cone diagrams corresponding to diagrams A -2 and CA-2 are drawn for illustration in Fig. 11. The number 7 in
the second term of (S.22) is the name of the intermediate string with "length" u7 ——az+a3 and N and N are given
similarly to (5.15) by

N „=VmN~„(a(, a7, a4)V n, X~„=(—) ~mN „(a7,aq, a7)~n( ——)" . (5.23)

Although we have used a common symbol
I Vo '(1,2, 3,4) ) both for the first and second terms in (5.22) to denote the
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4-string 5 functionals, they of course depend on the overlapping structure of strings 1—4 as shown in Figs. 8 and 10. We
immediately notice, for instance, the same overlapping structure between diagrams A -1 and A -2 and hence the corre-
sponding 4-string 5 functionals

I Vo '(1,2, 3,4)), , and
I

Vo '(1,2, 3,4)), must coincide with each other for a coin-

mon set of values (ai,a2, a3): Comparing the diagrams in Figs. 8 and 10, we thus find

=
I

V,"'(1,2, 3,4))„„a,&0, a„a,&0,

I
Vo"(1»»4) &~a.i=

I
Vo '(1,2, 3,4))CB i —— Vo" (1,2, 3,4))ac 2 ~ a»0, ai, a3&0,

I Vo '(1,2, 3,4))/c i
——

I Vo '(1,2, 3,4))cp a3&0, a],ay&0.

I
vo"(1» 3*4)&„2,= I

vo"(1» 3,4)&A2, ~ai a2 a3&0

I
Vo '(1,2, 3,4))CA i when

I
ai

I
&

I
ai I

I
Vo"(1»»4)&ec-i when lail & la21

I
Vo"(1,»»4)&w, -2 when Ia3I & Ia2I

I
Vo '(1,2, 3,4) ) i, ——

I
Vo '(1,2, 3,4) )Aa 2 ai & 0, a2, ai & 0,

(5.24)

Here we have indicated the regions of a values to which these 4-string 5 functionals correspond, assuming a4&0. (If
a4&0, all the signs of ai 3 should be reversed. We assume a4&0 for definiteness, hereafter. } The regions of ai 3 in
(5.24} exhaust all the possibilities except for the cases of a2 & 0, ai, az & 0. These exceptional cases correspond to particu-
lar shape of diagrams BA-1, C -1, CA-2, B -2, in Figs. 8 and 10, each of which possesses a branch. We call such dia-
grams "horn diagrams. " It is exactly these types of configurations that were left nonvanishing as surface terms in the
previous calculation of g, Qii"'

I
V' ') in Six:. IV. We will see below that they actually cancel each other.

Before that, we first show that the other ordinary diagrams all cancel between the first and second terms of (5.22) (Ref.
16). For such ordinary regions of ai 3, the 4-string 5 functionals

I Vo '(1,2, 3,4) ) of the first and second terms equal
each other as noted in (5.24), and further the two ghost factors also coincide up to sign:

BA- 2
CA-2

AB-2 CB-2

2
I ~

AC-2 BC-2

FIG. 10. The other 3&(3 configurations of 4-string 5 functionals appearing in (5g) N(4), coming from the second term of (5.8).
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sgn(~5)G (oI")G(ol'")= —sgn(a7)G(or")6 (ol"), (5.25)

as is easily verified by examining the interaction points of the diagrams in Figs. 8 and 10. Therefore we need to prove
the equality

[det(1 N—X )] '" 'i p(ai, az, —a5)p, (az, a3,a4)

[det(1 N—N )] ' ' p(a2, ai, a7—)p(ai, a7, a4) . (5.26)

This is indeed a nontrivial equality. Nevertheless it does hold at d=26.
Such determinant factors have already appeared in the calculations of 4-string amplitudes in the light-cone gauge

string field theory. For instance, consider the decay amplitude of string 4 into strings 1—3 (corresponding to the case
Qi Q2 Q3 & 0), to which just the two light-cone diagrams A -1 and A -2 drawn in Figs. 9 and 1 1, respectively, contribute.
As was shown by Cremmer and Gervais in detail (and actually almost the same formulas appear also in our covariant
framework as will be seen in Sec. VII), the contributions of the diagrams A -1 of Fig. 9 and A -2 of Fig. 11 to the ampli-
tude are given, respectively, by

dT [det(1 NX— )]
—(u —zine s

A2-1 o

&o &»2~0'6 ~o 0'5
Xexp

r =1,2, 6 T r =5,3,4

(1 g 88g 77)]—(d —2)/z 7

A -i

(ext(1 —4)
~

VT (1 2 3 4) ) (5.27)

Vo Q2, Q3, CXS

X exp
r =1,7,4

(ext( 1 —4)
~

VT '( 1,2, 3,4) ), (5.28)

where

(N "T') „=N ~„exp[—(m +n)T/a„],

Q6 = —CK5, Q8 = —A7,

~,(a.,cb,a, )= g ez, ln(ei,
~

.
r =a, b, c

(5.29)

The (ext(1 —4)
~

denotes the external states, and the ef-
fective 4-string vertices

~
VT '(1,2, 3,4)) in (5.27) and

(5.28) are given by the same equation (5.20) as the previ-
ous 4-string 5 functional

~
Vo '(1,2, 3,4) ) if the Neumann

functions 7'„' there are replaced by those for the dia-
grams A -1 and A -2. [And, of course, the longitudinal
and scalar modes a""=- (m &1) as well as the ghosts
y'"' and y" are set to be zero in the light-cone gauge
string field theory. If all the modes are retained, Eqs.
(5.27) and (5.28) give the amplitude in our covariant
theory (see Sec. VII).]

The particular property of the string model is that it
reproduces the dual amplitudes. ' Through the Man-
delstam mapping

A'- 2

7 I

I

p(z)= g a;ln(z —Z;), (5.30)

each N-string light-cone diagram corresponds to a set of
real parameters Z, bt up to the gauge freedom of projec-
tive transformations. If we fix this freedom by choosing
Z2 ——1, Z3 ——0, and Z4 ——00, then the 4-string light-cone
diagram is uniquely specified by one parameter Z~ ——x.
By cxaIDimng thc MandclstaID IDapping, it is easily scen
that the diagrams A -1 of Fig. 9 and A -2 of Fig. 11,
which are also parmnetrized by T and correspond to the

CA-2
FIG. 11. The light-cone diagrams corresponding to the 4-

string configurations A -2 and CA-2 of Fig. 10.
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regions T&O and T~O, respectively, correspond to the
parameter x in the regions 1&x &xp and xp&x & 00.
Therefore, in order to reproduce the dual amplitude which
is given by an integral dx f(x) of a smooth function

1f(x) over 1&x & 00, the amplitudes (5.27) and (5.28)

should give x x and dx x, respectively,

with a single function f(x). This is indeed the case at
d=26. Crernrn. er and Gervais have actually proven the
equalities

4

rrdz
exp —g Nocjj

abc j=l

1 —66 —
SS —12 T«5 +0(1~&2~+6)

[det(1 NN T—)] e exp
I
&5

I r =1,2, 6 Qr

p QS~Q3~Q4

r =S,3,4
(T&0),

(5.31)
1 —SS —

77 12
—T«7 'Pp Q2, Q3, QS Vp Q1,Q7, Q4

[det( 1 NT N—"7)] ' e 'exp
r=2, 3,S r =1,7,4

(T &0),

by a direct calculation. Here again N ~'~~ is the Neumann
function N' „' (with r =s =j, m =n =0) for the dia-
gram A -1 or A -2. This fact in particular implies the
equality of the integrands of (5.27) and (5.28) at the
boundary T=O (x =xo) at which the diagrams A -1 and
A -2 become the same and the corresponding Neumann
functions N'"„' coincide. Hence the vertices

I
VT ') in

(5.27) and (5.28) reduce to the same 4-string 5 functional

I
Vo ') in (5.20). This equality at T=O just proves the

desired Eq. (5.26} in 8=26 if the a-integration measure is
chosen as

ro(a, ,a2, n~)
p(ai, az, ai) =exp (5.32}

as was announced in Sec. III. Although we have dis-
cussed exphcitly only the case of ai, a2, a3 & 0 clearly E'q.
(5.26) is guaranteed by similar equations to (5.31) for any
other (nonhorn diagram) cases tabulated in (5.24). Thus
we have shown that the duality is the origin of the cancel-
lation of nonhorn diagrams in (5+) . We shall next see
that this duality guarantees also the cancellation between

the horn-diagram contribution to (Ss) 4 and the surface
term of [5ii,5ii]4.

C. Cancellation between (5ii )'4 and I5s, 5&]4

Now let us turn to consider the contributions of horn-
diagram configurations to (5+) 4 [which correspond to
the region a2&0, a, ,a»0 of integrations da, daidai in
(5.22}]. In such a configuration, the ositions of two in-
teraction points el and ol (or, al and ol "}coincide
as is clear from the diagrams BA-1 and C -1 of Fig. 8 (or
CA-2 and B -2 of Fig. 10), and hence the ghost factors
G(ol )G(rrq ) and G(oI }G(err ) vanish. From this
fact we claimed in our paper I that the contributions of
horn diagrams vanish by themselves and concluded
(5s) =0. This is, however, not correct, unfortunately.
The fact is much more interesting than was expected.
The loophole is that the determinant factors det(1 NN)—
are in fact divergent for such configurations as will be
seen shortly, and (5.22) gives finite result by OX 00.

In order to obtain a definite answer, we need a regulari-
zation. The most natural one is to take

G (o'I )G (O'I ) [det(1 NN )] '
I

Vo"'(1,—2, 3,4) )
Qs

= lim nC(z )C(z') [det(1 NN ')] '
I

V—' '(1,2, 3,4)), (5.33)

G(ol )G(ol ") [det(1 —N N )] '
I

Vo '(1,2, 3,4))

= limmC(zt)C(zo) [det(1 NT'N )] '2
I VT '(1,2, 3—,4)), (5.34)

T-+0 Q7

by referring to the corresponding light-cone diagrams like diagram BA-1 of Fig. 9 and diagram CA-2 of Fig. 11 with fi-
nite time interval T. In (5.33) and (5.34) we have reexpressed the ghost prefactors G(err) in terms of C(z) defined by
(3.25) as G (OI ) =v n C(zo), and ordered them so that the interaction time of the right factor C (zo) is larger than that of
the left factor C(zo), viz. ,

T, —Ti, =p(zo) —p(zt ) & 0 . (5.35)
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[We need not take the real part of the RHS since for horn diagrams with finite time interval like diagram BA-1 of Fig. 9

p(zp ) and p(zp) have a common imaginary part. ] With this particular ordering of ghost prefactors, we can replace 1/a5
and 1/a7 on the I.HS of (5.33) and (5.34) by their absolute values 1/

I a5 I
and 1/

I a7 I
. Note that zp and zp, which are

solutions of dp(z)/dz=O, are real and approach a common value as T~O. [In fact, Eqs. (5.33) and (5.34) hold for ordi-

nary diagrams as well as horn diagrams as is understood by examining Figs. 8 and 10.]
Exactly the same problem of OX oo appears in the nonvanishing "surface terms" of t5s, 5s I I

4(4) ) in the previous

section, which read, by (4.2) and (4.21),

t5s, 5sj I
4(4)) = —I d 1 d2d3&4(1)

I
&4(2)

I
&4(3)

I
[f(crp)C(zp)C(zp )

I Vp '(op))]~', (5.36)

Here, the vertex
I

Vp '(op)) is the 4-string 5 functional
corresponding to the configuration of Fig. 5, and zp and

zp denote the interaction points at which Imp(zp)=ap
aild IIBp(zp ) = —0'p. At 0'p =ET+ siiice the two interaction
points zp and zp coincide, we have C(zp)=C(zp ) and
hence the ghost factor C(zp)C(zp ) vanishes. In this case
also, however, the measure f (op) diverges at op cr——+ (as
will be shown shortly). Here again the natural regulariza-
tion is to use the expression (5.36) itself, i.e., referring to
Fig. 6, and to take the limit oooo+.

Now we want to show that (5ii} I
4(4}) of (5.22) (to

which now only the horn-diagram configurations contri-
bute) and I5s,5sI I

4(4)) of (5.36) actually cancel with

I

each other. First we notice that the 4-string vertex

I
Vp '(o'p} ) in (5.36) at the points op ——o+ exactly have the

same configurations as
I

Vp '(1,2, 3,4}) in (5.22). Actual-
ly the configuration of

I
Vp '(op)) in Fig. 5 reduces to

those drawn in Figs. 12 and 13 at 00——0+ and u, respec-
tively, and we immediately sm that the configurations of
Figs. 13(a) and 13(b) and Figs. 12(a) and 12(b) just coin-
cide with those of diagrams BA-1 and C -1 of Fig. 8 and
diagrams CA-2 and B -2 of Fig. 10, respectively. There-
fore the first term in (5.22) corresponds to the op ——o
term of (5.36) and the second term to op ——o+. Taking ac-
count of the regularization (5.33) and (5.34) with (5.35),
we now rewrite (5.22) in the form

(5')'I @(4)&= f d1d2d3&@(i)
I

&~'(2}
I

&@'(3)
I

x~ lim[g (T)C(zp)C(zp)
I V() '(cr ))+g+(T)C(zt)C(zp)

I
Vp '(cT+))],

g (T)= [det(1 l(l N'r'—)] ' e 'p(ai, ai, —a5)p(as, ai, a4),
a5

(5.37)

g+(T) = [det(1 —X T N )] ' e 'p(a2, a&, —a7)p(ai, a7 a4),
a7

g+(T) =

4

II dz;
i=1 (4)jjexp —g

happ

abc j=1
(5.38)

where we have used the fact that we can take the limit
T~O for the vertex part

I
VT'(1,2, 3,4)) in (5.33) and

(5.34) separately. In this form (5.37), the correspondence
to (5.36) is clear. Indeed the functions g+(T) in (5.37) are
written as f(ap)=

4

II dZ
i=1

dVs dcrp

4

exp —g Ã pp'~J (5.39)

This parallelism is by no means accidental. Here again
the duality plays a key role. Consider the three diagrams

by the Cremmer-Gervais equality (5.31), while the mea-
sure f (op) in (5.36) is given by (4.29):

FIG. 12. The configuration at the end point oo ——o+ of the
4-string vertex

I
Vo"(ao)), for cases (a) Ia4I ) Ia, I

and (b)

I a4I & I
a& I respectively.

FIG. 13. The configuration at the end point oo ——o. of the
4-string vertex

I Vo '(ao) & for cases (s)
I
a4

I
&

I
a3 I

and (b)

I a4I &
I
a3 I, respectively.
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(i) BA-1 of Fig. 9 (0& T & 00 ), Z2 ——l, Z3 ——0, Z4 ——Oo, (5.41)

(ii) Fig. 6 [a =n(ai —
~
a2

~
) &a &a+ n——ai], (5.40)

(iii) CA-2 of Fig. 11 ( —oo (T &0) .

As is well known in the light-cone gauge string field
theory, ' these three make up a full dual amplitude for
the scattering 1+3~2+4. Indeed if we fix the projective
invariance by

the diagrams in (5.40) correspond to the regions of Z i ——x,
(i) 1(x(x, (ii} x &x (x+, and (iii) x+ (x, respec-
tively. As before, the two apparently different diagrams
on both sides of the boundary x =x+ or x must give
the same integrand on the boundary. It is this duality
realizing mechanism again that guarantees the cancella-
tion between (5.36) and (5.37).

Let us see the cancellations between the diagrams at
x =x+ and at x =x

x =x: BA-1 of Fig. 9 at T =0 [1st term of (5.37)]~Fig. 6 at op ——o

x =x+. CA-2 of Fig. 11 at T =0 [2nd term of (5.37)]~Fig. 6 at ap a+ ——.
The RHS of Eqs. (5.37) and (5.36) are evaluated as

lim erg+(T)C(zo)C(zo)
~

Vo"(o, )) = lim [(zo —zo)g+(T)]n.C'(zo*)C(zo )
I Vo '(a+) &

T-+0 T~O

(5.42)

(5.43)

lim f(ao)C(zo)C(zo )
~

Vo (ao)~ = — lim (zo —zo )f(ao) m'C (zo~)C(zo~)
( Vo (a+)}

Oo 0+ Oo o+ 2

4

i=1
d V23&

exp —g Xp'p}J' ——dx h(x)
j=l

[h (x) is regular at x =x+ ] (5.45)

[see (A12) for the expression Eoo' ],JJwe need only to
show the equality

respectively, where C'(z)=dC/dz and zp ——(zp )' are the
common interaction points at x =x+,'lim T
=limT pzp=lim ~ zp ——lim ~ zp ——zp. From (S.43),
(5.44), and the fact that g+(T) of (5.38) and f(ap) of
(5.39) have a (projective invariant) common factor which
takes the form in the "gauge" (5.41)

dp(ip)/dx = [(Bp/Bz)(dip ldx)+Bp/Bx],

=(Bp!Bx),

f« ~ =.o'o"o",we find

ai(zp —zp)a b

(zo —»(zo —x)b (T, —Te) (x&x+,x(x },
(5.48)

al(zp —zo )

(zo —x)(zo —x)
dop=2i (x (x (x+ ) .
dx

lim sgn(zo —zp) =
T—+0

(ap ——a+ ),
(ap ——a ),

F«m (548) and zo —zo =i ~zo —zo
~

Eq. (5.46) reduces
to the following

lim (zo —zo )
T-+0

dX=+—lim (z zp )
2 ~o-~+ dip

(5.46) [Ta —Te=p(zo) p(zo) &0] (5—49)

The equality itself can easily be inferred if we recall the
relations

p(zo) —p(zp) =T, —Tb (x &x+,x &x ),
p(zo}—p(zo ) =2iao (x (x &x+ ),

(5.47)

p(z) =ailn(z —x)+a2ln(z —1)+ailnz .

but, in order to show that the limits are actually finite and
equa/, we now perform a little calculation.

The interaction Points zp and zo or zp and zo are the
solutions of dp(z)/dz=O with

which is indeed valid as can be seen from diagram BA-1
of Fig. 9 and diagram CA-2 of Fig. 11. In addition, Eq.
(S.48) says that dT/dx and dap/dx are zero at x =x+
and hence that the functions g+(T) a:

~

dx/dT
~

and

f (ao) ~
~
dx/dao

~
go to infinity at T=O and ao ——a+,

respectively, as was announced above. The limiting value
of (5.46) itself is +

~
zp —x+

~

/
~

a
& ~

and is indeed finite.
The cancellations for the other pairs of corresponding

diagrams are also seen quite similarly. In any case, the
cancellation condition reduces to (5.49), which in fact
holds for every horn-diagram configuration. Thus we
have completed the proof of 0 (g ) nilpotency

(5s) + I5s,5sI =0,

By differentiating (5.47) with respect to x and using the
formula

under the condition that the measure f(ao) of a 4-string
vertex (4.7) is given by (4.29) [or (4.22), equivalently].
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D. A comment on the necessity of string-length parameter CJ0 1 —0.,

It ~ould be appropriate to add a comment here why
such an unphysical parameter a need to be included in the
arguments of our string field. ' The use of the 3-string
vertex of the 5-functional form of Fig. 1 does not directly
imply the necessity of Q. Even without Q in the string
fields, one can construct the same overlapping 5 function-
al by setting one of Q, 's, say Q3, equal to —1 and includ-

ing an interaction point parameter 00 and its measure

p(crp) only in the definition of the vertex

~

I"")= f «p p(Qp)
~

I'"'(Qp) )

(but not in the string field). Since our 5 functional only
depends on the ratios Qi/Q3 and Qz/Q3, one can use the
same 5 functional by identifying op with —Qi/Q3 (and
tlills Q2/Q3 1 (Tp).

In such a case, however, it becomes impossible even for
the non-horn-diagram contributions to (5s)34 to cancel.
For instance, diagram A -1 of Fig. 8 and diagram A3-2 of
Fig. 10 have the same 5-functional structure and
therefore must cancel with each other also in this case. In
order to compare these two diagrams with common ratios
Q l Q2

~
Q3 ~, we need to make different changes of vari-

ables o p and o p of two 3-vertices (see Fig. 14}
for the two diagrams A -1 and A -2. To obtain
Qi.Q3.

~
Q3

~
y:(x —y):( 1 —x), they are o'p=y/x, Qo=x

for the former and 0'p=(x —y)/(1 —y) 0'p=y for the
latter. Taking account of the Jacobian factor for the
change of variables dopdtrp~dx dy, we find that the can-
cellation requires the following equality for the measure

P(Qp):

p + p, (x)—=p, p(y) (x &y) . (5.51)1 x —y 1

x x 1 —y 1 —y

[We here understand that the full measure is this p(op)
times the conventional measure (5.32).] On the other
hand, also in this case, we must include all the three types
of 5-functional configurations A, 8, and C in Fig. 1, since
the cyclic symmetry of the vertex is absolute necessary for
constructing gauge-invariant or BRS-invariant (gauge-
fixed) actions as will be seen in Sec. VI. So we need also
the cancellation between diagram AB-1 of Fig. 8 and dia-
gram BA-2 of Fig. 10, for instance, which are redrawn in

Fig. 14. By changing the variables as harp
——1 —x, op ——y for

the former and ap ——y/x, op ——(1—x)/(1 —y) for the latter
to get common ratios Q&.Qz.

