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Just as the hypercharge assignments in the standard model follow from anomaly freedom, so
there are anomaly constraints on any possible extra U(1) charges. We show that one can always dis-

tinguish these from the constraints from grand unification. We discuss various predictions when the
standard model is unified but the new U(1) is not, when all the groups are unified, and when none of
them are. New low-energy U(1) groups imply new low-energy fermions. We show how information
about new Z bosons can tell us about such fermions.

I. INTRODUCTION

Many authors have considered the phenomenology of
extra Z bosons. ' A main reason to find the existence of
such particles plausible is that they arise naturally in the
context of grand unified theories. ' SO(10) theories (which
many would regard as the simplest unified thtxiries), for
example, predict one extract Z boson. Superstring
theories also, because they are based on gauge groups
whose rank is larger than 4, give rise to extra Z bosons.
Of course even in such theories the mass of these particles
is an open question but could well be comparable to that
of the ordinary Z. Some previous papers have focused on
the constraints on the couplings of such extra Z bosons
(let us henceforth call them Z' bosons) that come from
grand unification. Here we investigate the constraints
imposed from the weaker condition of anomaly cancella-
tion. There are at least three good reasons for doing this.
(1) Extra Z bosons could exist even if SU(3)
XSU(2)XU(1) is not unified. New gauge groups have
been proposed by theorists for many reasons: as family or
"horizontal" symmetries, as technicolor groups in tech-
nicolor models or in composite Higgs models or "hyper-
color" groups in preon models, and, in supersymmetric
models, as the group needed for Fayet-Iliopoulos super-
symmetry breaking. Other possibilities are that in
Kaluza-Klein models the isometry group of the extra di-
mensions has rank ~ 4, or that extra gauge forces may be
dynmnically generated in, say, preon models. The point is
that in any model extra U(1) groups, whatever their origin
may be, must satisfy anomaly constraints. So, while the
authors admit a prejudice towards grand unification, the
generality of the present approach commends it to our at-
tention. (2) Even if grand unification is true it is impor-
tant to see to ~hat extent the predictions that foOow from
it that are derived in Ref. 2 are strictly tests of unification
and to what extent they merely follow from anomaly can-
cellation. To take a parallel case, the SU(3)XSU(2)L,
XU(1)r charge assignments in the standard model are
beautifully explained by grand unification and constitute
in our view a strong argument in its favor. However,

given the SU(3) X SU(2)L representation of the known fer-
mions (and assuming there are no others) the U(1)r
charge assignments follow uniquely from anomaly free-
dom. In a sense, the hypercharge values are not as strong
a piece of evidence for unification as they may at first ap-
pear. (Though of course from a mathematical point of
view unification may be said to "explain" the anomaly
cancellation. )

This leads us to the third point. (3) Even though there
are good reasons to believe that SU(3) XSU(2) XU(1) are
probably unified in a simple group, there is no compelling
argument that an additional group would have to be uni-
fied with them. In Sec. III we therefore consider such
groups as SU(5) XU(1) [which could arise from the break-
ing of even larger groups like SU(5)XG or SO(10)XG,
etc.].

II. THE v-SCA l IBRING PARAMETERS

What we would like to achieve is a determination of the
charges of the known fermions under the extra gauge
group U(1)'. It turns out that from v-scattering data one
can in principle (though it is very difficult in practice) en-
tirely determine these charges. [If there are several extra
U(1)' factors this remains so if one of the U(1)' bosons
contributes most to the deviation from the standard
model. ] There are some fortuitous circumstances that al-
low us to do this as we shall see below.

Let us call the U(1)' charges of (d )t, , (,")L,, uL, , dr, , and
eL+, respectively, a, b, c, d, and e. [We assume
throughout that the U(l)' charges are family indepen-
dent. ] In v scattering the effective four-Fermi interac-
tions depend essentially on six quantities et(u), eq(u),
eL, (d), ea(d), gf, and gz. These are defined as

Jt' = g [eL, (i)tl.rt(1 —1's)a
i =s,d

+ex(t)41;(1+)5)a]+ .

J„"&'=ey„(gt', +g„'ys)e +
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where J& and J„~' are the hadronic and leptonic weak
neutral currents. The standard model predicts definite
values for these six parameters in tcnns only of sin es,
which can be measured independently by measuring 0, and
Ms . If there are one or more extra U(1) factors then
there will be deviations from these predicted values. We
consider the case where one of the Z' bosons dominates or
where there is only one. Then we can write down the fol-
lowing expressions for the v-scattering parameters:

et (u) = ( —,
' ——',x)(p+2e')+a(e'+2e"),

et' (u) = ( ——,
' x)(p+2e') —c (e'+2e"),

eL, (d) =( ——,
' + —,'x)(p+2e'}+a (e'+2e"},

ett (d) =( ,
' x)(p+—2e—')—d (e'+2e"),

gv =( &+—2x)(p+2e'}+ (b e)(e'+—2e"),

g~ =(—
&

)(p+2e')+(b+e)(e'+2e") .

Here x =sin Hu, and p, e', and e" are parameters that de-
pend on the mass of the Z' and its mixing with Z. (See
Ref. 2 for details. ) Note the very useful fact that we can
invert these equations to get a through e. There is an
overall constant of proportionahty which is the same in
each case and is equal to (e'+2e"); we absorb this into a
redefined a, b, c, d, and e:

1 1 2
2 3 x 2 3 X

a = eL, (u)+ eL, (d),
1 —x 1 —x

[et, (u) et. (d)]—+ i (gv+ga )
l —x

2
3

[eL, (u) —eL, (d)] —eti(u),
1 —x

1

3
d = [eL, (u) —et, (d)] —ex(d),

1—x

(3)

[eL,(u)-&c(d) l - i (gv-g~ )
l —x

The fortuitous circumstances mentioned above are, first,
that there are enough (six) parameters which are measur-
able in principle to enable us to solve for the charges, and,
second, that the unknown mass and mixings of the Z'
drop out of the resulting expressions. Even in the case of
seueral U(1}' factors Eqs. (2) and (3) still hold if a, . . . , e
are interpreted as the suitable weighted charges of the
several U(1)' factors. (See Ref. 2.)