~
Q,

~

=(1—x)~:y, we find a
requirement

k. )Q, 7
0

1 —a0' 0'0 I
t"0

p(1 x)p(y)—=P —py 1 —x x —y
x 1 —y xi(I —y)3

(x &y) . (5.52)

These two requirements (5.51) and (5.52) already contra-
dict each other except for the trivial solution p(Qp)=0
Indeed multiplying both sides of (5.51) by those of (5.52),
we get

P(x)p(1 —x) =
3 P P

x —y x —y
x (1—y) 1 —y

as far as pg0. Differentiating this with respect to y and
taking the limit y ~0, we obtain an equation for the func-
tloil g (x}—=p(x)p( 1 —x},

——+3 g(x)+(x —1)g'(x)=0,1

which is solved to give

x(1—x)

(c is the integration constant). This is, however, asym-
metric under x~I —x and contradicts the definition of
g(x).

E. 0(g ) nilpotency I53I, 5il I =0

Let us next prove the O(g ) nilpotency I5ii, 5&I =0.
The O(g ) BRS transformation 5& is given by (4.1) and
(5.1b) as

AB-I

FIG. 14. The diagrams A -1 and A'-2, and AB-1 and BA-2,
in (Sq) 4 for the case when the string field contains no a pa-
rameter.

5g
~

4(4)) = —f d 112d3 f dopf(ITp)(CI(1)
~

(4(2)
~

(4(3}
~
G(o)5t(1,2, 3',4)

~

E(1,2, 3,4)),
or equivalently for the bra state [by using 5&(4

~

=(5s
~

4) } ]

5ii(4(4)
~

= f d ld213 f dopf(ap)(E(1, 2, 3,4) ~5(1,2, 3,4)G(ot) ~4&(3})~4(2)) ~4(1})

= —f 111213f. '«pf(Qp)&C(1)
I

&@(2)
I
&~(3) IG(Qt)

(5.53}

x f 11'd2'13'(E(1',2', 3',4)
i
5(1',2', 3',4)Q' '

i R(3', 3))
i

R(2', 2)) i R(1'1)),
(5.54)
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where use has been made of Eqs. (2.15), (4.31), (4.32), and (5.7), and the relations (d 1) =—d 1, 6 =6, 5t=5,
I
R (1,2) ) = —

I
R (2, 1)).

In quite the same way as we obtained (5.22) in Sec. V 8 we easily reach the following expression by using (5.53) and
(5.6):

5)95s I
@(5}&=—f d 1 d2d 3d4&@'(1)

I
&@(2}

I
&@'(3)

I
&+(4)

I

x f d&of(ao)G(al )6(4rV ) [det(X)] ( p(a) az —ax) I
Vo"'(I —5) &F

A'g

+ f daof(ao)G(ol" )6(ol ") [det(1"}] ' )~ p(a2, az, —az) I Vo '(1—5))Fs (6
Z3Z

Ay

+ f daof(o'o)G(or )6(al ) [det(Z)] ' '
)M(as, aq, —az)

I Vo '(1—5))Fs )7
34Z

az

O!g =CXI+0!2, Ay =CE2+A3, CXZ =&3+0!g,

det(x)=det(1 —N(s)'~Ã(") ) for x =X,1;Z,. . . .

Similarly we get by using (5.54) and (5.5)

5,'5,'
I
C (5) )= f d I d 2d 3 d 4(e (I )

I
(e(2)

I
(e(3)

I
(C (4)

I

r

f daof(ao)«aJ"")«ar"") [de«~)l " ""I (a~, a4, as)
I
Vo"(I—5) &F;,. isa

(5.55)

+ f doof(ao)6(oi" )6(ol ) [det(Y)] ' )~)u(a2, a3, —ar) I Vo '(1 —5))Fs iz
Z3r

Qy

&
I Vo (1—5) &pig. 19 aA (a@+as) a8 (ai+as) ~

[5) (5.56}

g (N)x x
( )m~g (N)xx~ ( )n

g (N)xx ~g (N)xx~
mn = ~ mn

(5.57)

in terms of the Neumann functions Ã"„of relevant 3-
and 4-string vertices.

As before we find the following equations for all the 5-
string 5 functionals

I Vo
' ) corresponding to the configu-

rations shown in Figs. 15—19 by comparing the diagrams:

Here in (5.55) and (5.56),
I

Vo'(1 —5)) denotes the 5-
string 5 functional defined by the same form equation as
(5.20) with the Neumann function N' „' substituted cor-
responding to 5-string configurations depicted in Figs.
15—19. The functions N' „' and N' „' (with %=3,4)
in the determinant factors are given, also similar to the
previous one in (5.15), by

I
v',"(A-5)&,

I V() '(C-2)),

I

v(5)(s 1 ) )

I
Vo (C-3)&

I
v',"(s-2)&,

I V() '(A-4)),

I v,"'(s-4))= I
v,"'(s-3)),

s)(S 5) )

I
v,"'(c-4)),

I
v,'"(c-5) =.

I v,"'(c-1)&,

I
v,'"(A-1)&=

Vo( (A-2))= '

I
Vos)(A-3)) = . (5.58)

where the mg~ents of Vo(5) indicate the diagrams in

A-1

FIG. 15. The 5-string configurations appearing in 6~5g@(5);
the first term in (5.55).

FIG. 16. The 5-string configurations appearing in 6~6~4(5);
the second term in (5.55).
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C-4

8-3 A-4 B-4
5

4

FIG. 17. The 5-string configurations appearing in 5~5~4(5);
the third term in (5.55).

FIG. 18. The 5-string configurations appearing in 5~5~@(5);
the first term in (5.56).

Figs. 15—19. Each of these equalities means that the
LHS for one region of parameters as and a's coincide
with the upper one of the RHS and the LHS for the other
region with the lower one of the RHS. So the cancella-
tions occur between these 2g5 pairs of configurations.
As before, by the reason that the calculation of BRS
transformations taken twice is almost identical with that
of scattering amplitude for particular light-cone diagrams
in which the time interval of two interaction points is
zero, the factors of determinant and measures in (5.55)
and (5.56) are again exactly identical with those in the am-
plitudes in the light-cone gauge string field theory. More
precisely, the following products of factors

f(o~) [det(1 N' 'N—'4')] 'd '~ p(a;, aj,ak)

(5.59)

for each pair of corresponding configurations are
guaranteed to coincide with each other by the duality if
1=26 and the measures p(ai, a2, ai) and f(mrs) are chosen
as determined before, since each pair of diagrams corre-
spond to a common boundary point of the Koba-Nielsen
variables. This equality of the quantity (5.59) corresponds
to Eq. (5.26) of the 4-string case. [As a matter of fact, no
literature has appeared which gives a direct estimation of
determinant factors appearing in 5- or more string scatter-
ing amplitudes, and no direct proof exists for the equali-
ties of the factors (5.59}or similar ones in higher N-string
amplitudes. However, Mandelstam ' has proved in
another way that the light-cone gauge string field theory
actually reproduces the Koba-Nielsen amplitudes for the
general N-string case. His proof, therefore, turns out to
give an indirect proof of such equalities for the general
N-string case (See Sec.. VII.)j

Therefore we need to take care of only the sign of 1/a„
i.e., sgn(a„) (r =X,1;Z,A,B) and the order of two ghost
factors in (5.55}and (5.56). Since the ghost factors are or-
dered as G(ol"'"'")G(ol"' '") commonly for all the

F. 0(g~) nilpotency (5~) =0

Now let us go to the final part of the nilpotency proof
of our BRS transformation. With quite the same pro-
cedure as in the previous cases, it is easy to obtain, from
(5.53) and (5.54),

s [s
„4

s'[ s
5

terms in (5.55) and (5.56), we have only to examine
sgn(a„). As an example, consider the first pair of dia-
grams of (5.58), A-1 of Fig. 15 and A-5 of Fig. 19. From
(5.55} and (5.56), the former is proportional to
sgn(ax ) =sgn(a i + a2) and the latter to —sgn(as )

=sgn(a i+as }. We recall that our 4-string vertex

!
V' '(1,2, 3,4)) constructed in Sec. IV is nonvanishing

only for the configurations with alternating signs; i.e.,
sgn(ai, a2, ai,a4)=(+, —,+,—) or ( —,+,—,+) [Eq.
(4.5)]. So, from diagram A-1 of Fig. 15, we see that
sgn(ai+a2) = —sgn(a5). On the other hand, in this con-
figuration we have ! ai! & ! a5! as is seen from diagram
A-5 of Fig. 19 and hence sgn(ai+a5)=sgn(a&). Thus
sgn(ax) and —sgn(as) are opposite and the contributions
of diagrams A-1 and A-5 actually cancel. As another ex-
ample, consider the other region of os and a's in which
the A-1 configuration becomes identical with C-2. In this
case we have ! a2! &!ai! as is clear in diagram C-2 of
Fig. 16. So, by (5.55), the diagram C-2 contributes with
sign sgn(ar)=sgn(a2+ai)=sgn(a&). The sign sgn(a~)
of the A-2 contribution is indeed opposite;
sgn(az}=sgn(ai+a2)= —sgn(a&) again by the alternat-
ing sign rule as is seen from diagram A-1 of Fig. 15.

Similarly, it is easy to see the cancellations for all the
other cases in (5.58), and the sum of (5.55) and (5.56) van-
ishes. We thus have finished the proof of 0 (g ) nilpoten-
cy [5ii,ss I =O.

X, Y Z

6 tS

ii 4

A-5

L

Z
11

FIG. 19. The 5-string configurations appearing in 5~5~4(5);
the second term in (5.56).

FIG. 20. The 6-string configurations appearing in (5~) 4(6)
of (5.60).
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(ss)'
I
@«)& = —J d 1 d 2d 3d 4d 5&@(1)

I
& ~'(»

I
&@(3)

I & @«)
I

&@(5)
I

f( (23x)f{(Fx456)G( (23x)G ((Fx456) [det(X)] (d 2(/2
I

v(@(1 6) )
&x

+f ( 234F}f{ 1 F56)G ( 234F)G ( (F56} [d 1( y)] —(d —2}/2
I

V(6(( 1 6})
1

Cf y

+f ((F345z)f {(F(2z6}G((F345z)G((F(2z6) [det(z)] —(d —2)/2
I

V6(1
Rz

(5.60)

a~ ——a~+a2+a3, 0'y ——0'2+0'3++4 0'z =&3+&&++5

det(x}=—det(1 —N( ( xN( '
) fo«=X, I;Z .

sgn(ax )= —sgn(a F ) =sgn(az ) = —sgn(a6), (5.63)

The 6-string 5 functionals
I

Vo( '(1—6))x F z are defined
by Eq. (5.20) with the Neumann functions N' „' substi-
tuted which correspond to the configurations depicted as
X—Z in Fig. 20, respectively. Each of the configurations
X—Z corresponds to either one of the two diagrams dis-
tinguished by indices I and II depending on the values of
turbo 00.

Now we can understand the following eq»abties for the
6-string (3 functionals in (5.60) from Fig. 20:

I Vo
'

&x» =
I

Vo" & F, I
Vo" & F„= I Vo

'
&z, ,

(5.61)
I

Vo" &z„= I
Vo" &x, .

As before duality guarantees that the following products
of factors

f((ro)f(oo) [det(1 N' 'N( '—)] 'd ' (5.62)
l

in the coefficients of (5.60) are equal for each pair of cor-
responding configurations given in (5.61), if d=26 and

f((ro) is given by (4.22). So we examine only the signs of
ax Fz and the order of two ghost factors. For the former
we have a simple relation in this case

owing to the alternating sign rule (4.5) of our 4-string ver-
tex. Prom this, for the cancellation between X and I' or
Y and Z configurations to occur, the two ghost factors
must be placed in the same order, while in the opposite or-
der between Z and X configurations. This is just what
happens. For the configurations Xii and 1'1, the second
4-vertex (i.e., the vertex of the second BRS transforma-
tion) of Xii corresponds to the second one of Fi and the
first of Xii to the first of Fi, as is seen from Fig. 20.
Therefore the two ghost factors are in the same order and
co111c1de: G((F )G((F )=G(o' )G((FI ) The.
same is true for Fii and Zi configurations. Por Zii and
Xi configurations, however, Fig. 20 tells us that the
correspondence of the first and second vertices is opposite
and so is the order of two ghost factors.

G. Properties of the 3-string and 4-string vertices

Before closing this section, we summarize now the
properties of our vertices which we have proved up to
here.

It should be noted that we have actually proved more
than the nilpotency (52() =0. For instance, in O(g), we
proved not merely the nilpotency

t(3s, (5sI I @(3))= I d 1 d2I[(&@(l)
I Qs )&4(2)

I
—&4{1)I(&4{2)I Q2(')]

I
v(1,2 3))

-&~(1}
I &W2)

I Q,'" I
v(1,2, 3) &I =0, (5.64)

but the equation O(g ') term of (5s ) I 4) generally took the form

g Q,'" I
v(1,2, 3)&=0. (5.65)

The latter is clearly stronger since the former claims the
identity only when all the three string fields &(p(1) I,
& 4(2) I, and &4(3}

I
in (5.64) are the same string but the

latter implies that (5.64) holds even when they are re-
placed by three different string fields.

The same remark applies also for all the previous
0{g ) nilpotency proofs. Actually recaH that the

f dld2. . d&&@1)I&@2)I. . &@»I

X g(ghost factors)
I Vo +") (5.66)

%e have seen there that the cancellations occur between
pairs of terms which possess the same (3-functional config-
urations, hence in particular the same sets of values of a,
(r =1,2, . . . ,». That is, (5.66) vanishes for each set of
values of a„ i.e., before the daida2 . . da3( integration.
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X [dZidzzdz3] . (5.68b}

This implies that (5.66) holds in fact even when

& @(1)
~

—
& @(N)

~

are replaced by N completely different
string fields since &4(r)

~

at two different values of a,
can be completely independent even for a single 4.

In order to express these stronger identities concisely, it
is useful to define 2-string and 3-string products for arbi-
trary string fields @,4, and A:

I
(@oq')(3)&

=—f &@(1}
I

&'p(2)II V(1,2, 3) &d 1 d 2,
(5.67a)

I
(~'a'Pa A}(4)&

-=f &@(I}
I

&q'(2}
I

&A(3)
I

X
~

V' '(1,2, 3,4}&d1d2d 3 .

(5.67b)

[Notice that the measures d 1 d 2(d3) are placed on the
end for the convenience to operate 5ii from the left natur-
ally. ] Since it is more convenient, in this context, to use
the functional representation instead of bra-ket notation,
we rewrite these into the functional forms with the help of
(2.11) and (2.12):

(+oq)[Z3]= f +[Zi]+[»]V[Zz,Zi, Z~][dZid»],

(5.68a)

(+ q A}lz4]= f +tzi]+l»]A[z~]

x V"'[Z„Z„Z„Z,]

Here we have used the Hermiticity condition (2.13)

4 [Z]=4[z],
Z =(X"(ir —cr), —c (ir —o ),c(ir —o ); —a },

(5.69)

as well as the property (3.65) of a 3-string vertex under the
twist operation which reads

V[Zi»z»i]= V[Zz»i»3]
V[Zi ZJ Z3]=&zi

( &zz ( &zz[(V(1,2, 3}&
(5.70)

in the present functional representation and a similar one
(4.31) for the 4-string vertex V' '. Henceforth we adopt
(5.68} as a basic definition of string products for general
(not necessarily Hermitian} string fields.

Now with these notations (5.68) our full BRS transfor-
mation 5a takes the form

5ii@=Qii@+g@o@+g4o4o4, (5.71)

Qg (5—a@)+g (5g@o4 4o 5—g4)

+g (5ii@aM4 —@a5ii@a4+4a 4o5a4) (5.72)

at each O(g }. They, however, hold in stronger forms as
explained above. In view of the forms of weaker identities
from (5.72), it is easy to see that those stronger identities,
which we have actually proved are written in the follow-
ing form:"

and it is straightforward to write down several identities
implied by its nilpotency

0=(5ii) 4

O(g). Q~(@op ) Qiig, ops+( ) I+I@)orig

O(g2). Q (@oilloA)+(Q @oiPoA+( )l@I~Q yoA+( )I+I+ I+l@oiPoQ A)

=( —) I I+ ' '+ ' I [(co%)oA—eo(eoA)],
O(g ): ( —)I l(@o+oA)oX+@o(+oAoX)=(@o'k)oAaX—4o(+@A)aX+4o+a(A+X),

0 (g ): ( —) I
*

I
+ I

"
I (@o'po A)o Xo =+ ( —) I

-"
I @o(~po Aa X)a "+@og o (Ao Xo ") =0 .

(5.73a)

(5.73b}

(5.73c)

(5.73d)

(5.74b)

[@+AX]4=4-(O'aAo X)

=(—) I I+ I'I+ I"I'I'I f [dZidZzdZidZ4]t (~ [Zi]q'[Zz]A[Z3]X[Z~])V'"IZ~»3»z»i] (574 )

These identities hold for arbitrary (matrix-valued) string fields 4,%,A, . . . , where
~

4
~

is 0 if 4 is Grassmann-even and
1 if Grassmann-odd.

The identities (5.73) represent actually the properties of the 3-string and 4-string vertex functionals which we have
constructed in Secs. III and IV. Equation (5.73a} is a distribution law of Qa operation on the» product, Eq. (5.73d) is
an associativity law for the ( o o ) product. Equation (5.73b} shows that the distribution law of Qa operation is violated
on the ( o o } product but is compensated by also a breaking of associativity for the o product. [It is interesting to note
that Eq. (5.73b) is replaced in the closed-string case' ' by a Jacobi-type identity
No(%'oA)+( —)I I'+I+ I "I'~II+(Ao@)+(—)I "I'I I+I I'Ao(@a+)=0.] It should be emphasized again that all
those identities hold only if d =26, as we have seen in this section.

For later convenience we define bilinear, trilinear, and quadralinear forms of string fields by

e.q =—f [dZ]tr(e[Z]q[Z])= f [dz]tr(e[z]%[Z])
=f d 1 d 2 «& & (2, 1)

I
&"i

I
e(1)& I

q (5.74a)

[@+A]i=4.(+o A) =f [dzidz2dz, ]tr(4[zi ]%[zz]A[zi])V[Z3,Z2, Zi ],
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If the string fields are all Hermitian, these are simply rewritten also in the bra-ket notations: The first one is connected
to a more familiar inner product,

Ey y= J d 1 tr(4&(1)
~

&p(l)) =J dztr(4& [Z]'P[Z]) (5.75a)

and the latter two take the form

[4&'&pA]$ ——Jd ld2d 3tr(e(1)
~

(0'(2) ( (A(3}
~ ( V(1,2,3)),

[C&ipAy] —( )I@i+Is'I+I "I+i*i J d ld2d3d4tr(@(1)
(
(+(2)

~

(A(3) ( (X(4)((V' '(1,2,3,4)) .

(5.75b)

(5.75c)

VI. ACTIONS

Now that we have constructed the full BRS transfor-
mation satisfying nilpotency and clarified all the neces-
sary properties of the 3-string and 4-string vertices, it is
quite an easy matter to write down a gauge-invariant ac-
tion as well as a BRS-invariant gauge-fixed action. Al-
though we found originally the latter first' ' and next
the former, ' we present them here in the opposite order
since we think it more logical and transparent.

A. Gauge-invariant action

In analogy with the usual gauge transformation of
Yang-Mills theory,

5A =de+ig [A,e],
A—:g T A~dx~& e=g T e

(6.1)

Finally, we note that the important cyclic symmetry
properties of our 3-string and 4-string vertices, (3.58) and
(4.32), are expressed in these notations as's

[4'&A]$—( )
I@'I ~

I
s' I+ I

~ I ~[I/A@]

) I
~

I ~ I +'I+ I s'I &[A4,lp]
(5.76}

[@lpAy.] —( )
I@'I ~ Is'I+ I

~ I+ Iz I ~+i[ipAg@]

—( ) I
x I & I

~'I + I
&i'

I + I
&

I &+ i[y@lpA]
etc.

NFp ———2. The last term in (6.2) may look strange in
comparison with (6.1) but is found necessary as we will
see shortly. [The string gauge transformation (6.2) indeed
reproduces in the zero-slope limit the Yang-Mills gauge
transformation (6.1) as we will show explicitly in Sec.
VIII.]

The gauge-invariant action is now easily found as'

S=@Q 4+ —'gal+ —'gl44 (6.3)

with notations introduced in the previous section:

4'Qli@ =J d 1 «& @(1)
( Qii ) @(1)),

4 =[4@4]l
=J d ld2d3tr(4(1)

f
(@(2)

f
(4(3)f/V(1, 2,3)),

(6.4a)

(6.4b)

4 =[4@44]4
=J d 1 d2d 3d4tr(e(1)

(
(e(2) ( (4(3) (

(4(4)
(

y
~

V"'(1,2, 3,4}) . (6.4c)

Indeed the invariance of the action (6.3) under the
transformation (6.2) is seen as follows: By using the defi-
nitions (5.74), the cyclic symmetry (5.76), and also the fol-
lowing properties of the inner product (5.74a) or (5.75a),

) I ~'lls'I qs. @
(6.5)

we are led to consider the following gauge transformation
ill string field theory:

54= QsA+g (44 A —As C&)

—g (4O@oA —@oAo4+AO4o4) (6.2)

with A being a (string functional) matrix-valued transfor-
mation parameter. Since our string field 4 is
Grassmann-odd, Hermitian, and carries FP ghost number
NFp ———1, the parameter A must be Grassmann-even,
anti-Hermitian (i.e., satisfies A [Z)=—A[Z]), and carry

we first notice that 5S can be written in the form

5S=254 (Qii@+g4 &s 4+gl@o4o 4)

=25li@.[ QgA+g(4&sA —Ae@)

—g (4o4oA —4oAo4+Ao4O4)], (6.6)

with 5ii4 denoting the BRS transform (5.71) of 4. This
is further rewritten with the help of cyclic symmetry
(5.76), ill partlclllai', as

5S=2((QliA) 5ii4+g [ [A(5il4)C&]l —[A4(5li4))l ] +g [[A(5li4)44]4—[A4(5+4)@)4+[A@4&(5ii@)]4])

=2A. [—Qs(5il4&)+g(5ii@4 4' —44&5ii@)+g (5ii@o@o@—@o5a@o4&+4oC&o5s@)]

=2A.5li(5ii4') . (6.7)

This vanishes by the nilpotency of our BRS transformation (5s ) =0, i.e., (5.72). It should be noted that the cyclic sym-
metry property of our vertices was crucially important here.
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Next we clarify the group structure of gauge transforrnations (6.2). Although only the weaker identity (5a )i@=0was

necessary for proving the gauge invariance in the above, we now need all of the stronger identities (5.73). The calculation
of the commutator [5(Ai),5(A2)] of two gauge transformations with parameters Ai and Aq is, of course, straightforward
but somewhat cumbersome. So it is better to proceed as follows: We first calculate only the terms containing Qa in the
commutator to guess the final result, and then verify the guess. Now from (6.2) we have

[5(A, ),5(A )]@=5(Ai)[g(eoA —A oe) —g (COCOA —eoAzoe+A oe e)]—{1 2)

=[g(gaAioAi —AzogaAi) —g (QaAio@o A2+@ogaAio Ai Q—aA, oAi o@—+oA2ogaA,

+A2o gaAio 4+Azo+o QgAi)+ . ]—(1~2), (6.8)

where the ellipsis represents the other terms containing no Qa. By the distribution law of Qa on the o and ( o o ) prod-
ucts [(5.73a) and (5.37b)] this is rewritten as

[5(Ai),5(Az)]pl= gg[g(Ai /AD)+g (Eyg Aio Ai —Aio EyoAz+ Aio A2oql) —(1~2)]
—g [{Qa@oAio A2 —Aio Q~@oAi+Aio A2o Qa@)—(1~2)]+

(6.9)

The first term on the RHS takes the form of the O(g ) gauge transformation QaA and the second is a term proportional
to the O(g ) equation of motion Qa@=0. This suggests that the final answer takes the form

[5(Ai»5(Ai)]@=5(Ai)@—g'[(S,so AiA2 AioS, co A2+Alo A2oS, 4) (1~2)l,
A3 —[g (Ai oAg)+g (4o Aio Az —Aio 4o Ay+ Aio Ago 4)]—( 1~2)

S,g, —= —,(&/54 )S=(Qa 4+g4o 4+g 4o 4o 4 ) =5ii4,

(6.10a}

(6.10b)

(6.10c)

where S @
——0 is the equation of motion. Equation (6.10)

is actually confirmed by calculating all the other terms by
the full use of the stronger identities (5.73).

The result (6.10), which was already reported in III, is
very interesting: First, it shows that the algebra of gauge
transformation closes only on-shell, Sq, ——0. Further,
even on-shell, the third gauge transformation parameter
A3 given by (6.10b) depends on the string field 4 explicit-
ly, implying that the "structure constant" of this algebra
is field dependent. These properties are reminiscent of the
same situation in supergravity and may suggest the ex-
istence of some auxiliary string-field variables which
make the algebra close off-shell. The off-shell closure is,
however, not absolutely necessary.

Finally we should comment on a restriction on 4 and
A, which should be imposed if the above action (6.3} can
be said to be a gauge-invariant action in the proper sense.

The string field 4, or its ket representation
~
4) more

precisely, is generally expanded into states of the form

X g c ~0) (m &1, m„&0) (6.11)
k=I

and we call such components possessing p ghost and q an-
tighost oscillator (or zero) modes (p, q)-form, or simply
(p —q)-form by dropping the discrimination among
(p —q +r, r) forms with arbitrary r &0 (Ref. 13). Notice
the difference between the number (p —q) and the ghost
number NFP which we have used up to now in this paper.
The number (p —q) is an "internal ghost number" carried
by the ghost variables c and c alone, while XFp is the net

ghost number which may be carried also by the coefficient
~ ~

fields pi' ~ "(x,a}. Therefore, our assumption that the
string field 4 carries Npp = —1 does not exclude the com-
ponents with p —q+ —1 but simply specifies the ghost
number assignment to the coefficient fields allowing all
the (p,q) forms. So the coefficients p(x) of (p —q) forms
carry the ghost number NFP —(p —q) ———1. Probably the
gauge-invariant action in the proper sense should not con-
tain the component fields qr(x) carrying nonzero ghost
number NFP since it has to be meaningful also as a classi-
cal field theory. If one thinks so, one can restrict the
string field 4 to its (p —q)= —1 form sector 4 i in the
gauge-invariant action S. Indeed this restriction is con-
sistent with the gauge invariance if one also restricts the
gauge transformation parameter A to the —2 form sector.
The above proofs of the gauge invariance and of the
group law (6.10) remain unchanged with these restrictions.

The authors, however, do not know whether this re-
striction is absolutely necessary or not for the "true"
gauge-invariant action. For the requirement of gauge in-
variance alone, no restriction is necessary as we have seen.
Further there is another, equally consistent, restriction to
require the @=odd form and the A=even form, in which
case the component fields y appearing in the action are all
Grassmann even (i.e., usual Bose fields). See III for more
details. This issue will not finally be settled until the
gauge-fixing procedure is inade clear. The gauge-fixing
procedure becomes quite a nontrivial problem in the pres-
ence of interaction as was pointed out in III.

B. BRS-invariant gauge-fixed action

Our next task is to construct a gauge-fixed action which
is invariant under a nilpotent BRS transformation. In the
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S[P]= (C Qs 4 + —'g4 + —'g 4 )|) (6.12)

Here recall that g is the co-independent part in 4 as de-
fined in (2.7):

l
4(x,co,a) ) = —co l P(x,a) ) + l P(x,a) ) . (6.13)

Therefore the action (6.12) contains only the P-component
string field which carries the FP ghost number NFp ——0
and hence is Grassmann even. [However, remember that
P contains any (p, q) forms as was noted before. ] By per-
forming the integration over co, the action (6.12) can be
written in the form

free-string case, the usual procedure of gauge fixing works
and one can obtain the gauge-fixed action from the
gauge-invariant one as was made clear by many authors
Namely, starting from the gauge-invariant action (6.3)
with 4 restricted to the —1 form sector (and g=O), and
choosing the gauge lg)=0, one actually reaches the
gauge-fixed action after adding an infinite sequence of
ghost's ghosts. Interestingly, the resultant gauge-fixed ac-
tion turns out to be Siegel's free action (2.24) or (2.29}
though historically Siegel's action was found prior to the
gauge-Invariant one.

This gauge-fixing procedure does not work in the pres-
ence of interaction terms as was pointed out in III.
Therefore we do not discuss the gauge-fixing problem any
more. Fortunately we know already a BRS-invariant
gauge-fixed action. It was found in I prior to the gauge-
invariant one, just like in the free case. Further it was
sho~n in III to be equivalent to the gauge-invariant one,
at least, at the tree level and also as classical field theories.

Our BRS-invariant gauge-fixed action is given from the
gauge invariant one (6.3) simply by setting the f com-
ponent equal to zero:

3

F(1,2,3)= g —,
' g N"„a" a"„

r,s =I n, m &0

+ i g N~„y'"' y"„
n, m &1

(6.17b)

rs=1 n m&0

44=44ly—=o= f dco44 (6.18)

Before giving the explicit form of this in terms of P, we
now prove two things: (i) This new BRS transformation
Sii is nilpotent on the mass shell, i.e., nilpotent when the

equation of motion 5S/Q=O holds; (ii) the gauge-fixed
action S, {6.14), is invariant under this BRS transforma-
tion.

To show these, we first recall the particular property
which the previous gauge-invariant action S, (6.3), had;
that is, the change of S under an arbitrary variation 54 of
4 took the form

5S =254.(Qii@+g@s@+g @o@o@)=254'5s@ .

(6.19)

n, m &1

Notice that the functions F and F' ' are just the previous

exponents E»+EFp and E» '+E'Fp with the ghost zero-
mode parts omitted.

The BRS transformation 511$ in this gauge-fixed sys-
tem is given again by setting /=0 in the original BRS
transformation (5.71) of the P component:

S 4]=4 L4+-', g0'+ .'g'0'-
with the 11otat1011s defliled by

(6.14) This property is inherited by the gauge-fixed action S[P]
in the following form since S is S with f set equal to
zero:

Q.LQ= f d 1 tr(P(l) lL lg(1)),

y'= f d 1 d 2d 3 tr(y(l)
l (y(2) l (y(3)

l

X
l
u(1,2,3)), (6.15b}

P = f dobro f dld2d3d4tr(P(1)
l (P(2) l (P(3)

l

X (P(4) l lu', '(1,2, 3,4) ) . (6.15c)

Here, r and dr (r =1—4) are now those for zero-mode
variables other than co, denoting (p„,a„) and
dp„da„/(2m) +', respectively, and the reduced vertices

l
u(1,2,3)) and

l
u' '(1,2, 3,4, )) are given, from (5.1),

(5.2), and (6.4), by

5$=2(54 5s4)g o———2Q (5gf)g o, (6.20)

44=5a4'+it'f(4 4) . (6.21)

The (off-shell) nilpotency of the original BRS transforma-
tj.on 5~ leads to

with the understanding that 54= —co5$ since g is fixed
to be zero in S. Here the dot in the last quantity means
the inner product at the P —P component level (i.e.,
without co integration). Now we can prove the above first
statement {i), i.e& the on-shell nilpotency of the new BRS
transformation 5s. From the definition (6.18), 5&P is
identical with the original 5&P aside from the terms con-
taining at least one factor of f:

u{1,2, 3))=p(a„a2,ai)5(1,2,3)e"" ' 'IO) (6.16a) 0=(5, )'y=(5, )'y+(5, $)& g($,0)+0(g) .
a~4) [ i, 2, 3,4]

l
u', '(1,2, 3,4) ) =f (pro)5(1, 2, 3,4)e '

l 0), (6.16b) Sine this is an identity in P, the g-independent parts van-
ish by themselves. Thus we have an equation

5(1,2, 3,(4))=(2m)"+'5 g a„5 gp, (6.17a)
(511) P= (5sg)y=of ($,0), — (6.22)
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proving the desired on-shell nilpotency of 5a since

(5ap)» o
——0 is just the equation of motion of the present

system S as is seen from (6.20):

5aS= —25ak (5. ait)y=o

2—(5a4')»=o. (5a 4)y=o (6.24)

5Si5(It= —2(5af)g o——0 . (6.23)
which ean be rewritten in terms of the BRS transforma-
tion of the original field 4, 5a@=eo5ap+5ag, as

Incidentally this explains why we adopted the action S of
the form (6.14) for the gauge-fixed system. In fact, origi-

nally in I, the action S was constructed so as to Yield

(5a1())~ o
——0 as its equation of motion.

Next we prove (ii), i.e., the invariance of S under 5a(t).
Again by using (6.20) and (6.21), the change of the action
S under 5a(}) is given by

5aS = —f ~&o«o5a4+5af). «o5ak+5af) I y=o

= —(5a@ 5a@)g o. (6.25)

However, the last quantity 5a4 5aC) vanishes even before
setting /=0. Indeed it follows straightforwardly from
the previous identities (5.73), (6.5), and the cyclic sym-
metries (5.76) that the expression

5a4 5a4=(QaC)+g4»4+g C)o@o@)

=Qa@ Qa@+2gQa4 (4»4)+g [(4»4) (4»4)+2Qa@ (@o@oC))]

+2g (4»4) (@o@o4)+g (4o4o@) (4o4o4) (6.26)

vanishes separately in each order in g: The O(g ) part is trivial since Qa@ Qa@=4 Qa 4=0 by Qa ——0, and the
0 (g ') part results from the identity (5.73a) as

Qa@ (~'»~') =
3 t [(Qa@)@~']3—[@(Qa@)@]3+[~'@'(Qa~')]3j

= —,
' 4 [Qa(@»@)—Qa@»4+4» Qa@]=0 .

Similarly the O(gi) part is simply a rewriting of Eq. (5.73b):

2Qa@.(@o@o4)+(4»4)~ (C)»4}=2.d I [(Qa@)444]4—[4(Qa4)44]4+[44(QaC')4]4 —[444(Qa'I')]gj

+ —,
'

t
—[4(4»4)4]i+[44(4»4)]pj

=T4.[Qa (4o 4o 4)—( Qa 4o 4o 4—W Qa@o4+4o 4o Qa 4 )

—(4»C))»4+4»(4»C))]=0 .

(6.27a}

(6.27b)

In quite the same manner, the identities (5.73c) and
(5.73d) lead to

where the» and ( o o ) produces are now those at the (}}-

component level and are defined by

(4»C)) (4o4o4) =0,
(@o@o4) ~ (@o@o4)=0,

(6.27e)

(6.27d)
I
(W»W)(3) & = f d 1 d 2&0(1) I

&4(2)1~'"
I
u(1» 3}&

(6.29a)

5a4 =Qak+gd»4+g'Codon, (6.28)

respectively. Thus (6.26) vanishes and Eq. (6.25) proves
the invariance of the gauge-fixed action S under the BRS
transformation 5a. [It may be interesting to note that the
vanishing of (6.26) implies that our gauge-invariant action
S in (6.3}with no restriction on the internal ghost number
of 4 is invariant under the BRS transformation; i.e.,
5aS=25a4'5a@=0 (the authors would like to thank
K.-I. Kobayashi for pointing out this fact}. This should
be distinguished from another trivial invariance of S
under the local gauge transformation (6.2) with its param-
eter A set equal to d)(4: 5(A =A@)4=—A,(Qa4
+2g@»@+3g @o4o4).]

Finally in this section let us give the explicit expression
of the new BRS transformation Sap defined in (6.18):
From (2.22), (3.54), (5.1), (5.71), (5.68), (6.13), and (6.18),
we obtain

l
(dad d)(d))= 1 draco I d (d2d3(d(1)

(
(d(2)(

X &y(3} ~."'

X
i

u' '(1,2, 3,4) & . (6.29b)

&r) ~ ~ ~ pgu'"=i g —5 eos(nol')
~~ n»

g N' „' cos{rno") y'"„.
m&1

Here
~

u & and
~

u' '
& are the vertices given in (6.17), iu"

was defined in (3.50) or (3.51) and u'"' is its analogue for
the ease of the 4-string vertex:
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VII. SCATTERING AMPLITUDES AND UNITARITY

It is now an easy matter to calculate string scattering
amplitudes based on our gauge-fixed action (6.14). In this
section we present an exphcit calculation of the tree-level
4-string scattering amplitude for general external string
states, and also show that the general N-string tree ampli-
tudes in our theory correctly reproduce the usual dual am-
plitudes if the external string states are on-shell and physi-
cal. The unitarity problem will be discussed lastly.

(7.1)

or equivalently, in bra-ket notation,

(7.2)

where (i,j ) denotes the U(N) matrix index. If we use the
usual simplified Feynman rule in (zero-mode) momentum
space to take account of the momentum-conservation law
in advance, we should drop the momentum-conservation
factors

in (7.1) or (7.2). Therefore for the diagrams containing
loops, we attach the momentum zero-mode integral

d

(7.3)

(as well as the trace with respect to internal modes and
matrix index) to each loop. To each 3-string vertex we
put either one of the following two factors according to
convenience:

2gi}[Z[,Z„Z3]-2g
~
U(1,2, 3)),

2gu[Z[, Z2, Z3] -2g {U {3,2, 1) ~,
(7.4)

with
~

U } given in (6.16a). To the 4-string vertex we at-
tach

2g U', '[Z[,Z2, Z3,Z4]-2g
~

i}','(1,2, 3,4}} (7.5)

(or its Hermitian conjugate) with
~ u~,

' } given in (6.16b).

A. Feyn~aa rules and light-cone diagrams

The canonical quantization procedure may be difficult
to apply to our string field theory since the interaction
terms are nonlocal with respect to the center-of-mass time
x„oof each participating string. However, if we rely on
the usual path-integral reasoning, 6 it is easy to read Feyn-
man rules from the action (6.14). For simplicity we con-
fine ourselves to the orientable string with U(N) gauge
group henceforth. Then, the string propagator is given by

In the simphfied rule, the a- and p-conservation factors in

~

U }and
~

U', ' }should be discarded. Note that the factor
and —,

'
appearing in the action 5;„,=(2g/3 )P

+(2g /4})))} were dropped in the rules (7.4) and (7.5).
This i.s because they always drop out when the operators

and )I} are contracted with other fields or external legs
as we w111 count the statistical weight explicitly below.

We should note the parallelism of these rules to those in
the light-cone gauge string field theory. ' In the latter,
the L operator in the propagator (7.1) or (7.2) is replaced

5 +I —+~trans (7.6)

Here I.„, is exactly the same operator as I. if the
OSp(d /2) mode operators (a"„,y„,y„}are all restricted to
the O(d —2) transverse one a'„alone. Quite the same is
true also for 3-string and 4-string vertex operators (7.4)
and (7.5) by the formal similarities of vertex structures be-
tween ours and light-cone gauge's.

From these observations, we can draw the following im-
portant conclusion: All the tree amplitudes in light-cone
gauge string-field theory with the p 's of all external
states set equal to zero, coincide with those in our covari-
ant theory with all OSp(d/2) operators of external strings
reduced to O(d —2) transverse ones. Some explanation
would be necessary. If the p 's of all external states are
set equal to zero, the p 's of all propagators also become
zero in the case of tree diagrams. Therefore the propaga-
tor (7.6) in the light-cone gauge case reduces to L„,„, and
thus to an O(d —2) version of the OSp(d/2) symmetric
one L of covariant theory. Therefore the calculation of
tree amplitudes in both theories becomes quite the same
formally. By the symmetries O(d —2) and OSp(d/2) in
both theories, the amplitudes take the same form if they
are written by using invariants under O(d —2) and
OSp(d/2), respectively. Here we should recall the point
mentioned in Sec. VA. Since the two-dimensional fer-
mionic degrees of freedom work as a negative dimen-

sion, ' the integration over (or equivalently contrac-
tion of) internal OSp(d /2) variables yields the same result
as that for O(d —2) variables. Therefore, the numerical
factors appearing in the calculations in both theories coin-
cide with each other.

We think that this argument is sufficient to derive the
above conclusion. Nevertheless we present explicit calcu-
lations of 4-string scattering amplitudes in the next sub-
section for completeness. One can convince oneself from
those calculations that the above statement is true.

We should explain about the diagrams used in the fol-
lowing calculations. %e can draw the usual Feynman dia-
grams also in this string field theory as shown in Fig. 21,
and they are surely simple and helpful to count all the
possibilities. They are, however, inconvenient for the ex-
plicit calculations of string amplitudes since they do not
contain information about the intrinsic direction of each
string, for instance. For various other reasons the so-
called light-cone diagrams, which we use also in our
covariant theory, are much more useful.

As a preparation for the next subsection, it is con-
venient to summarize here the Mandelstam mapping for
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(c)

4

8, C b, e

FIG. 21. Feynman diagrams for the 4-string amplitude and

their correspondence to the light-cone diagrams in Fig. 22. X, Xo X

p(z)=r+io= g a;ln(z —Z;), (7.7}

the 4-string scattering processes' although we have al-

ready mentioned it briefly in Sec. V.
Mandelstam mapping gives a connection between the p

plane of a light-cone diagram and the upper half complex
z plane:

(b)

4]

I

FIG. 22. Light-cone diagrams for the 4-string amplitude
with al,a2~0 and a3,a~f0 and the corresponding regions of
the Koba-Nielsen variable x =Z3 (Z) ——oo, Z2 ——1,Z4 ——0).

with string length parameters a; satisfying g; ia;=0.
Here the Z s are Koba-Nielsen variables which are real in
the present open-string cases. With a given set of a s,
each choice of a set of Z s corresponds to a light-cone di-

agram into which (7.7) maps the upper half-plane. How-

ever, the variables Z; are not uniquely specified by the
light-cone diagram, since we may combine the conformal
transformation (7.7) with a one-to-one conformal
transformation of the upper half-plane onto itself. The
most general form of such a transformation is given by

Hz+8z~
Cz +D

(7.8)

with real constants A, 8, C, and D, which is called the
projective (or Mobius) transformation. [Since the multi-
plication of a common factor to A, 8, C, and D does not
change the mapping (7.8), it is conventional to require
AD BC =1.] Therefo—re, if all Z s are simultaneously
transformed by (7.8), they remain to correspond to the
same light-cone diagram as the original Z s.

If we define new variables by

z Z4 Zp Z)
z Z] Zp Z4

Z3 Z4 Z2 Zix= l
Z3 Z$ Z2 Z4

the Mandelstam mapping (7.7) is rewritten as

p(z) —To ——a&in(1 —z )+ailn(z —x)+a4lnz,

with

To ———(ay+ ai )ln(Z i
—Z4 }

—(a3+a4)ln(Zi —Z 1 ) —ailn(Z2 —Z4)

+ailn(Z& —Z3) .

(7.9)

(7.11)

(7.12)

By using the arbitrariness of the projective transformation
(7.8) we can fi three of the four Z s to arbitrary con-
stants. The mapping (7.10) corresponds to a particular
choice

T
&

——Rep(z ), Tz ——Rep(z+ ), (7.14}

and the difference T =Ti Ti represents —the time inter-
val of the propagation of an intermediate string. T is of
course a projective-invariant quantity.

Outside the interval [x,x+ ], we have two points of x
realizing T =0. We denote the larger one by xo which re-
sides in O~xo & 1 and the smaller one by xo (0. %ith
points x+, 1, xo, 0, and xo, the region of x outside the in-
terval [x,x+] is divided into six intervals which are
mapped into six types of light-cone diagrams as shown in
Fig. 22.

On the other hand, when x takes the value inside the
interval [x,x+], the two interaction points z+ in (7.13)
become complex such that z =(z+)'. This case corre-
sponds to the light-cone diagram possessing a 4-string
vertex as shown in Fig. 22(g}.

B. 4-string scattering amplitude

We now calculate the 4-string amplitude explicitly in
this covariant theory. For definiteness we take ai,az) 0
and a3,a4 ~0 in the following calculation, though we will
see in the next subsection that the on-shell physical ampli-

up to an infinite time (To) translation. The correspon-
dence between the value of x and the light-cone diagram
now becomes one to one. The interaction points z+ are
solutions of dpldz =0. The corresponding values z+ of
z+ are given by

z+ = —(2a i ) '[ aq+ a4+ (a2+ a4)x

+
~
ai+a4

~
Q(x —x+ )(x —x )],

(7.13a}

x+ (iz2+ iz4) [ (+2+3++1+4)+2«i&2+3+4)'"]

(7.13b)

In the following we confine ourselves to the case
a1,a2~0 and a3,a4~0, in which case real roots x+ exist
in the region 1&x (x+ ( 00. When x 6[x,x+], the
corresponding light-cone diagram consists of two 3-string
vertices with interaction times
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tudes are independent of the choice of a' s, at least, at the
tree level.

First let us count the possible types of s-channel dia-
grams and their statistical weights, in which the grouping
of "initial" states ((p(1),p(2)) and "final" states
((p(3),lp(4)) is fixed. As llsual, this is doile by counting all
the poasibihties of how to contract the four external states
dp(r) {r =1—4) with the second-order Dyson operator
—,( —,g(t) )( —,g()) ). First of all, —,

'
is canceled by the two

possibilities of choosing one operator —', g4() to be contract-
ed with the initial states. Next, for a chosen operator
—,gP for the initial side, there are three possibilities
which P of (I) is contracted with y(1), and also for the fi-
nal side —', g$3 we have a factor 3 corresponding to which

P is contracted with p(3). At this stage the Dyson opera-
tor looks like [2g(p(1)(})i][2g(p(3)(I)2], showing that the
coupling constant at each vertex becomes 2g as announced
before. From this stage, there are 2X2 possibilities de-
pending on which P of 2g((u(1)P [2gq&(3)(I) ] is contracted
with (p(2} [(p(4)], but they yield four light-cone diagrams
different from each other as shown in Fig. 23. Compar-

FIG. 23. AH the possible s-chalmel diagrams.

ing with Fig. 22, we see that diagrams A and 8 of Fig. 23
are the same as (a) and (c) in Fig. 22. Diagrams C and D
in Fig. 23 are obtained from A and 8 by exchanging 1 and
2, and are missing in Fig. 22. This is the case also for r-

and u-channel diagrams; the diagrams with 1 and 2 ex-
changed are missing. Therefore, the full amplitude is ob-
tained first by summing all the contributions of the dia-
grams in Fig. 22 and finally by adding its answer and the
same one with 1 and 2 exchanged.

With this understanding, let us start with diagram (a) in
Fig. 22. Its contribution to the transition amplitude W is
given by

d i,=(2g)v f d5d6qP(4)p (3)v(435) u '(1,2, 6)()()(2)(p(1),
56

(7.15)

in a rough notation, or, more precisely, by

~,.=-,'{2g)'tr«(»
~

&+{2)
~

&+{3)
~
«{4}

~ f"d.
~
~,{1,2, 3,4}),

[ A,(1,2, 3,4)) = y d3'd4'd6&u(3', 4', 6) [
0'@e'~

/
(u1, 2,6)) )R(3', 3)) [R(4',4))

= Jl dsd6&R(5, 6)
f

0' 'e'
~
u(1,2,6)) ~u(3, 4, 5)),

(7.16)

(7.17a)

(7.17b)

with &R(1,2)
~

now understood to be the R operator
(2.16) with the co mode omitted. Here we have used the
propagator (7.2), the Hermiticity of the (}()' term (6.15b),
and also the trick

oo——= I d~e".
o

The effective 4-string vertex
~
b,(1,2, 3,4) ) introduced

in (7.17}is quite an analogous quantity to the previous

i
5(3,4, 1,2)) =

i b(1,2, 3,4))

~
uT'(1, 2, 3,4))=e ' ' '

~0)5(a,p),
4

I'z '(1,2, 3,4)= (r] (4)rg (g)a N „a „
m, neor,s =1

(J') (4)rs- (s)+i g r Nm. T'-.
Nl, lf Q 1

4

5(a,p)=(2m) +'5 g p„5 g a„
r=1 r=1

where we have introduced a variable

T= [a /r6,

(7.19)

(7.20}

defined in (S.10) in the nilpotency proof of (5& ) in Sec. V.
The only difference is the presence of a time-development
operator e' in (7.17) and so the previous

~
b,(1,2,3,4) ) is

nothing but
~
b„(1,2, 3,4) ) at v=0 (aside from a eo-mode

factor, of course). Just similar to Eq. (5.20)„ the effective
4-string vertex

~
b,,) should be proportional to the follow-

ing vertex
~

uz ) given in terms of the Neumann function
corresponding to the light-cone diagram of Fig. 22(a}:

implying the time interval Tz —Ti ——T in Fig. 22(a). (A
defimtion of N ~„' is given in Appendix A for general
N-string light-cone diagrams. ) We show this fact general-
ly for an N-string effective vertex

~

5' ') in Appendix H.
The proportionality factor can be determined by using the
formula (5.12) and the form {6.17b) of the 3-string vertex
operator

~

u (1,2, 3) ) in the same way as in Sec. V, and we
find
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I
b,,(1,2, 3,4)) =Ij(ai,a4, a5)Ij,(ai, az, a6)e '[det(1 N—z',X T, )] ' '

I
uz'.(1—4)},

~ -t[~+~]/~, jr,(NT ) „= mN „oneNllt CX5= —0!6=0!)+F2)0 .

(7.21)

Here, to obtain a symmetrical expression, me have calculated this by dividing the time-development operator
T2I. /a5 TII./a6e' =e ' ' ' into two parts e ' ' and e ' ' and by operating them on the final and initial vertices, respec-

tively. However, of course, the determinant factor det(1 Nr;N—r, ) depends only on T =Tz —Ti and we may take

T2 T, T——i
——0 or T2 ——0, Ti ———T, for instince. The factor e '=e' comes from the constant part (+ 1) of I. in e':

I- = ——,'p —g [a „a„+n(c „c„+c „c„)]+1. (7.22)

Now the amplitude of Fig. 22(a) is found by (7.16), (7.20), and (7.21) to be

~i,———,'(2g) J dT det(l N'T', N—~, )] '" ' 'e 'p(a3 (x4 Q5)p(ai, a2, a6)tr&ext(1, 2, 3,4)
I Uz '(1 —4)}, (7.23)

with an abbreviation

&ex«l»»4) I
—= &t(1)1&m(2) I &q (3)

I &t(4)1 (7.24)

As anticipated, this result is exactly the same as that in the light-cone gauge string field theory if we simply discard the
longitudinal and scalar modes a'""=- as well as ghost modes y and y in

I ur '). Indeed we have already cited this
form of result for light-cone gauge string field theory in (5.27) or (5.28) in Sec. V for slightly different diagrams.

As mentioned before in (5.31), we have Cremmer-Gervais's identity:

—55 —66 'Po G I,Q2, Q6
[det(1 —N T,N r, )] e 'exp

I &51 r =1,2, 6

~0 a3,a4, a5

r =345 &r

rrdZ
/ =1

dV, g,

4

exp —g N oo'"' (7.25)

(7.26)

It is possible to rewrite it into a more familiar looking form. By extracting only the purely zero-mode parts —,'p„p, X II'
j, 4)

from e 10) in (7.19) and using the expression

for the regions T &0 in the LHS and 0&x &xo in the RHS, respectively. [Incidentally, the factors ( —) ( —)" in the def-
inition (7.21) of (N z;)~„are missing in the original equation of Cremmer and Gervais, but the above equation is correct
since they should have a twist factor necessary for the propagator in their definition. ] Therefore the contribution of the
diagram Fig. 22(a) with 0(T g ao is written in terms of Koba-Nielsen variables as

rrdZ
W„=—,'(2g)' Je exP —g)tt ter' tr(ext(), 2,3,4) (er '() —4)) .

Ogx gxo
T

Npp' ——(1—5„)ln I
Z„—Z, I

+5„—g ln
I Z, —Z; I

+ ro"'
i(+r)

(7.27)

given in (A12) in Appendix A, we obtain

M» ——(22r) +'5 ga, 5 gp, —,'(2g)

rrdZ
X

~

~ ~

~

I

j'"j'j+( j '~( ~ j ~j' )+~ ' j j (i j'j )
~ ~

0+x QxO
s&J

(r) F'(4)(1 2 3 4)
xexp g ( —,'p„' —1) tr&ext(1, 2, 3,4)

I
e r '

10) .
r

(7.28)
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FIG. 24. Light-cone diagrams for the 4-string amplitude for
the case aI g 0 and a2, a3,a4 ~0 and the corresponding regions of

Here ~0' denotes the interaction time of string r defined
ill Appclldix A [cxphcltly, 'ro I——0 ——Ti RIll

I——.o T——I in this case of Fig. 22(a)], and the prime of
I' T' ' means the omission of m =n =0 terms from

g —,
' a'"' N '

„' a"„in the definition (7.19) of Iiz"'.
In quite the same way, me can calculate the contribu-

tion S ib of Fig. 22(b) and obtain the same form of ampli-
tude as (7.28) with the integration region replaced by
xo &x & 1. Therefore the sum WI, +W» correctly gives
the complete s-I dual amplitude with integration over
0&x &1; indeed, for instance, the amplitude (7.28} with
0&x & 1 just gives the we11-known Veneziano amplitude '

if the four external states are on-shell ground states
Fi(+

( —,'p„= 1), since the last factor tr(ext
~
e

~
0) becomes

simply the Chan-Paton factor' tr(A, ~AIA P.4) in such case.
Similarly, the diagrams of Figs. 22(d) and 22(c) give the

s-u dual amplitude of the same form as (7.28) with in-
tegration region over —00 ~x &0 and the external states
ordered as (ext(1,2,4, 3}

(
.

For the case of the I uamp-litude, however, we need the
quartic string interaction term for the first time. Figures
22(e) and 22(fl, which are constructed by using the usual
cubic interaction term twice, give only the amplitude of
the same form as (7.28) with regions 1&x &x and

x+ &x & + oo [and the external states ordered as
(ext(1,3,2,4)

~
]. So the region x &x &x+ is missing

for the full I-u dual amplitude to be reproduced correctly.
It is just this region that necessitates the existence of a
quartic interaction term as has long been known in the
light-cone gauge string field theory. I'II For complete-
ness, let us calculate the contribution of Fig. 22(g) possess-
ing a quartic interaction vertex and confirm that it actual-
ly fills the missing region with correct weight.

First count the weight of Fig. 22(g). There are four
possibilities in choosing one P from S~„,""= —,g P to be
contracted with one external state, say y(1). Once this is
fixed, fhc I'cst is uIllqllc sillcc tlic ordcI' of external strings
are fixed in Fig. 22(g) as y(1}p(3)y(2)y(4). Therefore the
amplitude of Fig. 22(g) is given by

Xtr(ext(1, 3,2,4)
i

U' '(1—4) ) (7.29)

from (6.15c) and (6.16b). Here we have pulled the mea-
sure f(oo) out of

~
U~ ') in (6.16b) and so

~
U~ ') in this

equation should be understood as

j u', '(1 —4)) = (2Ir) +'5 pa„5 gp„
I~4}(i—~]

Xe (7.30)

If we use the measure f(era) determined in (4.29), Eq.
(7.29) becomes

~is=4(4g')
rr~z

X x gx(x+ exp —g N oc'

Xtr(ext(1, 3,2,4)
i U~ (1—4)),

(7.31)

which has just the same form as (7.26) with correct weight
4X —,'g = —,'(2g) and hence fills the missing integration

region of I uampl-itude exactly.
Up to now w'e have assumed a&,aq~0, a3,aq~O. %e

can calculate the amplitudes also for other cases quite
similarly. In Fig. 24 we have given light-cone diagrams
for the case aiyO, aq, a&,a4&0 as an example. (Again
they cover only half of the possible diagrams and the oth-
er half can be obtained by exchanging 2 and 4 in those di-
agrams. } For any set of a's we obtain the same form of
dual amplitudes as obtained above. The only difference
resides in the point that the Neumann functions appearing
in those equations are defined graph by graph and depend
on the set of a' s. Nevertheless we will see in the next sub-
section that the amplitudes become independent of the a' s
if the external states are set on the mass shell and are
chosen to be physical modes.

As w'e have seen explicitly, all the above calculations
are quite the same as in light-cone gauge string field
theory. This property persists in any general X-string tree
amplitudes as explained in the previous subsection.
Therefore if we know the results in the light-cone gauge
string field theory, we can immediately write down our
answer; the translation rule is to set p =0 and to replace
the O(d —2) invariants p, , and a'"' a„"by OSp(d/2)
invariants p„p, and a'"' a'„'+2iy'"y„". As a matter of
fact no one has ever calculated the general N-string am-
plitudes directly in oscillator language as Cremmer and
Gervais performed for the 4-string case. However Man-
delstam ' has calculated the amplitude based on the
path-integral technique and obtained a general formula
for the N-string tree amplitude in the light-cone gauge
string field theory. Translating his formula into our
language, we find the general X-string tree amplitude in
our theory:



34 COVARIANT STRING FIELD THEORY

~,=(2 )'+'S g~, S gp, (-,')"-'(2g)"-'

rrdz

~

~i =1,p;.pj+(+&/~;)I & —( &/2)p;2]+~~;/~J. )I & —
~ &/2)pJ ]

c&c $ (J r &r

g tr ext l —N exp —, 0.'"' N „a"'„+i y'"' X"'„y"'„0
mn&0 mn&1

(7.32)

with the prime on g denoting the omission of m =n =0
terms.

states are spanned by one-string creation operators corre-
sponding to the physical modes

~
phys) defined by

C. a independence of on-sheB
physical tree amplitudes

Qa i
phys) =0 . (7.36)

Q a~ ~phys}} =0 (7.33)

in this string field theory, where Q a is the second quan-
tized BRS charge which generates the BRS transforma-
tion on our string field P:

The on-shell amplitudes in the light-cone gauge string
field theory should be Lorentz invariant, and this Lorentz
invariance is actually confirmed in the case of tree ampli-
tudes. This implies in particular that the tz=(2p+)
dependence of on-shell tree amplitudes are only through
the Lorentz invariant a,p, +p,a, +2p, p, despite the
fact that the Neumann functions (or the vertices) depend-
ed very nontrivially on the a' s. Therefore, if the p 's are
set equal to zero„ the tree amplitudes no longer depend on
the a's except for the conservation factor 5( g a, ). From
the above-mentioned correspondence between our covari-
ant theory and the light-cone gauge theory, it is quite
natural to expect that the on-shell physical tree ampli-
tudes in the covariant theory are also independent of the
a' s. We show in this subsection that this is really the
case, although the proof is not so trivial since the physical
modes in our theory are not given by simple transversal
modes but by somewhat complicated DiVecchia —Del
Guidice —Fubini (DDF) modes.

Now we start with the identification of physical modes
in our theory, According to Kugo and Ojima' '" the
physical states are specified by the subsidiary condition

[Note the difference between
~
~phys}} in (7.33) and

~phys} here. The latter is a one-string wave function
while the former is a many-string state. ) This Eq. (7.36)
is just the physical state condition imposed by Kato and
Ogawa in their first quantization formulation. As was
proved by them, the physical modes

~
phys) are spanned

by DDF modes alone, again apart from zero-norm modes.
As is well known the DDF operators A

'

(i =1,2, . . . , d —2) are constructed as

NR —1p l

2$'l

m 1
Xexp — g —a„+z "

&+ n~o"

P"(z)= ga"„z
(7.37)

Here and henceforth we use the indices (+,i) to specify
the components of arbitrary vector v„:

1
U+ = ~ (U2s+Uo),v'2 (7.38)

U; (i =1,2, . . . , 24); transversal components .

iver(1)=pa ', . . .." (p)A ',A ', . A" i0} .

With these DDF operators (7.37), the wave function

~
y(1)}of a physical one-string state is generally given in

the form

tQa 4)=&aP=Qak+g0*0+g'0o4O4 (7.34) (7.39)

f Qa 4'")=Qadi" (7.35)

for asymptotic string field P . Therefore the physical

In our scattering theory we need only state vector space
constructed as a Fock space of asymptotic string states.
Then it is generally known" that the physical state space
defined by (7.33) is given by a Pock space constructed by
asymptotic physical one string (or o-ne-particle) creation
operators, aside from unimportant zero-norm states. Note
that (7.34) yields

g
e ~ e

g

Here the coefficients a ' . . . ~ (p) specify the polarization

and matrix of the state. The on-shell condition
L

~
qr(1) }=0 imposes a constraint

2
2p =1—QMk

k

(7.40)

on the momentum p&.
Now that we have identified the wave functions of the

on-shell physical states, we turn to our main subject to
prove the a independence of on-shell physical amplitudes.
For that purpose let us first rewrite the previously ob-
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tained general S-string tree amplitude (7.32) by introduc-

ing new coefficient N „defmed by

X „=N „exp( n—Moo n—Noo) .

If one notices the relation

(7.41)
(7.42)

it is easy to see that the choice r, =No'o leads to the fol-
lowing expression for the N-string amplitude (7.32):

rr dZ.

~ =(2 )d+'5 g, 5 gp„2g f g ~Z, —Z
~

' 'M
r r dV,k,

(r)
(a /C )I- )+(a„/a )L(S ~0

M~ ——tr ext 1 —X Z, —Z, ' " " ' exp — L, '"
r~S

(7.43)

(7.44)
m, n&0 m, n &1

r~S r, s

If the external string states (y(r)
~

in (ext(1—X)
~

are all on-shell and physical, then the l. '"'s in (7.44) can be set equal
to zero and further the ghost operator parts i yXy can be discarded since the DDF operators contain no ghost oscillators.
Thus, for on-shell physical amplitude WN, the matrix element Mz reduces simply to

r

tr(——ext(1 N)
~

e —
~
0), (7.45)

(r ) rs (s)Fk=——,
' g a N „a

m, np0
r, S

(7.46)

Now the a dependence of the &-string amplitude WN is contained only in N~„of (7A6) aside from a trivial conserva-
tion factor 5( g a„). We now show that Ms( is in fact independent of the a„s. So let us examine how ~n, (7.46),
changes when we vary the a s keeping their total conservation g„a„=O:

I~e =tr(ext(1 N) —,
' g tx"—rt'*'„SN"„e "

0) .
m, npO

r, S

(7.47)

For this change of the new coefficient 5N~„we have the following identity whose proof is given in Appendix I:

N m —1 n —1

+N, O+ y (ni k)N1)t k, tt+kO—+ y (n k)+1)t,n k+k~O-
~i k=1 s k=1

g 5a, =O.
(7.48)

(The same identity was in fact used by Mandelstam in his Lorentz-invariance proof in the light-cone gauge string
theory. ) Because of (7.48), Eq. (7.47) turns out to be written in the form

I

M()e=tr( etx(1 1)() g tf„' fg—te', e"„(e r
0) .

np1
(7.49)

This is shown as follows. First note that the BRS transformation of the antighost e '"'„ is given by

I g s",c '"'„
I
= ——,

' g u'"'„.a'"' +(ghos«erms), (7.50)

~x
but the ghost terms do not contribute to (7.49) since both the physical external state (ext

~

and e
~
0) contain no ghost

I

modes. Second, the first term on the RHS of (7.50) can be rewritten in front of e
~
0) into the form containing no an-

I

nihilation operators a~ (ni & 1) by using (7.46); that is, g 5f„'IQsrc "„Je
~
0) in (7.49) is evaluated as
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n
—

2
a' n+ma m

CO g

—g a —(n+m)'am
m=1

n I

= Q ~fn —
2 g a —n+m'a —m

—g g ~Nmla (—n+m)'a —i
n&1 m=0 m &1l&0

r S

(r) . (s)=
2 a —m'a —n

m, n&0
r, s

m —1 n —1

6f +—„&„—g 6fh(ir) — )N"' q„—g 5fq(n k)N—„k e i0) .
k=1 k=1

(7.51)

Comparing this with Eq. (7AS), we find that (7.49) actual-

ly coincides with (7.47) if we take the coefficients 5f„" in
(7.49) as

5f„"=+5a; N o.
l 1 ar

Thus we have proved Eq. (7.49). Now recall that the
physical states are annihilated by Qq as was seen in (7.36)
and contain no ghost modes. Hence the operation of
IQi)', c"„I on the physical external state (ext(1—N}

i

yields zero, and so Eq. (7.49) proves the desired a in-

dependence of M)v.

are simply transverse operators a' „ in the light-cone
gauge case. In order to see that this difference also disap-
pears, we decompose our exponent factor F» in (7.46) into
the transverse part and others:

F»= p g a'"'mNm. a'"n„
m, n&0

r, s

T g a —mNmna n+ —g a —m, +Nmna n, ——
m, n&0 m, n&1

+ g a'"',N"()p' + y a'" N"', p', .
m&1 m&1

~(v =0 . (7.53} (7.55)

rar =28 (7.54)

also in our covariant theory since the on-shell physical
amplitudes are independent of the choice of a, 's. Hence
the only apparent difference is that the amplitude M(v in
(7.45) in our case contains the full covariant oscillator

~xa'"'„" in e
i
0) and the complicated DDF operators A' „

in the external physical state (ext i, while both of them

Therefore, in view of (7.43), we see that the general N
string tree amplitudes Wi(( are independent of the choice
of a, 's except the total conservation factor 5( g a„}if the
external string states are on-shell and physical.

Incidentally, we can new easily understand that our
on-shell physical amplitudes WN really coincide with
those in the light-cone gauge string field theory. Indeed,
although the string-length parameters a„are identified
with 2p+ in the light-cone gauge case, we can now take

The important point is that the last term vanishes when

p+ cca, as we are choosing now in (7.54), owing to the
identity (A20) in Appendix A,

N

g N„p' g e N„oa, =0. (7.56)
s=1 s=1

Noticing that the DDF operators A' defined in (7.37)
consist of a' and a+ oscillators alone, we see that the
second and third terms in (7.55) can also be dropped out

I

in the calculation of (ext
i
e

~

0), since the a'"'m + oscil-
lators contained in those terms commute with A' and an-
nihilate the bra vacuum (0 i

. Therefore only the trans-
verse mode part survives in (7.55}, and then the DDF'
operators A' in (7.37) also can be replaced simply by a' .
Thus we have shown that our on-shell physical ampli-
tudes reduce to those in light-cone gauge:

~-shell physical ~ g ' ~ ' ~ight-cone gauge—w'fTLp ~ ar

rr dz
" r. 2"-' I"=' rr iz. -z. i"'

dV

~tr ext A' ~a' exp —,
' a"' & na"„'

m, n&0
rss

(7.57}
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where the Neumann function N ~ here is that of the dia-
gram with string length a, =2@+.

9, I lphys && =0 (7.58)

guarantees the physical S-matrix unitarity provided that
all the physical one-particle (string) states have positive
metric. Based on only the conservation and nilpotency of
Q a, they showed that the unphysical particles can appear
only in zero-norm combinations in the physical subspace
specified by (7.58} and hence as intermediate states in
physical particle scatterings. Their argument is valid also
for string field theory since a string field is merely an in-
finite component local field. The above assumption for
the positivity of physical one-particle (string) states was
proved to hold actually by Kato and Ogawa as was men-
tioned already in the previous subsection. Therefore the

-unitarity in the usual'. sense holds in arbitrary loop order in
this theory.

There is another and much more nontrivial problem of
unitarity in this theory, which comes from the fact that
the string-length parameter a is unphysical. Truly physi-
cal states of course contain no information of a and there-
fore we have to specify how they are connected to our
"physical" states with a, in such a way that unitarity
holds within the world of the truly physical states. For
instance, if we identify the truly physical one-string states
with our "physical" ones having a fixed value of a, say
a= —,, then the unitarity is clearly violated since the one-

string states possessing other values of a are easily created
in the scattering and they are unphysical in such a dcf1ni-
tion.

A very important fact in connection with this is that
thc tIcc-lcvcl on-shell physical aNplltudcs arc 1ndcpcndcnt

D. Unitsrity

If we expand the string field P with respect to its inter-
nal modes, 4 can be viewed as a set of an infinite number
of local fields. Most of them are in fact unphysical fields
since our string field contains unphysical ghost coordi-
nates c(o) and c(o) as well as X (cr) and X (o}. Those
unphysical particles should not contribute to the (on-shell)
physical amplitudes by appearing as on-shell intermediate
states. This is the problem of physical S-matrix unitarity,
or simply unitarity.

As we have calculated explicitly, the on-shell physical
amplitudes at the tree level actually satisfy this require-
ment. For instance, the appearance of
[det(1 —EN)] ' '~ means that the intermediate one-
particle states are essentially only those related with the
transverse-mode excitations. Or more directly we have
seen that our tree amphtudes coincide with those in (clear-
ly unitary) light-cone gauge string theory.

However, as for this kind of unitarity problems, our co-
variant theory is guaranteed to be consistent from the be-

ginning even beyond the tree level. This is because our
string field theory is constructed so as to possess the BRS
symmetry; that is, we have a conserved and nilpotent BRS
charge Q s at this se:ond quantized level. As Kugo and
Ojima have shown quite generally, " the subsidiary condi-
tion

of the a's except the total conservation factor 5( g a„) as
was seen in the previous subsection. If this particular
property persists in higher loop orders also, the problem
of u will be solved consistently as follows: The above
property says that the on-shell physical N-string ampli-
tudes W~h„, take the form

W~p„„,——a~5 g a, T„ (7.59)

with completely o.-independent (reduced) amplitude Tz.
Then if we go to Fourier conjugate space, say c7 space, of
a parameter, the on-shell physical amplitudes turn out to
take the form

N —1

ff 5(a„—an) Tpg . (7.60)

(7.61)

to see whether it, or a similar one, is a physical syinmetry
of the action which leaves the action invariant in the

3
physical subspace: 5$ = IQ ii, XI. If the transformation
« the form hke (7.61) is a physical symmetry it is easy to
see that it guarantees the a independence of on-shell phys-
ical amplitudes at full order level.

In connection with this we find a very encouraging fact
that the zero-slope limit discussed in the next section. As
will be shown there, our action reduces to a gauge-fixed
form of the usual Yang-Mills action. The gauge-invariant
part has no explicit a dependence and hence it is exactly

,'F„„'if we identi—fy—

A„(x,a=0)= JdaA„(x,a}

with the usual gauge field A„(x). The nontrivial a depen-
dence appears only in the gauge-fixing and Faddeev-
Popov ghost terms and therefore our theory in this limit is
physicaBy equivalent to the usual Yang-Mills theory
without a.

This implies that the S matrix is completely local in c7

space and translation invariant. That is, the scattering
takes place only among string states possessing the same a
and never produces state with different c7 from that of ini-
tial states. Therefore the unitarity holds on each point in
a space separately, and thus we can consistently define
physical (one-string) states as those having an arbitrary
but fixed value of c7; for instance, we can define the physi-
cal string field as

Nihil. «=o)= J «Nihil. (o')

with (()~h„,(a) possessing physical polarizations.
The a independence of on-shell physical amplitudes has

not yet been proved beyond the tree level, unfortunately.
This problem of a independence is, however, essentially
identical with that of Lorentz invariance in light-cone
gauge string field theory. So similarly to the Lorentz
transformation M~ in the light-cone gauge case, one
can try a transformation such as
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VIII. ZERO-SX.OPE LIMIT

We consider the zero-slope limit of our covariant
string field theory in this section. That is, we calculate
the explicit forms of the gauge-fixed action (6.14) and its

BRS transformation (6.28) in the limit that the Regge
slope paraineter a'[M ] approaches zero. It should be
noticed that we perform this calculation completely off-
shell.

IA:t us define component fields by expanding the string
field

I
(()(x,a) & with respect to oscillator modes as

I((}(xa) &=1o&e(xa)+[a" i Io&Ai(xa)+c i I
o&( —i)«x,a)+c i Io&( —)«x,a)l+

=
I o&t(»a)+ [&-( I o&r)st A "(»a)I+

(8.la)

(8.1b)

where (p(x, a) is a tachyonic field and A&(x,a), C(x,a),
and C(x,a) are massless fields. All the component fields
are matrix valued and satisfy Hermiticity conditions

Xt(x,a) =X(x,—a) for X =q&, A„,C, C . (8.2)

[Equation (8.2} is easily confirmed by the
I P & version of

string Hermiticity condition (2.15).] In (S.lb) we have
used the OSp(d /2) notation explained in Sec. V A:

M —1-a„=(a„,y„=inac„,y„=a c„)
and the OSp-vector massless field is now defined by

AM(x, a) =(A "(x,a), iaC—(x,a), ('a '—C(x,a) )

gvM=(a } g . (8.S)

The zero-slope limit is taken in such a way that this
Yang-Mills coupling constant gvM is fixed. Therefore
we rewrite (8A) by using gvM as

S= f dx AC3A+U CI —--, N U2'

—2. The Yang-Mills theory in d-dimensional space-time
has a coupling constant gvM of dimension ——,'(d —4),
which hence must be related with the present string cou-
pling constant g by

=A~ (x, —a}.Nf (8.3)
3 00

+g g y (a )(n —1)/2()nAmU3 —™
m =On =0

In the zero-slope limit a'~0, all the massive com-
ponent fields become infinitely massive and decouple
since (a'} ' gives the unique mass scale in this theory,
and hence only the massless component fields A sur-
vive. However, not all the effects of massive fields
disappear in this limiting theory since they may give finite
contributions by propagating inside the Feynman dia-
grams with external lines of massless fields alone. To ex-
amine which types of diagrams can have such finite ef-
fects, we denote all the massive fields symbolically by
U(x, a) and the massless ones by A (x,a), and rewrite the
gauge-fixed string action (6.14} in terms of them in the
following schematic form:

T

S= f dx AClA+U Cl—,N U
2m Q

3 co

+g y y (ai)(d+2n —6)/4g A nU3mm—
m =On =0

+ 2 g g ( i)(d+n 4)/2gnA mU4——m

(8.4)

where d is the space-time dimension, X is a nonzero num-
ber (mode number minus 1) and () denotes derivatives
which may operate on either A or U. The form (8.4) is a
result of simple dimension counting: We have assigned to
A and U the canonical mass dimension —,

' (d —2) of a usu-
al bosonic field in d-dimensional space-time, and the cou-
pling constant g is dimensionless, o. having dimension

+ g
2 y y (a )n/2gnA mU4 m—

m =On =0

(8.6)

Similarly the BRS transformation (6.28) of massless com-
ponent fields can be written in the form:

2 00

5sA = ()A+gvM g g (a')"/ 8"A U2

m =On =0
3 00

+g g g (a')'"+ "/2Q"A mU m . (8.7}
rn =On =0

We have to count the power of a' for arbitrary Feyn-
man diagrams whose internal lines consist of only massive
fields U and external hnes of only massless fields A. This
omission of massless fields as internal lines is because we
are looking for the qaant(4m action of massless fields in
the zero-slope limit. The Feynman rules are read from
the action (8.6). We call the vertices corresponding to the
third and fourth terms Vi and V4, respectively, which
came from cubic and quartic string interaction terms. %'e
immediately notice that the V3 vertices have a power
(a') / while the V4 vertices have no power, aside from
(a')" compensating the dimension of derivatives ()".
Taking into account also that the massive field propaga-
tors carry a power (a')', we see that the Feynman dia-
grams with P propagators, n3 V3 vertices and n4 V4 ver-
tices are proportional to

, (D —n3+2P)/2
(8.8)
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where D is the total number of derivatives contained in
the diagrams. Recalling the well-known relation between
the numbers of loops (L), propagators (p), and vertices
( V =n&+n4),

L =P —(V —1)=P n—l n4+—1,
we find that (8.8) becomes

, (8+L+P+n4 —I)/2
Q

(8.9)

(8.10}

Therefore the possible Feynman diagrams which contain
massive particles inside (i.e., P&1) but can give finite
contributions in the zero-slope Hmit u'~0 are only those
satisfying

FKIIr. 25. The only surviving diagrams in the zero-slope limit
that contain the massive particle propagator (dotted line) inside.
The vertices stand for the massless-massless-massive ones with
no derivatives.

P =1, D =L. =n4, ——0, (8.11)

i.e., one-propagator tree diagrams containing no deriva-
tives and no V4 vertex. Clearly such diagrams have the
form shown in Fig. 25 and can be constructed only by us-

ing the A .U-type VI vertex twice. All the other dia-

grams surviving the limit (x ~0 are of course those which
are already contained in the action (8.6) and consist of A

fields alone.
From a similar power counting we can find the BRS

transformation in the zero-slope limit. In this case the
relevant Feynman diagrams are obtained from the above
considered ones by replacing one of their vertices by the
vertex appearing in the RHS of BRS transformation (8.7).
So the power of Ix' of such a diagram is given by

, (I)+L+P+n4)/2
(8.12)

This implies that no diagrams containing massive internal
lines can contribute in the Xx'~0 limit. Therefore the
BRS transformation in the zero-slope limit is given by the

terms alone which are already contained in (8.7) and con-
sist of A fields only. Notice in particular that the
0(gYM ) terms in (8.7) coming from quartic string vertex
V'"' do not survive the limit Ix'~0.

Now we are ready to calculate the explirit 0,"~0 limit-

ing form of the action S and BRS transformation 5& of
our covariant string field theory. First we immediately
calculate the kinetic term P 1.$ of (6.15a) by retaining
only the massless field components in (8.1b}, i.e.,
i/)=a I ~0)II')vA (x,n):

So ——P I.P
x tr —'A x a q~~C3A x o.' 8 13

2%

In this OSp(d/2) notation, it is also easy to calculate the
cubic interaction term by using (6.15b}, (6.16a), (6.17b),
and (3.10}:

A'

I (2Ir)"+' (2$') 5 gp) 5 g (x) y gvMtf g + (pjitxl )Qjg
l i=1

(3) X~(2) XI(1) g ( ) I ( ) (i) &0
X o a1 a1 a1 —,a 1" q~LX11a 1' N 1a" 1 P& exP — 0

(XI.

3

2% pg cg
i (2Ir)"+'

2 MX3X 3gvMtr[A (p),a))VXX&A (p2, (X2)A„(p»(X2)] (8.14)

Herc wc have used thc I'clatlolls N I)=8, i)i i =(1/cxr )e, and P (xlp2 lx2p i ill Eqs (3 11). By llslllg a
relation

&)P2 —(X2P) = p [lXI(P) —P2)+PI(&2—(X) }]~

we can rewrite (8.14) into the x-space representation:

3

S]=gyM X 2% A& tr —k &A XsA] A XsCK2, A XsA3 'g~~
*

1
2'

(8.15)
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Next we need to calculate the direct 0(gvM ) term o-gvM A contained in the —,'g P term of the action S and the di-

agrams in Fig. 25 with massive particle exchange. If we add both of these contributions as well as diagrams of the form
of Fig. 25 with massless particle exchange, it just becomes the 4-string amplitude calculated in the previous section with
the a'~0 limit taken. Since the factor a' appears in the string amplitude always accompanied by momentum variable p,
in the form (a ) ~ p„we need only the 4-string amplitude evaluated at "p, =0. This indeed agrees with the previous ob-
servation that the relevant diagrams in the a ~0 limit, i.e., Fig. 25, should contain no derivative factors in the vertices.
However, we should note that the 4-string amplitude contains the contributions from massless particle exchange dia-
grams also, which actually possess ambiguous factors (p;+p~) /(pk+pi) if all the momentums are set equal to zero
from the start. To avoid this ambiguity, we keep only the variables

s = —4 i+u2)' t = —V i+a. )' u = —V i+& 3)' (8.17)

nonzero but set all the p„'s in the other places equal to zero; that is, we can take p, 2=0 and a'"'„X"„Op"'=0 from the be-
ginning without ambiguity.

Since p„=0 implies on-shell condition for massless particles, it is convenient to use the expression (7.43) for the 4-
string amplitude in previous section, which now reads, for the case of 4 massless external states A(1)—A(4),

4~ =(2~)"+'5 ga, 5 gp„2g'

(8.18)

This ordering of A(1)—A(4) corresponds to the s-t amplitude case. We need the expression of Ni'& for res of 4-string
light-cone diagrams, which can be easily obtained by using the general formula (A14) as

Nii N iiexp( ———Moo —%00)=1/(Z, —Z, ) (8.19)

By taking the previous gauge choice Z i
——ao, Zz ——1, Z4 ——0 for the projective invariance and using the Veneziano vari-

able x =Z3, (8.18) is evaluated as

M4' ——(2n)" +'5 ga„5 gp, 2g'tr[A ' (l)A ' (2)A ' (3)A ' (4)]

1

X ( —) g~,~,rl~ ~ f dxx (1—x) +g~ M, gM ~ f dxx ' (1—x)

1

+ '9u, w, 9w, w, f dx x (1—x) (8.20)

where ( —) is the sign factor which becomes —1 when both M2 and M3 are ghost indices. There still exists s-u
and t- u amplitudes corresponding to the external state ordering A(1)A(2) A(4) A(3) and A(1)A (3)A(2) A (4), respectively,
and also the amplitudes obtained by exchanging 1 and 2 from these s-t, s-u, and t-u ones. Since each amplitude has
three terms like in (8.20), there exist (4—1)!X3=18 terms in all. These 18 terms, however, result from various ways of
contraction between external four massless states and the following simple effective action with only two terms:

4
S;= f Q "„,", (2~)"+'5'ga, '5 gp, '2g, „'-,'tr gA '(p, ,a,-)

i (2n.)"+'

1

X ( —)' q~~ i)~~ f dxx ' (1—x) ' +2g~~ ilM ~ f dxx ' (1—x) (8.21)

Here the A (p,a}'s are now field operators. In this expression s and t are actually associated with a' as a's and a' t;
therefore the x integrals in (8.21}are evaluated as



dxx 'i (1—x)
0

r

I —— 1+1 I" — s+ 1
2 2

I —— (s +t)+2
2

' =1+0(a'),

1

dX X
—as/2 —2(1 X)

a't—l2
0

A
1 —--s —1 I

2

1 — (s+t}Q

2

+O(a')

(8.22)

=—+0 (a') ('.'s + t +u =0) .
S

The action (8.21) still contains the contribution from massless particle exchange diagrams which should be subtracted.
The massless contribution to the action is easily calculated by using the previous expression (8.14) of Sl for the three-
massless interaction term. Recalhng that the momenta contracted with external legs are now being set equal to zero and
p„2=0, we calculate it as

S massless exchange g «(2 )tt+18 '

y
'
8

'

ydpi' d at
(2~)"+'

+ 3 (2gYM) tr[ ~ (pl l)9MtM2~ (p2 a2)~ (p3 3)9M3M4~ (p4 a4)]~ (8.23a)

&IPz —&@t a~4 —a4
(&p( —(pl+p2), —(al+a2))&„(—(p3+p4), —(a3+a4)))

o,)+a2 Qg+ kg

(al+a2)'(p 1+p2)'

1 (ala4+a2a3) u
2 +

(al+a2)'
(8.23b}

~ISSS]CSS CXCRSAgC

So in the genuine O(g ) action S2 given by S2—S2 , the momentum-dependent (i.e., nonlocal in x space)
parts proportional to u fs exactly cancel between (8.21) and (8.23), and we finally obtain, in x-space representation,

d
r

f ~ ~ " ~ ( ' '} ( —} rtMM'9M M +2'9M M'9M Mi=1 ~ r i I 3 2 4 1 2 3 4 (a+a)21 2

(8.24)

Thus the action in the zero-slope limit is given by So of (8.13}plus Sl of (8.16) plus S2 of (8.24). However, since it is
written in terms of OSp(d/2) vector field 3, it would be better to rewrite it in a familiar notation in terms of Yang-
Mills field A" and Faddeev-Popov ghosts C and C. A straightforward substitution of (8.3) leads to

So ——f dx tr[
—,' A„( a)CIA"(a) i—C( —a)ClC(a—)],

d a
Sl ~gYM dx 8 g a tl /~ 3 (al)[a "(a2).~ "(a3)1—i [a (al »~ "{a2)P4«3)

(2~)2 a~

f, , I C(al },C(a2) J BA (a—3)—B„C(a1 )[A"(a2),C(a3)]

0,'2 —Cy+ C(al )[A"(a2),B„C(a3)]
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Sz =gvM f dx
(21r)

a ~a4+ a2a3
Xtr —,A„(a1)A (az)A"(a3)A (a4)+ A&(ai)A"(az)A„(a3)A (a4)

(a1+az)'

~
a4

+2i A (ai)C(az}A "(a3)C(a4)
a~

a )a4+ a2a3 a4 a3
+2i A„(ai)A "(az) C(a3)C(a4) — C(a3)C(a4)

(ai+az)' a3 a4

a~a& a~a2+a3a4
+2 — — 1— C(ai)C(az)C(a3)C(a4)

(az+a, )'

a)a3
a2a4 a la4+ aZa3

(a i+az)

a ~a~+ a3a4
C(ai)C(az)C(a3)C(a4)

(az+a3)
(8.25)

where we have omitted the common argument x of the
fields and

f, ,=—(ai +aiaz+2az )lai(ai+az} . (8.26)

The above expression (8.25) of the zero-slope limit ac-
tion looks very complicated, and in particular various

coefficients in Si and Sz have very nontrivial dependence
on the "string-length" parameters a. Nevertheless we wi11

see shortly that those complicated a-dependent terms are
all absorbed concisely into gauge-fixing and Faddeev-
Popov terms and the rest becomes the usual a-
independent gauge-invariant Yang-Mills action. For this
purpose let us turn to derive the zero-slope limiting form
of BRS transformation (6.28). As explained before, the
massive fields do not contribute at all in this case and we
have only to calculate directly (6.28) by retaining only the
massless field components

I p& =a
1 I 0&riMNA (x,a).

I

The 0(go) part Qsp is immediately calculated since only

p (c iaii +a~ ici ) part o Qs is re evant he

(3} I,
'~ ) r0/a& (2) s0/a2

W = C )8 —C )e + C ie
a3

(8.28)

~0/ r+ 0/ sfor the relevant pieces here and also of X» ——e '
(r&s), we find

a, ID&riM ( )iMiqoA~(x a};ai', Io&a C(

+ic,
I
0&e}„A"(x,a) .

(8.27)

The 0 (g ') part (6.29a) can be calculated relatively simply
again by using the OSp(d/2) vector notation. With the
help of Eq. (3.51) which says

a 1
'

ID&3riM1v( )I 1821A (a3)

2
= g [A '( —a )nM, 1v,. &Dl~i'l~"'g zu '1 9KL+llu —1 e"P —g lo&123

i=1 1',S ar
r

= —« —ai}A ( —az)9M1v 12&o I
~i" +(—)'"'A ( —a1)« —az)2)MN 12&0 I

X21"'

I~

M
1 M2+A ( —a1}A ( az)2)M, %12)—M2%212&Dlx21 ~1 c 1 +T'ai 1 rixL~ 11o&123

a3 rs

C( a1)A ( az)gMN+ —1 I
0&3+( } ' A ( —ai}C( az)2}Mwa '1

' —
I
0&3—

a2 —a) (3)+ — A ( ai)nMNA ( ——az)c-11o&3
a3

(8.29)

where we have omitted the common argument x and

f da)da2
5(ai+az+a3)

in these equations. The O(g ) part does not survive the

l

a'~0 limit as explained before and so Eqs. (8.27) and
(8.29} give the total BRS transformation in the zero-slope
limit. Again by using (8.3) they are rewritten in the ex-
pressions for Yang-Mills and Faddeev-Popov ghost fields

A~, C, and C, separately:
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da idaho
+tgvM f 2

5 par

x [A„(—ai), C( —a2)],

da&da&
5iiC(ai) = —,' ig—vM 5 'ga„

2m'

(8.30) X(x,a) = f da e' X(x,a) .
(8.32)

Indeed in this Fourier conjugate space a, (8.30) becomes

5iiA„{x,a) =t)&C(x~a)+igvM[Aq(x~a), C(x,a)]

the usual Yang-MiHs one " and in fact takes exactly the
same form as the latter if we perform Fourier transforma-
tion with respect to the variable a:

X(x,a) = f e ' X(x,a),da
2m

5s C(ai) =iB(aq ),

X I C( —a&),C( —ai) I,
=DqC(x, a },

5&C(x,a)= —,'igv—M t C(x,a), C(x,a)),

(8.33a)

(8.33b)
where we have multiplied a factor i to make 5ii ——i5&
coincide with the conventional BRS transformation in
Yang-Mills theory and introduced the "Nakanishi-
Lautrup field" 8{x,a) to denote here

B(as)= 8 A(ai)

daidai
+gYM f 2

5 par
p

ai
X i — [3 ( —ai), A "(—ai)]a3

+f, , I C( —a, ),C( —a, ) j

5ti C(x,a ) =i8 (x,a ) . (8.33c)

S=Sp+Si+S2
= f dx da tr[ —, F„„(x,a)F—""(x,a)

The existence of the a parameter, therefore, implies that
the present theory represents an infinite number of copies
of usual Yang-Mills theory. We now see that we can con-
sistently identify the usual Yang-Mills field A„(x) with
A&(x,a) with some fixed value of a, e.g. , A&(x,a=0).
Indeed, with straightforward but a little bit tedious alge-
braic calculations, we can rewrite the above complicated
action (8.25} into the following concise form:

(8.31) +i5ii{C(x,a)G(x, a))], (8.34)

with f, ~, defined in (8.26).
The BRS transformation (8.30) has very similar form to

where F&„and G are field strength and gauge-fixing func-
tion, respectively, given by

F„„(x,a)=a„~„(x,a) aQ„(x,a—)+ig„[A„(x,a),A„(x,a}], (8.35)

da idaho, . ai
G(x,as) = ——,'8(ai)+B A(ap)+gvM 5 g a„ i fA„( —ai), A "( ap)]+f IC( —a—i),C( —a2) )a3

(8.36)

with f being any function of ai and a2 satisfying the following relation with the previous f of (8.26):

(8.37)

A remark would be necessary on the meaning of the 8(x,a) field in (8.34). The 8{x,a) field here is the Nakanishi-
Lautrup field in its proper sense, which is not the previously defined dependent variable given by Eq. (8.31) but an in-
dependent (auxiliary) field subject to the following BRS transformation law:

AC(x, a)=iB(x,a), 5aB(x,a)=0. (8.38)

Notice that the first equation of (8.38) has the same form as (8.33c) but the meaning of 8 (x,a) is different. In fact the
previous BRS transformation (8.33} is nilpotent only on-shell just like the string BRS transformation 5s was, while the
BRS transformation here given by (8.33a), (8.33b), and (8.38) is off-shell nilpotent. The BRS transformation 5& in (8.34)
is the one in this sense. The previous Eq. (8.31) now holds merely as an equation of motion with respect to 8-field varia-
tion. This is seen from the following more explicit form of the gauge-fixing and Faddeev-Popov part of the action (8.34):
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SG„+Fp ——f dx da tn5, {C(x,a)G(x, a))

1
A')= f dx tr —,8 ( —a)8 (a)—8( —a)BA (a) —gv 8 (a3) i [A„(a)),&"(a~)]+f, , I C(a) ),C(ai) I
CK3

L

0', )
—tX2

+iB"C(—a) D C(a)+gvM C(ai)[A"(a)) D C(a )]

+gvM f ~ ~)+ iC(ai)C(a4)C(ai)C(ai) (8.39)

Here again we have omitted the obvious a-integration
symbols such as

da, da,da,
5(a)+ay+ay) .

(2m )2

[Note that f~, ~ in G appears in this expression only in

the combination f ~ +f (~+~ ) of (8.3'7).] If we

eliminate the 8 field by using the equation of motion
(8.31) or by path integration over 8, we actually recover
the previous action (8.25) from the present one (8.34) with
expression (8.39).

The action (8.34) gives our final result for the zero-
slope limit form of the covariant string field theory. It
shows that the gauge-invariant part —,'F„„'(x—,a) just
coincides with the usual form of Yang-Mills theory and
that all the terms possessing nontrivial a dependence ap-
pear only in the gauge-fixing and corresponding
Faddeev-Popov terms SoF+Fp of (8.39). Since the physi-
cal S matrix is independent of the choice of gauge fixing
as is well known in the usual Yang-Mills theory, '3 '" the
present theory has the same physical S matrix even if we
choose a gauge local in a, e.g., a gauge-fixing function
G(x,a) = ——,8(x,a)+8 A (x,a) instead of (8.36). Then
the action (8.34) takes the form

S= f dxdatr[ ,'E„„(x,a)+——,'—8 (x,a)

—8(x,a)B A (x,a)

+i 5i'C(x, a)D„C(x,a)] . (8.40)

This action clearly describes an infinite (continuous) num-
ber of copies of usual Yang-Mills system; the worlds with
different values of a are quite independent of one another
and realize separately the same physical S matrix as the
usual Yang-Mills one. Therefore, as announced before,
we can consistently identify our gauge field with a fixed
value of a, e.g., A„(x,a=0), with the usual Yang-Mills
field A„(x). The physical S matrix is unitary on each a
separately even in our original zero-slope limit system
(8.34). Note that this is a result valid at full quantum lev-
el contrary to the tree-amplitude arguments in the previ-
ous section.

IX. DISCUSSION

We have presented the covariant string field theory in
full detail for the bosonic open-string case. We have es-
tablished the BRS invariance and its nilpotency for the
gauge-fixed action on the one hand, and the gauge invari-

ance and its group law for the gauge-invariant action on
the other. It is remarkable that the condition of critical
diinensionality d =26 was required at euery order level of
coupling constant g to prove the BRS nilpotency and
gauge invariance. Also remarkable is the deep connection
between duality and those invariances of the present co-
variant theory.

Now there remains no doubt that our string field theory
is a consistent and satisfactory one at least at the tree level

(or as a classical field theory). We have shown that the
on-shell physical amplitudes in our theory correctly repro-
duce the usual dual amplitudes for general E-string
scatterings with arbitrary external states.

A characteristic point to our covariant string field
theory is the existence of string-"length" parameter a.
Although this parameter is certainly unphysical, it is inev-
itable in our formulation. We suspect that the presence of
the a parameter is essential to any consistent formulation
of covariant string field theory. Indeed recall, for in-

stance, the pregeometrical string field theory in which a
natural generation of string kinetic term was possible
thanks to the presence of the a parameter freedom One.
may, however, prefer other covariant formulations which
are free from such an unphysical parameter a. Actually
as such an example there is Witten's formulation of open
string. ' ' However, we think that Witten's theory
needs further precise confirmations as for its gauge invari-
ance and reproducibility of usual dual amplitudes with
such an accuracy as presented in this paper.

On the other hand, the a independence of the tree on-
shell physical amplitudes was proved in our formulation.
We expect that this a independence holds at any loop or-
der level. Indeed we have sho~n it is actually the case in
the zero-slope limit. The structure of our "Yang-Mills"
action (8.34) obtained in that limit is very suggestive; the
explicit n-dependent terms are all contained in unphysical
gauge-fixing parts. We suspect that essentially the same
situation occurs even before taking the zero-slope limit.
%e are now actually trying to prove it by looking for a
physical symmetry of our action under some transforma-
tion of P, like (7.61), changing its a parameter and hope
to be able to report it in the near future. If such an expec-
tation is the case, the on-shell physical X-string arnpli-
tudes of L-loop diagrams have the following particular
forin of a dependence:

+~ da~
2m.5 g a„g f 1 )&T(a indep) .

r=1 /=1
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['rhis is understood easily if we take the "Yang-Mills" ac-
tion of the form (8.40) literally. ] The divergent factors

~

~

dai/2nc. an be factored out unambiguously and ab-

sorbed in the overall multiplicative parameter of the ac-
tion such as A' or g. The a-independent part T(a indep)
gives the true physical amplitude for which unitarity
clearly holds. [Recall that T(a indep) stands for the usu-
al Yang-Mills amplitude for the case of zero-slope limit. ]

The closed (bosonic) string field theory was already for-
mulated in our paper II. Now that we have presented the
full details of the open-string case here, the reader should
be convinced that the closed-string field theory is also
correct. We have not tried to construct a string field
theory of a mixed system of open and closed strings in
this paper. In the light-cone gauge formulation it was
necessary to include the closed-string field exphcitly in the
open-string system. ' However this is not so clear in the
covariant formulation. In fact there are some indications
that the closed string is already contained in our pure
open-string system. For instance there appears a particu-
lar diagram at the one-loop level drawn in Fig. 26 which
is absent in the light-cone gauge case in which the string
can propagate only in the positive r direction. The inter-
mediate state of this diagram looks like a closed string, al-

though it must be confirmed by explicit computation
whether the closed-string pole is actually generated or not.

There remain certainly various interesting subjects to be
studied further. (i) The gauge-fixing procedure should be
clarified for the gauge-invariant action. It was pointed
out in ID that the usual successive gauge-fixing pro-
cedure' applied to the free-string theory does not work in
the case of the interacting theory independently of the de-
tailed form of the string vertex. How is our gauge-fixed
action derived from the gauge-invariant one? (ii) The ex-
tension to superstring' (including heterotic string2) is a
pressing issue. We expect no serious difficulties in this
task. (iii) We have recently proposed a "pregeometrical
string field theory"" which is completely independent of
the space-time metric. The action is the closed-string ac-
tion consisting of a cubic interaction term alone. We
clarified explicitly the mechanism of how the kinetic term
is generated by the condensation of the string field. The
remaining problem is to find true solutions of the equa-
tion of motion 4s 4=0 (Ref. 4) which corresponds to
various possible background metrices. Also missing is the
general algorithm to solve such an "algebraic" string field

equation. (iv) A much more challenging problem would
be the "spontaneous" generation of superstring field
theory from the bosonic one in d =26. At present only
suggestive arguments exist. The more general problem of
spontaneous compactification into lower dimensions
should also be studied. %e can in any case attack thero
with our machinery of covariant string field theory now.¹teadded in proof. The authors have recently suc-
ceeded in proving the a independence of the on-shell
physical amplitudes of any loop order level, as was expix;t-
ed in Sec. VII. Further it is easily shown based on this
knowledge that the closed-string pole is actually generated
in the pure open-string system at the one-loop level. The
details will be reported in a paper in preparation.
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APPENDIX A: PROPERTIES
OF THE NEUMANN FUNCTIONS

&o =Rep(zo"') = g &»
~
zo —Zi

~
(A5)

FIG. 26. A candidate diagram which may yield a closed-
string pole at the one-loop level in the pure open-string system.
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FIG. 27. A typical light-cone diagram to vrhich the upper
half complex plane is mapped by Mandelstam mapping (A1).
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for a suitable zo' satisfying

=0.
Z0 Zi

In the 3-string case of Fig. 2 or the 4-string case of Fig. 6,

the solution of (A6) in the upper half-plane is unique and
~0"' is common to all strings.

The (Neumann) functions X„~ corresponding to a
light-cone diagram like Fig. 27 specified by the parame-
ters (a;,Z;) are defined as the Fourier components of the
Neumann function X(p,p) (Refs. 20 and 22):

N(p„,p, )= —5 g —e ' ' cos(ncr, )cos(ncr, ) —2max(g„g, ) +2 g X„" e " 'cos(ncr, )cos(mcr, )
n lg„—k, l ng, +mg',

n&1 n, m&0

=in ~z —z
~

+ln ~z —z"
~ I

= —,'ln[(z —z)(z —z')(z' —z)(z* —z')]I,

where p, and p, are assumed to lie in the region of the rth and sth string strip, respectively, and

p, =p(z) =a„g„+ro"'+i P„,
p, =p(z) =a,g, +so"+i13, .

It is often convenient to rewrite the expansion (A7} as

(A8a)

(A8b)

N(p„p, )=—5 g (co+"+co+ ")(co" +co ") 2ma—x(g„,g, ) + —,
' g X"„' (co"„+co,'")(co, +co,' ),

n&1 n, m&0
(A9)

where

f +jo'„g g +iau„=e '=e ' ", cos=e '=e ' (A10}

1 ~
1 („)g a;ln (z —Z; (

— rI)"',
Q» a,

(A15)

and

(co„,co, ) (g„&g, ),
(co+,co )= '

(co„co,) (g„&g, ) .
(Al 1)

which is obtained by taking the real part of (A8a}.
In order to derive (A13), we first differentiate (A7)

[(A9)] with respect to g„:
r

N(p„,p, )=5 —,
' g co„"(co,"+co,'")+1

Various formulas for the Neumann functions N'„' are
derived from (A7) and (Al).

n, m &0

1. Integral formulas for N „

We have the following expression for X"„
r

ln
~

Z„—Z,
~

(r~s),

az
2 ag,

1 1

z —z z —z

(g„&g, ) . (A16)

(A12)
in~z„—z, ~+ (.)

) Q» Q»

Here we have assumed that g, &g, and made use of the
formula

rs sr- 1 dz 1&o&o.=— z . e ' (n &1),
Pl 2&l Z —Zs

(A13)

1 dZ dZ 1 nor(s) mg—, (z)—
nm nm ' 2m' ' 2ir) (z z)2z . z

(n, m & 1), (A14)

a a 1 a . a
2 ag', acr„

5 + g nN„oco,"=
n&1

Bz 1

ag„z —Z,

By taking the limit z —+Z, (co,~0) in (A16), we get

(A17)

(A18)

where g„(z) and g, (z) are given by (ASa) and (ASb).
Equation (A12) is derived from (A7) by putting z~z,

(which implies g, ~—ao ) first and then by taking the lim-
it z~z„(g„~—00 ). In the case of r =s, it is necessary
to substitute the following expression for g, coming from
the 5~ term of (A7) before taking the second limit:

E uation (A13) is obtained by performing
~

~

dco, co„" ' X (A18) around the contour enclosing
co, =0 (z =Z„).

Equation (A14) is similarly obtained by differentiating
(A16) with respect to g, :
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E(pr pg)=5~ g g nctlr co
~ Bg, n&l

+ 2 g nmN „~corro,
n, m&1

1 Bz Bz

~

,
~fr Bg, (z z—)

4. Projective transformation of F „"'

Under the (infinitesimal} projective transformation

(A26)

the interaction time ro' of (A5} and the Neumann func-
tions N „change by the following amounts:

(A19)
5~'"'[=5p(z'"')]=5y g «Z;, (A27)

and then considering

-n —] —m —1~ ~I9

2. Other properties of F„„

5%co= 5P+Sy(Z, +Z, ),
1 dz nrr(—z)

5N 0——5y — z . e ' (n&1),
n ' 2ni

5Ã„~ =0 (n, m &1}.

(A28)

(A29)

{A30)

r',"' (n =O),
N„ca, =

s=1 0 (n&1),
Equations (A28)—(A30} are most easily derived from
(A12)—(A14). From the above formulas we see that

Cr Qs+
7l

N

g cr &a&'mo (A21)

Ex= 2 g +nm+' 'n c'-'m
n, mpO

r, s

These formulas are easily obtained from (A12)—(A14}
and the relation

is invariant under (A26) as long as ac"' is conserved, i.e.,
y~Ã

(r)

dp(z}
dz dz

3. Singularities at zo"

(A22} APPENDIX 8: PROOF OF THE CONNECTION
CONDITIONS (3.12), (3.16), and (4.4)

n & ~g„dp(z)
nlrb

, cr, dz

n g ng, dp(z)
&nm

„q) rrr s-xI,"'

5S-Zs a, ~

i=1 ZO —Z; &s

si
mO

(m &1) . (A24)

In this appendix we show that the 3-string vertex

~
Vz(1,2,3)) of (3.9} and

~
VFp(1, 2,3)} of (3.13) satisfy

the connection conditions (3.12) and (3.16), respectively.
The following proof applies straightforwardly to the proof
of (4.4} for the vertex (4.6) in the 4-string case.

Let us start with the connection condition for X&"',

[e,X"'(o,)+e,X'"(o,)—X'"(o,)]
~
V, (1,2,3))=O.

(81)
Equation (A23} is nothing but {A18). The LHS of

(A24) is divergent at, z =zc"' (Ref„=o) and is approximat-
ed by using (A.21) for large n:

m
&nm — g «&noN" 0.

n~m Qs

(A25} and (A23) lead to (A24).

Letting the oscillator expansion of X„'"'{ )oof (2.3),

X'"'(o, ) = xr+i g —(a„'"'—a'"„)cos(nor„)
rr nh| n

to operate on
~

Vz ) of (3.9), we get

Mix'"'(err)
~

Vx(1,2,3))=Mnx'"'(o„) (2m) 5 gp, exp(Ez) ~0)
s

=(2m)" i5' ~, +5 ~, i g a'"'„c—os(no„)+—[X"(o„),Ez] exp(E„)
~
0}

, s s n&1

=(2m) i5' ~, e ~0)+i —g a'"„cos(ncr, —)+ g N„" a"' cos(no, )
~
Vx{1,2,3}) .

s np1 n, mpO

(83)



By comparing the coefficient of the oscillator a"„we
find that the connection condition (81) is satisfied if we
can show that

and the connection condition (3.12) for 0"=(1/a„)P"
and (1/a„}X'"' are satisfied if

gp, g e, g N "ocos(ma„)
s r =12, m &0

e, 5 cos(no, )+ g mN"„cos(mcr, )
r=i 2 &r mal

—g N 'ocos(mo3) =0
m&0

5 COS(lfo'3)+ g mN rnnCOS(m0'3) (5 &0)
CZ3 m&1

g e, —5 —cos(no, )+ g N „cos(mo, )
r =1,2 m&0

= —5'—cos(no3)+ g N~„cos(mo3) (n &1) .
Pf mpO

(85)
[The (3'(g,p, ) part of (83) automatically satisfies (81) be-

cause ei+e2 ——1.] That Eqs. (84) and (85) actually hold
can be seen by noticing that they are equivalent to the fol-
lovring identity: a3

—5 'sin(no3)+ g mN '„sin(moi)
m&1

r

g e„—5 sin(ncr, )+ g mN „sin(mo„)
r=1,2 r m+1

N(p. p. ) Ig, =o=N(p3, p, ) ~g, =o (r=l «2), (86)

fo«he Neumann function (A7) for three strings with
ai,ai & 0 and a3 &0 (see Fig. 2). This identity is trivial be-
cause p„with $„=0and p3 with $3

——0 are the same point
on the p plane.

Next is the connection condition for

(n &0) (89)

hold, respectively. [Both in (88) and (89) with n =0,
g,p, should be multiplied. ] Again, (88) and (89) are
guaranteed by the identities

=(1/3/n ) g a'„"e
1 1

N(i.A) =
~

NV 3i )
+r r f =0 ~r3 3 g'3 ——0

(810)

Similarly to (83) we have

A + (o )I Vx(1 2 3)& = +incr„a „e
np0

and

1 1
N(P„P, ) = N(P3, P, }

+r ~r g, =O a3 BO3 g'3=0
(811)

\

n, m&0
s

X
~

Vx(1,2,3)&, (87)
I

respectively.
The connection condition for C+' c'"'+in,'"', ——(3.16)

with 0'"'=(1/a„) C+', leads to (88) and (89) since

C + (0'r)
~

Vpp(1, 2, 3) &
= y y „"e 5 y c 11 exp(Epp)

~
0&

ar 5'
n &s

g y'"'„e '+ g nN„y"' e '
~

Vpp(1, 2, 3)& .
n&0 n, m&0

s

(812)

Finally, consider the connection condition for c"and m.,".For m-,
"eve have

a, i~,"(~„)
~
V»(1,2,3)&= a,c'0"' —i g —(y'„' —y'"'„)cos(n~, ) |1 g co"' exp(Epp) ~0&

7r n&1 n As

e ~0& i —y— y'„cos(nor,—)+ y N„y ' cos(ncr„)
~

Vpp(1, 2, 3}&,
'1r 7r n&1 n n&0

m&1
s

(813)
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and hence the condition (3.16) for 0' '=a„in,' is satisfied owing to the previous identity (85) for X'". As for c"' it is

sufficient to show

[eic'"(a'i)+e2c' '(o2) —c"'(oi)]
~

VFp(1, 2,3))=0 (814)

for c'=(8/Bcr)c. Indeed, then, since c'"'(o„) vanishes at the string ends, (814) can be integrated to yield the connection
condition (3.16) for 0'"'=a,c' '. The connection condition (814) leads to the previous equation (88) for n & 1 because

c'"'(u„)
I

V„p(1,2, 3)& = — g (y„'"'+ y"„)cos(«„)
I

V„p(1,2, 3) &

ar 'n)1

g y"„cos(nor„)+ g nN „~ y"'~ cos(no, )
~

VFP(1,2,3)) .
n&1 n, m&1

APPENDIX C: DERIVATION OF (3.47)

From (3.33) and (3.46)

po p(» =a(—z zo)'+ b(—z —zo)'

+c{z—zo)'+ ' ' '

p(z') =p(z) —a5,
we have

f +—f + f + ' ' * ——5+e +—e"+ —& +4 b ~ e
8 0 8 Q

where

f=z' zo, e=z —zo . —

By expanding f in terms of 5 as

(3.33)

(3.46)

(Cl)

(C2)

dp(z)
dz

1 1 3b c 9b2

2g p ~2 g2 Sg3

+0(e'),

(z' z) '=(f e) '—= g f„5—"
n&1

, +0(5)1 1 2

f 5

fs 1 b 1 2c 3b+——+ —,+0(e) .
(f )i 2e a e a Saz

Equation (3.47b) now follows from (3.35):

(3.35')

f=e+ g f„(e)5",
n&1

(C3) 1 1 3b=0(e)—+ + — +0(e)

inserting in (Cl), and comparing the coefficients of 5"
(n = 1,2,3) we get

1 3b 4c=2@+ e + e'+O(e ),fi

a+0(e ), (C5)
Sa

+0(5) .

The left-hand side of (3.47a) is rewritten as
' —1

dp(z) dz' 1

dz dz (z' —z)~
L

Then from (C2) and (C3) we have

(C7)

(C8)

dz' 1 de 5„1+ 5"
(z' —z)

g f„5"
n&1

2 f2 1 d

f (f)' 5 «(f)' f' —2 +O(5) .fi
f 3
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Equation (3.47a} is a consequence of (C4)—(C6), (3.35),
and (C9).

APPENDIX D: DERIVATION OF EQ. (3.51)

In this appendix we prove Eq. (3.51), i.e., the equality

z —= (1—Zp )z/(z —Zq ),
the above p(z) is rewritten into the form

p(z) =p(z)+ To,

p(z) =a, ln(z —1)+a,lnz,

(D3)

(D4)

5—cos(nor'z") g—N cos(rno't")
s m&1

n —1

=&Nn + g Nn-mm
+s m=1

3

X"=5"(a, i
—a, +i)/a, + g e'"

with a very large "time" translation To ———ailn( —Zi)
—a2ln(1 —Z3). Now, the RHS of the basic formula (A7)
of the Neumann function is written as

»
I
z —z

I
+»

I
z —z '

I
=»

I
z —Z

I
+» I

z —z *
I

+2»
I
z —Zi

I
+2ln

I
z Z31

—21n IZi(1 —Zi)
I

. (D5)

(e' =1, ao=—aq, a4=ai) . (Dl)

First of all we should notice that the Neumann function
defined in (3.11) and appearing here is the one for which a
special parameter choice Zi ——1, Zz ——0, and Zq ——oo is

made in the Mandelstam mapping (Al). To deal with this
choice properly, let us first consider the case in which we

set Zi ——1, Zz ——0 but keep Zz »1 finite. Then the Man-
delstam mapping (Al) is given by

p(z) =ailn(z —1)+azlnz+ailn(z —Zi )

On the other hand, Eq. (A7) itself in the limits z-+Z&
(g,~—oo ) and z~Zi (g,~—oo ), respectively, leads to

lnIz Z31=5sÃs+ g No' e 'cos(ma, ),
(D6)

In
I
z —Zp

I
=5„g,+ g N'„oe "cos(no„),

npO

which further yield by taking z~1,0 (gi i~ —oo) or
Z~1,0 (gi 2~ —oo}

(Zi »1) . (D2) ln
I
Zi(1 —Zi)

I
=Noo+Noo. (D7)

Introducing a new variable z by (a projective transforma-
tion)

By substituting (D6) and (D7) into (D5) we find that the
basic Equation (A7) or (A9) is now rewritten in the form

N(P„p, )=N(p„,p, ) ——2[in
I

z —Zi
I
+ln

I
z —Z&

I

—ln
I
Zp(1 —Zi)

I ]

= —5 g (to+"+to+ ")(co" +co'")—2max(g„(, )
np1

+ —,
' g N m(to„"+to„'")(to, +cog™)—25,+„—25,g,

n, m pO

=ln Iz —z I+ln Iz —z' I, (DSa)

N „=N„5„oNo"— 5oN".—'o+5.o5 o(N m" +N e"') (D8b)

This equation for N is easily seen to be in fact indepen-
dent of Zi and we can safely take Zi~ oo (although not
necessary). So Eq. (DS) is regarded as a basic equation for
the Neumann function N for the parameter choice Zi ——1,
Z2 ——0, Zi=oo, in place of (A7) or (A9). Indeed it is

these Fourier components N „ in (DSb) that were given
in (3.11). One can easily derive formulas (3.11) from
(DSb) by using (A13), (A20), and (A21). The P(z) in Eq.
(D4} gives the Mandelstam mapping for this parameter
choice, and defines the following variables similarly to
(A4), (A5), and (A6):

dp(z ) ~ ai
A A

QZ &=&0 j =1 ZO —Z
(D 1 1)

w (1) ~(2) w (3) 2
ZQ —ZQ —Zp

CK3

3~ (1) ~ (2) ~ (3)=1o ='To =~a;lnIa;
I
=1o.

(D12a)

(D12b)

B|i (D4}, g, is identical with the former g, and
ro"' ~o' ReTo, P„=P—„—ImTo. From (D10) and (Dl1)
we find explicitly

p(z) =ailn(z —1)+a2lnz =a,g„+so'+i p„,
2

'fo =Rep(zo }=Q a lil Izo —Z; I

(D9)

(D10)

From. now me drop the carets since me treat only caretted
quantities hereafter.

Now we return to the subject of proving (Dl). Taking
the hmit z~Z, (g, ~—oo ) in Eq. (DSa) we obtain
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lniz —Z, i
=5 (,—5„+„+—,

' QN„p(co,"+co„'"). (D13)
n&0

Operating co„c)/cico, on (D13), we get

=(z —Z, ) 5„—5„i+g nN"„'pco,"
n&1

(Dga) yields with an abbreviation 0,"—:(co,"+co,'")

—5~ g co"„0, "+ g nN „co,"0,, 2—5,3
nial n, mpo

az+ co„, (D15)
z —z z —z'

(Note that 8/Bco„ is a differentiation with co, fixed and so
co,B/Bco„g„=—,.) While the differentiation co,5/Bco„of

when g, ~ g, . Replacing co„c)z/Bco, by the RHS of (D14)
for s =2, we find

n&1 n, m &1 n&1
5,2 5.i—+ g nN". pco.

"
np1

(D16)

On the other hand, differentiation co„B/c)co, of (D9) leads to

a1 a2
+ r =ar ~

z —1 z Bcoi
(D17)

Substituting (D14) for s = 1 into this, we obtain

CK2

CE3+
Z

Qr

5„i—5,i+ g nN"„'pco„"
n&1

(D18)

Now, in formula (D16), we put z on the interaction point zp '= —cia/cia of (D12a) which corresponds to taking g, =0
(pg„) and cr, =aq'. Then, 0, =2cos(moi") and (D16) becomes

5~ g cos(nal") gn—N„cos(moi") co„"=g nN„"pco„"—5,s —czar as+
n&1 n, m &1 nial

5,2
—5„i+g nN'„pco,"

n&1

(D19)

Because of (D18) the last two terms equal

r

—5„i+ & 5, i
—5,i+ g N'„pnco," 5„2—5„i+g N'„pnco„"

Q npl n&1

g [(5„i—5„i)N"„p+(5„2—5,p)N „"p]nco,"+ g nmN'„'pN" pco,
"+

r n&1 n, m &1
(D20)

Then, by a little calculation with the help of the formulas given in (3.11),

Ar A'~

& nm.
= —0'1O'2~3 +

tl P?l

N„'N' (n~m &1), (D21)

A1EX2 N"„(c„c„c,)=(1,-1,0) (n &1),
0!g

the RHS of (D19) is shown to give

A'1O!3 CK2&3
(5,2cci —5, ia2)+ (5„|—5„g)— (5„2—5„3) N"„+ g N"„" nco„" .

n&1 r rn =1
(D23)
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APPENDIX E: DIRECT PROOF OF {3.7)
IN TERMS OF CREATION-ANNIHILATION

OPERATORS

We present in this appendix an alternative proof of the
0(g) nilpotency equation (3.7). This proof is a straight-
forward one by a direct computation of g,',Q"

~
V) in

terms of creation and annihilation operators of oscillator
modes and necessarily becomes more lengthy and tedious
than the one given in Sec. III. Nevertheless it has an ad-
vantage in manifesting how the intercept parameter a(0)
is required to be 1 in addition to the condition d =26.

For convenience we Fourier transform the 3-string ver-
tex

~
V(1,2, 3) ) given in (3.54) into the old co representa-

tion:

3
dc'"dc' 'dc"'exp y c'"'c'"

~
V(1,2, 3))

r=1

= —p(a), az, a3)5(1,2,3)We " ' '
~
0) )i3,

3
~(1)pr(2) ~{3) ~ ~ ~(r) pr(s) pr{t)

rst3! f;S,t =1

W'"'=co"'+w'" [w'"' given in (3.51)] .
(El)

In this representation Qz and L take the forms

8
Qi) =c()L+ I+Qi),

Bco

It is easy to see that the quantity enclosed by the large
parentheses here is just a, times X"given in (Dl). There-
fore, comparing the coefficients of neo„" of the I.HS of
(D19) and of (D23), we obtain the desired equation (Dl).

if and only if the critical values a(0)= 1 and d= 26 are sa-
tisfied.

Multiplying e by (E3), we can rewrite it equivalently

3

e g We ~0)= —,
' y e W'"'W'"[Q' ' W'")

r,s, t =1

r, s, t =1
W(r)W(s)Ig(F) W(t)]

3—Wg [L",W'"]
~

0) =0 . (E6)
r=l

By using (E6), Eq. (E4) is rewritten as

w g,'"—g[L("),w(")] ~0)=0.

—Wgi)
'

i
0) =0,

Qa —=e Qae =Q)i+[go ~l+ z [[Qa +] F](F) —F F (E4)

Here in the definition of Qi)
' the terms of higher power

in E do not survive since Qz contains only terms at most
quadratic in annihilation operators. By multiplying 8'")
(u = 1, 2, or 3) with (E4) and using ( W'"') =0 for each r,
~e see that the equation

wIg,'",w(")~ ~o)=o

should hold for any r as necessary conditions for (E4).
Further, differentiating (E5) with respect to co"' and sum-
ming it over r =1—3, me obtain

L= ——,'p' —+la .a.+i(y .y. y.y.—}]
nial

(E2) As a result, the proof of (E3) or (E4} is reduced to that of
(E5) and (E7), which we can write in the forms

Igi) W"
I ~0)

~ () ()( ) &&)=0 (E5')

+a(0),
where a(0) is the intercept parameter which we will see
soon to be fixed to its critical value 1 also by the condition
(3.7), g, ) Q)I)'

~
V) =0. More precisely we show that the

equation since

3
Q' ' —g[L" W'"']

r=l co(s) =—m(s) (s =1,2, 3)

(E7')

Q, We'~0)=0, Q, =g g,", (E3) s=l s=l

3 3
W= g W"'= ff (c"+w"')

holds for each fixed set of values of (p„a„}(r=1,2,3)
satisfying conservations

3 3

is a 5 function 5( W' ")5(W' ')5( W' ').
After some straightforward algebraic computations by

using commutation relations, we find that Eq. (E7') is
decomposed into the following four sets of equations,
each implying an infinite number of identities among the
Fourier components X „ofthe Neurnann function:

X — X
2

2 2
n(m n) — N „„mw~—+a—(0)gw" y'"'~ =0, (E8)

—p, w" —5 P.
m&l m

™
r, s

2p„N' ——P g
™-1—„

A A

(s)
y =0,
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(1/na, a, ) 5 a„(m+n)N' +„+e~nN „a—„a,mN" w„
rn, n p1

r,s
n —1 m —1

+a„g k(n —k» „kNk —a, g nkNkN k„P a" y"„=0, (E10)
k=1 k=1

(n +k}N ~,.+k+ply, n +
r, s, t

n —1 k —1

+ g (n —l)N" „ IN iI, — g m(k —I)N "iN*„'i, i
a'"' a"'„y'"k =0. (El 1)

Qs 1=1 Qt 1=1

Here w~ is defined from w'"' in (3.51) by the relation

3

w"=i+ g u y" /m,
s=1trl p 1

or, more explicitly,
Nl —1

w"=X mN' +a, ' g mN"
n=1

with X given in (3.51), and a in (E9}and e~ in (E10) are defined by

Q =Q1Q2Q3, (E13)
t=1

As a matter of fact Eq. (E7') contains another type of term proportional to oscillators y "~y"„y"'k, which yields, how-
ever, the same equations as (El 1). On the other hand, Eq. (E5') consists of only the terms quadratic in ghost oscillators,
whlcli read

rn —1

(n —m)w +„+rnw w„"+
2

mnN"„+ g n(m+k)w" kNk„y" y'"„=0 (for r=1,2, 3) .
1

NgPl 2Q Qr k=1
s, t

After all these five equations (ES)—(Ell) and (E14) are
equivalent to the 0(g) nilpotency condition (3.7).

I.et us start with the proof of the first equation (ES).
We should note that those terms in (ES) come from the re-
normal ordering of BRS charge at the vertex, and hence
depend on the values of space-time dimension d and the
intercept a(0). For the functions f„(x)=I (nx)/
n!1 (nx n+1) give—n in (3.11) which are related to the
components N „and N'„of the Neumann function we
have a generating functional y(r0) introduced by Mandel-
Stam, 20

If we define another function X(co) by

(E17)

co X—X+(1—2y)X +y(1 —y)X =0.
QQ7

(E18)

Further the application of an operator

then, by differentiating (E16}twice and eliminating y, we
find

y(~)—=y g f„(y)aP,

which satisfies an equation

(E15)

X 12y a
3 BX

3y(1 —y) Bco Bc@

1 =8 ~—Q)8'~ . (E16) to this yields an equation (at most quadratic in X)

(1—2y)
Bco

2

X—u X +3y(1—y) X co
a

Blip GAP
X—3, a) X

Bco
L=O. (E19}

lt is easy to see that, by using Eqs. (3.11) and taking y = —a„+,/a, Eq. (E19) reads in its component form

m —1 n —m 12n —m)—
ar+1 ar I n 1 n=1 PB

(E20}
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If we use this identity, Eq. (ES) is reduced to the form solve (Al) with respect to z:

1 1
' d —26

n(m n)Xn m —n

mp1~ ar n=1
r

+ [a(0}—1]g w~ y
" =0 . (E21)

s

The LHS corresponds to the quantity (3.49) appearing in

the previous proof in Sec. III, and vanishes if and only if
the critical conditions d=26 and a(0) =1 are satisfied as

is clearly seen.
Next is the second equation (E9). It actually holds sim-

ply by the momentum-conservation condition

,pP=0. It is interesting to note that we could have

determined uniquely the ghost front factor W of the ver-

tex
~
V) from this equation alone if fV is assumed to be

cubic in ghost operators.
For the proof of the remaining three equations, we need

one more relation [(E28) below] which gives a connection
between mN „and mN" . It is derived as follows. Dif-
ferentiation co„B/Bco„of Eq. (DSa) in the previous appen-
dix yields, when g„&g„

z(coi)=exp ai g N„'coi
n)1

70 2 n
z(coz) =co&exp +ai g N „coi

n&1
(E25b)

z(co3) =co) exp
—1

T0 3+im+ai g E cnoi

niala3
(E25c)

X,(co„)=a, g nN„'co„",
n) 1

then (E25) can be expressed by X, as

a1 —a2X1 a2X~z(coi)=, z(coz)=
ai+a3Xi '

a2 —a3xi

(E26)

z(coi) =—a2 1

a3 X3

If we introduce X, (r=1,2,3) by slightly redefining the
above X in (E17) as

COs

+
Cur COs

I

z —z z —z

g mN"„co„(co,"+co,'")= —5„
m, n&0 r —a) s

Here we have used the first derivative of (E16} to elim-
inate the exponential dependence on the N'„'s. Owing to
(E27) we can eliminate z and z from (E24) and obtain the
desired formula after some calculation:

Xco„+2(5„i—5„) .
r

m& mncor cos = 5rs
m, np1

z z z —1

z
Xcor

5COr

which, by the help of (D14) for s =2, is rewritten as

(E23)

m+ mn~r cos = 5rs-
m, n&1

z
1——

z

X 5„2—5„i+ai g nÃ"„co",
n&1

(E22)

Applying an operator f dco, B/Bco, to this (i.e., subtrac-

tion of the value at co, =5), we obtain

m& mncor cos =5m
m, n) 1 m's a)r

5„+X'"X,—(a/a„a, )X„X,

e +aa, X, —aqa, X,

(E28)

Now the third equation (E10) is understood to hold be-
cause it is proportional to (E28) if rewritten in the form of
a differential equation for the generating functionals of
N mn and E~.

The procedure meant by this is as follows: First, we re-

place the oscillator variables P a'"' and y"'„/n in (E10)
formally by the powers co, and co," of the variables co, and

co, of the generating functionals

+(r~~s)= g +mncor cos ~

m, n)1

and X,(co„) [or X,(co, )] of X „and Ã'. Then we can
perform the summation over the indices m, n, and k in
(E10) and rewrite it in terms of those generating function-
als. For instance, the first and fourth terms in (E10) are
rewritten in the following way:

k —1

(m+n)X" +„x y"= g kN ix
msn&1 k&2 n=1 X

k k

krak

—rXJ —gX
k&1 X —g

(E24)

As is well known, ' the relation (E16) enables us to

, X(x)=(x —y) ' y-
ar

X,(y)
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g k(n k—)N „kN'kx y"
m, np 1 k=1

nE „x y"
Pl%, n & 1

aux, y) X.(y)

()x as

k&1

(E30)

A(p)' '—=(Vtra ) ' g a"„e

in (Fl) does not contribute, and we have, from (F3), (A23},
and (A24),

~(z.)= g " ' + g " N'„'~'"„. (F4)
s Zp Zs as gpi as

It requires considerable efforts to prove the remaining
equations (El 1) and (E14). To prove them, we again
rewrite them in the form of differential equations for the
generating functional of i()t „and 7" by replacing for-
mally the oscillators a'"' a"„y'"), b~ the variables

,' ka—,(p)„G,"+p), rp,")p7, in (El 1), and y" y'"„by

in (E14). Then the above identity (E28) enables us to
eliminate N(ps„, p), ) from those equations. Since Eq.
(E18) holds also for X,'s in (E26), we can further rewrite
them by using (E18) in the forms depending only on X„'s
without derivatives. The coefficients of X,'s in the resul-
tant equations can be shown to vanish by straightforward
calculstions.

APPENDIX F: PROOF OF EQS. {4.16}AND (4.17)

C(z() ) = lim I C(p)' '+ [C(p),EFp]},
ZZ +Zo

with

C(p) =a, 1 (r) n&r
Cn e

dC(p)
dp

1 dC . 1 1 () ng,
'Yn &

as dgs V ll' as „~p

1C(p)= ~-
7r

'2
(,) ng„

Cn ~
r n =—ot)

Similarly from

dp(z} dC(p)' ' dC(p) EZp = 11II1 + & FPdz s~s() dz dp dp

(F5)

(F7)

(F8)

First, let us calculate 3 =A(zp), dC/dz=(dC/dz)(z()),
and C=C(zp) appearing in Eqs. (4.16) and (4.17). They
have the meaning of (3.38): For example,

A(zp) = hm t A(p)( '+[A(p), EZ] I, (Fl)
Z +Zo

where A(p) in the RHS is given by

—(r) "~rT„e~ar n= —~

and Epp given by (4.6), we have

dC . 1 sr (s)X'„"py '„,
Z lr ~ Zp — r nh) as

(F9)

(F10)

a'„'e ' (g„=g,+io, )

with arbitrary r. From (4.6) we have

(F2) I ar
C(zp) = ~ g

r ~0 Zr

—(r)
~, sr —(s)

~& nOV —n
r np) as

[A(p),EZ]= ~ g g nN„e " a"
r mp0 np1

s

(F3)

dp(z) ldz =0(z —zp) (z-zp),

[~e omit the prefix (4) in the Neumann functions 7(„' .]
S1IlCC

Likewise, A'=A(z() ), dC'ldz=(dCldz)(zp ), and
C'=C(zp ) are obtained by replacing zp by zp in (F4),
(F10), and (Fl 1), respectively. Note that the above formu-
las are valid for both the 3-string and 4-string vertices.
(In the 3-string case we have zp =zp.}

From (F4), (F10), and (Fl 1) the LHS of (4.16) becomes

1,,2 „dc —~ 4t I rs (r) (s) rs (r) —(s)—2 C =——g M„a „.a +i g M„y
n, rn &0 n &1,m &0

r,s

(F12}

where M„ is given by

(F13)

1 &I &s n —„. 1
M„()——M()'„——g Im — N „"p (n & 1),

a z0 —Z. z0 —Z a a
(F14)
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n„a, 1
M =Im00

Q zo —Z zo —Z~ cEy lxq
(F15)

For fixed values of a„ the Neumann functions N „~ defined by (A7) depend on Zi 4 through the Mandelstam map-
ping (Al). In the following we take a special parametrization of Z, by the cr coordinate (ro of the interaction point lying
on a fixed time v.o..

Z, =Z, ((ro) .

That is, when cro varies over the range o & cro(o+, Z, of (F16) realize

4

cr()——Im g a„ln(z() —Z, )
y=l

(F16)

ro —Re g a„ln(z() —Z„)
y=l

unchanged. For such a parametrization of (F16), (d /dcro) Zr(cro)» g»en by

Z„(cro)= Im
d I 1

cro a zo Z, — (F17)

with a defined in (3.34). Indeed, when (F17) holds, we have

a, dzog a, ln(zo —Z, ) =g
d 0'o 0 r 0

dZy

d 0'o

(Xy 1 1
Im

zo —Z a zo —Zy

= ———X ",+ . .Xa.
(z() —Z, ) a' z() —z() zo Zr

1

zo Zy

(F18)

by using Eq. (3.32) and the definition of a in (3.34). This implies

pro ——1, vo ——0,
d(ro 1cro

(F19)

as is required by g„lan(z 0Z, ) =ro+icro Now the .Neumann function N „ is a function of cro, and (4.16) is Proved if
we can show that

M„~= N„(n, rn &0) .
dao

(F20)

For Noo (F20) is shown by differentiating (A12) and using (F17) and (3.32). For N"„'0 (n ) 1), the integral representation
(A13) is useful. We have

d — 1
g

dz

d cTo n " 2&lP

dZq n a; /ar dZ('+
dz z —Z~ d o'() z —Zq; z —Z; d o'0

—ng (z)
e

dz 1 a;/a„dZ; dZ, „c (,)

Zr e' 2~i z —Z, , z —Z; doo dcro
(F21)

where use has been made of a„(d/dz)g„(z) =g,.a;(z —Z;) '. Then, from

dZ) cd~ =[(z—Z, ) —(z —Z~ ) ]Im
der() dcro 0 (z() —Z; )(z() —Z )

(F22)

(F21) is further rewritten as
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1 1 dz 1 -ng, (z) 1 &i 1 1

a (zp —Z()(zp —Z ) (z " 2ni z —Z-, . a zp —Z( zp —Z, a,

dZ 1 —nfl(z) 1 n rs

mV Z Zs a Zp —Z; Z() —Zz (Ez

where the second integral drops out again owing to (3.32}.
Equation (F20) for n, m ) 1 is shown from {A21) and
(F20) with m =0. Thus, we have finished the proof of
(4.16).

In order to show (4.17), first recall that C=C(z) is
given by

c()——C(zp), c) —— C
(Z() ),

d2C
c2 ——

2 (z()) .

Then, from {3.35}we have

(F26)

C(z) =C(p)' '+[C(p),EFp]

=C(p) i—(-) N „e"'y"), (F24)
neo, mal

d C(z) dz dz=c) +c2(z —zp) +O(z —zp}
dp dp dp

1 1 3b 1
c) — c2+O(z —z() },

2Q Z —Zo ~ 2Q

where C(p}' ' is the creation and zero-made operator part
of (F7). C(z) given in (F24) is analytic around z =zp and
has an expansion

from which we obtain the formula

d C
cz ——

2 (zp)
Z'

C(z) =cp+c) (z —z() )+—,
'
cz(z —zp) + dC(z}= hm —2a- +

g +go dp

1 3b
c) . (F28)

Z —Zp 2Q

On the other hand, from (F24) we have

d . dC(z) dpp . 1
C(zp)= lim + i- 'y

0 0 P 0 & nZpmpl 0
(F29)

where the limiting procedure is necessary because each term on the RHS separately diverges at z =zp. On the RHS of
(F29),

dpi')'d

up i because——

po ——so+ & oo+ const (F30)

(see Fig. 6), and from (F20) we have

N
npp, m p)

e'~"y" =glm— 5(, + g N,"pe ' g N'J py"
CXp ~) Q~ mph' ~~

S

{F31)

From (A23} and (3.35) we have the I.aurent expansion

5;,+ g N„"pe
n&1

dp(z)
dz

1 1 3b 1 1 1+ , +O(z —z, ) .
2a z —z() 2a z() —Z 2a (z —Z )

(F32)

Then, by making use of the formulas

1 &~ &J 1
Im —-

0 Zo —Z Zo —Z Zo —Z.
= —l

Zo ~zJ
(F33)
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1 1 l . 3b
Im l

a . a zp Zl zp Zj (zo —Z ) 2a zp Zj

and (F30), (F29) is rewritten as

i 1 aj
a Zp —Zp Zp —Xj

(F34)

C(zp) =i lim
d . . dC(z)

do'p z —+so, dp

1 3b dC 1 1 dC, 3b dC+
z —zo 2a dz Za' zo zp dz 4a dz

J

(F35)

Equation (4.17) follows from (F35) and (F28).

APPENDIX 6: PROOF OF (4.20)

5a = —2(P+2yzo)a,

5b = 3(P—+2yzo)b —2ya,

5c = —4(P+ 2yz11 )c 3y b—,

(G7)

We show in this appendix that Eq. (4.20} actually holds:

d 9b 6clnf(ap}=Im
d&0 2a a

(Gl)

First of all we note that this equation is invariant under
projective transformation (4.26):

from which one can easily verify the projective invariance
of the quantity 9b /2a 3 6c/a—3

Now since we have checked the projective invariance, it
is enough to prove (Gl) by taking a particular gauge; we
take Z& ——1, Z2 ——x, Z3 ——0, and Z4= (x}, then Mandel-
stam mapping becomes

5Z, =a+pZ„+yZ, (r =1—4) . (G2) p(z) =alln(z —1)+azln(z —x )+a31llz, (GS)

Indeed the invariance of the LHS, or equivalently off(ao)
in (4.29)

and Eq. (G4) now reads

f(o'0) =
g(dZ, e )
r=l

d V,s,do 0

Zp —Zr Zp —1 Zp —X Zp

or equivalently

(G9}

a4zp +[(az+a3)+(al+a3)x]zo —a3x =0, (G10)

is clear from the invariances of dV, s, and dZ„e [see
(A2S)]. The invariance of the RHS of (Gl) is seen as fol-
lows. The equation

dp y
+i

dz, =,. . . zo —Z;
(G4}

determining the interaction point zp says that zp also re-
ceives the same projective transformation as (G2), and
thus zp —Z, transforms as

5(zo —Z, ) ={P+2yzo)(zo —Z. }

and determines the interaction point zp as in (7.13):

z, = (a„+—a,3x+la13a)/ a4,

a13~= I [a13 x +2x(ala2+a3a4)+a23']I

(Gl 1)

(G12)

f( )= ix —li "[xi "e
dao

Here ere have used a convenient notation a,&
=a;+aj.

In this gauge (G3}becomes, with the help of Eq. (A12),

—y(zo —Z. }' .

Accordingly a, b, and c, defined by

(G5)
aI aj ) ar

(G13}

4
c=—g

r=1

transform as

ar 4 ar

(zo Z ) =1 (zp

a,
(zo —Z„}

(G6)
d/dx

p(zo) =ro+'ao
X —Zp

dip dop
(G14)

With (G13) and (G14), the LHS of the desired equation
(Gl) ls glvell by

where lo and op are the real and imaginary Parts of P(zp)
and hence we have

d lnf(oo}=
dop

d X dX dX ~12 ~23+ +
do dop do'p, x —1 x

d'Tp—8
dop

Im[(1 —zo' )(x —z11} ]
az(lmzo)

X —Zp+
a2Imzp

+
X —1 X

Re(x —zp)—8
Imzp

(Gl&)
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hereafter the prime denotes d /dx.
On the other hand, the RHS of (Gl) can be estimated in this gauge as follows. First, differentiating (G9) a few times

with respect to x, we obtain

ar
3 (zo —5,3)=0,

1 (Zll —Z„)
3 &r 3 0'r

, (zo —&,3) + g zlj =0,
, , (zo —Z„)' ', , (zp —Z, )'

3 &r 3 CKr 3 r
, (z;-S„,)z,"+g z;- =0,

r=1 (Zo Zr) r=l (Zo Zr) r=1 (Zo Zr)

which give the following relations for a, b, and c defined by (G6):

2azo ——az/(zp —x )
2

(G16)

3b(zo)' 2zo(2zo —1)
+

a ZQ —X
+ZQ ——0, (G17)

12c(zo)' 6(zo)'( —»0 +3zo —1) 6zozo(1 —zo)
+ +zpzo" —3(zo') =0 .

a (zll —x ) ZQ —X

By using these we find

r

9b 6c 1 (zo —x) zo

a a 0'2 Zp ZQ

ZQ

ZQ

ZQ
+2(zp —x)

ZQ

1 ~ 1—2 'zp —1+—,
ZQ Zp

(G18)

We can further eliminate zo' and zp' from this expression by using

ZQ

Zp

21(a4 0+a13) zo

ai35 Zp

6(2a4zo+a13)(a4zo +a 13)

(a13' )
(G19)

which follow from Eq. (G10) with differentiation (d/dx) and (d/dx)3. Thus the problem to show (Gl) is reduced by
using (Gl 1), (G15), (G18), and (G19) to prove the equality between

9b 6c—aza4(lmzo )Im
2a a

a4Im[(1 —zo' )(x —zo )3)
a,a~ —Re(x z,)—

Imzp

(x —zo)2 2 20!~3
Za4 (1—zo —zo' ) —a4a13+, +1'(x —zp) 2a4zp —a2(2+a48)+

ZQ ZQ

1—a13»o+—,
ZQ

(G20)

A)2—a4ix —zo [ +x —1

323
=az[A izx +A 33(x —1)] . (G21)

Now (G21) is a very simple quantity linear in x, and so we need to rewrite (G20) further. Substituting
zo+zo = —a13/a4 in the first term and collecting the terms with the same power in zo we rewrite it as

a13 (x +16—zo)
(G20) = Im +2l &4Z p X —ZQ + l

zp 2cx4

X ZQ+a 13~a4(a4 —a3), a)36
iaz(2+ a40 ) 1 az(2+ a+ )

+
2a4(a4 —a2) 4 a4(a4 —a2)

L

(G22)
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The last term can be thrown away since it is real. An im-

portant fact there is that zI]h has a constant (i.e., x-
independent) absolute value; indeed from (G10) and (Gl 1)
we have

3zo5= —i zo—

ECX)3

2a4

A )0'.2+ CX30!4x+iA+— (G23)

I
zo~

I

'= (G24)
4 +13

Because of this fact and the form (G23) of zI]b„ it is now
easy to see that the imaginary part of the first term of
(G22) as well as of the second and third terms is actually
linear in x, as (G21) is. By substituting (Gl 1), (G12), and
(G23), one can check that (G22) actually coincides with
(G21).

APPENDIX H: EVALUATION OF THE GENERAL
N-STRING EFFECTIVE VERTEX

In this appendix we evaluate the general X-string effec-
tive vertex

I
b, ' '(1,2, . . . , N) ) aside from the measure by

using the path-integral method, i.e., we give a derivation
of the exponent factor bilinear in bosonic and ghost
creation operators in the X-string amplitude (7.32). Equa-
tion (7.19) will be shown as a special ease of the 4-string
effective vertex

I
b,,(1,2,3,4)). Actually the X-string tree

amplitude in the light-cone gauge theory was given by
Mandelstarn by using the path-integral technique, and
the following argument is an application of his method to
the covariant theory.

The general N-string effective vertex
'(l,2, . . . , N)) is defined as a generalization of the

X =4 case, (7.17): The N-string tree amplitude is written
in terms of it as

W~=(2w) +'5 ga () ~ ( —,') '(2g)" (r(qi(1) ((p(2)( (gt(N)( f [dr](d'"'(l, 2, . . . , ))')), (Hl)

where
I

covariant notation here:

[d~]= g d~;

and each of the parameters ~; comes from (7.18) applied
to each propagator of the intermediate string. Therefore

'( 1,2, . . . , N ) ) generally takes the form

I~' '&= f g(R( J) I g(+ ) ff I ) . (H2)

The meaning of this expression will be well illustrated by
taking an explicit example, Fig. 28, for which (H2) is
given by

I](]( ])Fs 2]]——jd6d7dgd9(R(9, 8)
I
(R(6,7)

I

0' '0'

& L(6) & I (8)

xe ' e '
I
v(1,7, 8))

x
I
U(2, 3,6)&

I
U(4, 5,9)& .

As was explained in Sec. V A, the 3- and 4- string vertices,
the propagator L, and the reflection operator

I
R(1,2))

have the OSp symmetry. Therefore the calculation of
') may be performed in a completely OSp-invariant

manner and hence it is convenient to use an OSp-

P (cr) = g a„cos(n(r)
~ n= —&e

g p„eos(n(r)
+ n&0

p"((r), —ac'(o ),—c((r )'a

a„=(a"„,y„,y„) (n&0),

ao (ap p",0——,0)=—p—o (n =0),
p„=a„+a „(n ~0) .

(H3)

Similarly to this P ((T) we have an OSp extension XM(tr)
of the coordinate variable X"(o), by which the Lagrang-
ian of first quantized theory is given by
Y~aX ~bX IMi)] 9

In terms of the path-integral language, our task to
evaluate the vertex

I

5( ') is equivalent to obtaining the
Neumann function defined in a region corresponding to
the vertex, which is a shaded region, for example, in Fig.
28. We shall consider, instead of only the shaded region,
the whole region of Fig. 28, whose boundaries are speci-
fied by large but finite values of g„ i.e., P. With these g„,
we rewrite

I

b' ') into two factors,

+g i.
(

PL
I

~(— (H4)

'////i// //)
/!/i

,/ /'/, "
.'///l,

t/

FIG. 28. A typical light-cone diagram in which the shaded
region corresponds to the effective vertex

I

5(~)).

with g L =g„]g,L'"] and evaluate first the latter factor
e ~

I

b' ') by the path-integral technique and then mul-
tiply the former factor to take the limit („~—00.

Denoting by N, the Neumann function of the finite re-
gion of Fig. 28 bounded by g„we obtain through the usu-
al path-integral procedure the following expression for the
second factor of (H4):
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e fk'~')-exp g f du, der, p (cr, )g „p"(o,)N, (a„r;&r,g, )
o

The Neumann function given in (A7) is the one corresponding to the infinite region. However, the Neumann function
N, here is a different one, which satisfies the boundary conditions that the normal derivatives of N, to the boundaries

g, =g, as weil as to the horizontal boundaries of Fig. 28 vanish. This condition can be satisfied by adding a homogene-
ous solution No of the Laplace equation to the Neumann function N of (A7). An appropriate homogeneous solution Xo
4

Xo(o„g„;o„j,)=—5 g —e " " * cos(na„}cos(nc7, )
nhi n

+2 g N „[(e '+e ' ' —5„0)(e '+e ' ' —5 0) —e "e ']cos(ncr„)cos(m(7, ),Ng, n(2g, g, ) — mg, m(2$ —f ) ng„mf;

n, mp0
(H6)

and the Neumann function N, over the finite region is given by N, =N+ND. Note here that No goes to zero in the hm-
it g,~—ao and thus N, recovers the Neumann function N over the infinite region.

Precisely speaking, N, =%+No does not give a truly correct Neumann function. No represents merely a first reflec-
tion wave from the boundary g, and we need an infinite sequence of reflection waves. Fortunately, however,
X, =%+No already gives a correct answer if the limit g,~—ao is taken later. Thus N, has an expression at the boun-
dary g„=g„:

N, (o„,g;o„g, ) = —5 g —cos(no„)cos(na, )+5 2g,
np1

n +mP+2 g (2—5„0)(2—5)„0)Ã„e " 'cos(no„)cos(mcr, ) .
n, mpO

Substituting this into (H5) we find

2
ll +@ifpL

l

g(N) }—
exp g P(P)Mg P(P)x+g g0 + ) g +Ps e t 0g (rlhr (s)N

n, mpO
r, s

(H7)

(HS}

From Eq. (H3} we have
r

Qm = Pm +2@i
PmM

(m &1) (H9)

and thus

um exP — g Pn 'Qsr)vPnn (Hlo)

Therefore the first terms in the exponent in (HS) are found to give a functional expression of the ground states of oscil-
lating modes of all the N external strings:

nial
(Hl 1)

Now we can rewrite Eq. (HS) into

2

e ~'l~(")&-exp gd +i g X„" e" '+ 'p„'"g)vs'" lO&, )v.
r n, m &0

r,s

(H12)

In order to obtain
l
b' '} we have to operate

exp g g,I.("

on (H12) from the left. As a result the term g„g„(p, /2) in (H12) disappears and the oscillators a„"in p„'"' are replaced
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2m' 0

I
~'"'& -exp 2 g &.~[(e ' 5—.o)&n'"+&'"'n"]riNM[« ' 5—mo)&m' +&'

n, m pO

(H13)

Taking the limit of g„~—oo, we finally arrive at the desired expression of the oscillator part of Eq. (7.32}, since all the
annihilation operators drop out:

r

I
~'"'& -e"p

n, rn pO
r)g

(H14)

APPENDIX I: PROOF OF Eq. (7.48)

In the Mandelstam maying (Al), let us consider an infinitesimal change of the parameters a; (i=1—N) which
preserves the constraint g,a; =0:

Q) ~cK;+5Q;
N

g 5a, =o

Equation (7.48) is a consequence of the fact that the Neumann function N(p,P, ) (=ln
~

z —z
~
+ ln

~

z —z '
~

) of (A7)
is invariant under the variation (Il) since it changes neither z nor z. In order to calculate 5N(p, g, } we need an expres-
sion for 5g„. Under the variation (Il) we have, for vo' of (A5),

5&o"'=Re[(p+5p)(zo'+5zo') —p(zo"')] =Re (zo"')5zo'+5p(zo") —Re 5p(zo"') = g 5tt;ln
~

zo"' —Z.
~dz i=1

(I2)

where use has been made of (A6). Then from

a,g„+so' ——Re p(z) = g a;ln
~
z —Z;

~
(I3)

we get

N

5a;—
&r i=)

5(,= g 5a;ln ~z —Z;
~

—5a„g, 5ro"'—
ar i=1

J

5~zr (»lz —Z;
I

—nlzo' —Z;
I

) .
Q

(I4}

Equation (I4) can be further rewritten by making use of the formulas obtained by putting z~Z, (g, —+ —)x) ) in (A7):

ln~z —Z, (
=5 g„+ QN„oe 'cos(nor„), 1n~zo' —Z,

~

= g N„ocos(ncrl"'}, (15)
npO n)0

where err"' is the cr„corodi ntaeof the interaction point of the rth string. We have

(,)= g 5~; g &„"o(e ' 1)cos(nor—~"),
r i —] n

(I6)

where use has been made of the property (A20).
Now, let us calculate 5N(p, p, ) at ~„=of~

' and g, =o~&'.
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0=5%(p„p, )

=25„+e ' ' 'cos(nor")cos(ncrl") +5a; g Xko ~
e ' —e '

~

cos(koI')
np1 i kp1

L

g5, g S,",Iexp[kmax(g„, g, )]—1]cos{ko,'"')
r i kg 1

+2 g E„n
0

g 5a; g Ãk'0(e ' —1)cos(kor"')
i k&1

+m g 5a; g N I o{e ' —1)cos(kor') e ' 'cos(nor"'}cos(moi')
as

g k~1

+2 g 5N „"' e ' 'cos(noq')cos(moz')+(5cr terms), (I7)

where (&r terms} represents terms containing &r„or 5o, . It is enough to consider the case err"',cd' Oor——ir. Then these
(Scr terms) drop out since they are proportional to sin(na'I"') or sin(mcrl'). Further, the first term in the large
parentheses 25 (. . . ) in (I7) is rewritten as

g e " ' +5a; g NPo~e " e—* ~cos(kol")= +5a; g' E„"+~pe
' 'cos[(n+m)or"]

n&1 i k&1 i n, rn po

—g Ã k&gxp[k max(g„g, )]cos(kerr")
k&1

where g' denotes the summation excluding n =m =0. Then, by comparing the coefficient of e ' ' in (I7}we obtain
ng' +mg'

the following formulas:

5N oo
——5 +5a; g N kocos(kol"'),

r i k&1

n —1

5N"„' —Ã „(n5goo+m5N oo}+g5a; 5~ N „"+~,0+ g (n —k W „k,~& ko
r &r k-1

ng —1

g (m —k)N„~ kN'ko —0 (n+m)1}. (I10)
+s

Equation (7.48) is an immediate consequence of (I10) and the defintion (7.41).
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