III. SU(5) XU(1), 6 XU(1), 6 &SU(5)

Here we denote the U(1) factor U(1), since the extra
U(1) at low energy which we call U(1)' can be a linear
combination of U(1} and U(1)v, the weak hypercharge
group. Since the U(l) charge must commute with the
SU(5) (or, more generally, G), it is clear that with the
standard embedding of the standard-model group

a =c=e =charge of IOL, =Qi0,
b=d=charge of 5L =Q, .

(4)

2
Q10

1d =Qs~+ —,t,
e =Qio+t .

(5)

There are several combinations of parameters that are use-
ful in discussing tests of grand unification. These were
first introduced in Ref. 2. They are

& =2&L, (u) —&x(u)+2', (d),
S=et, (u)+2ett (u)+eL (d)+5ett (d),
T=(1+—,x)eL (u )+2(1—x)ea (u)+ (1——,x)eL, (d),

V =—2et. (u)+.2ett (u)+et. (d)+e„(d)+gf,
IV—=ec(d) —et'(d) —gq .

Or in terms of a, b, c, d, and e these are

R oc 5Qi0,

S tx: 2Q —2c —5d,
T 0:2(1—x)(a —c),
V ~3a+b —2c —d —e,
W~ a b+d —e—,

with the same constant of proportionality in each case. In
the case of grand unification of the standard model where
Eq. (5) holds we get

R ac 5Qi0

Sa: —5Q ~,
T ~ —', (1 x)t, —

V=O,

8'=0 .

Note that V = W =0 is a prediction of grand unification.
In certain cases, it turns out that t=O (at least at tree lev-
el) (Ref. 6) and hence T=O. (See Appendix A.) For
larger groups than SU(6) or SO(10), or when U(1) is not
unified, there is no reason why t must vanish. Hence
T=O is not a prediction in general of grand unification.
[In Ref. 2 this was erroneously asserted because the possi-
bility that U(1) could sometimes mix with U(1)v was not
appreciated. ] In SO(10) models however T does vanish,
which is significant as we shall see later. Furthermore, as
emphasized in Ref. 2, the ratio

The tildes mean that we are referring to the U(l} [rather
than U(1)'] charges. If we write Q'=Q+t(I'/2), where
Q' is the U(1)' charge and Q is the U(1) charge, we have

Q10+ Yt ~

b=Q 2



ANOMALY CONSTRAINTS AND NBW U(1 I GAUGE BOSONS

R/S =1/3 . (10)

R/S = —g,o/Q, .
gives us valuable information about the unified symmetry.
If, for example, U(1) is unified with SU(3) XSU(2}
XU(l)r in a simple group then R/S tends to take on
characteristic values. In the case of SO(10) we get

(i) ttf(3gio+Qss )+I(r) g (Q;+Q ),

ttf(10gio +5gse }+rQ (Q; +Q ),

(iii) nf(10gio+5Q, )+r g (Q;+g,') .

(13)

(And also, as noted above, T=O.) If we have an SU(&),
gp6 unified model, and if SU(3)XSU(2)XU(1)Y

ded in the standard way, and if the eL+, , ut, , dL, , and
u~ are in a itI' ' and vL, , eL, and dL are in a p, then

R/S =2 .

[This is bemuse U(1) will act as the SU(5) "quinticity. "
This particular prediction is valid no matter how many
Z "s there are even if all of them contribute comparably to
deviations from the stansjssrd modeL] There are other in-

teresting special values as well.
The question we are interested in here is what happens

in the general case where U(1} is not unified with SU(5) in
some larger simple group. Are there any predictions for
R/S that come just from the anomaly-freedom con-
straints? The answer is yes. There are three anomaly con-
ditions that the U(1) charges must satisfy in SU(5) XU(1):

(i) SU(5) XU(1) anomaly=O,

(ii) U(1)i anomaly=O,

(iii) gravity XU(1}anomaly=O .

(12)

A. All neer fermions in r-dimensional representations

If r is a complex representation then there must be an
equal number of r and r', so this means that the new fer-
mions would be in conjugate pairs (r+r'). If r is real
then there can be any number of r and r =r'. If we
denote the U(1) charges of the r by Q; (i = 1, . . . , n) and
of the r' by Q (i =1, . . . , n), then Eq. (13}becomes

If the only fermions around are the usual families consist-
ing of 10L, +5t, then there is no (nontrivial) solution for
the U(1) charges. [We are assuming here, and throughout,
that the charges of the extra U(1)'s are independent of
family. ] There is, of course, the solution Qio ——Qs, =0.
This gives R =S, V=K=0. (T need not vanish. ) We
will call such a solution a "trivial solution. " If we are to
get a nontrivial solution we must have new light fermions,
and the predictions for R/S will depend on what new
hght fermions we assume to exist. If there are too many
such fermions, of course, then anomaly freedom will not
give us any predictions. The new fermions must them-
selves have no SU(5)i anomaly. There are some simple
choices: namely, real representations, and pairs of repre-
sentations consisting of a complex representation plus its
conjugate. A particular case of a real representation is a
singlet of SU(5) which we might think of as an antineutri-
no (vL ). We will consider various simple possibilities
below.

Here I(r) is the index of the SU(5) representation of di-
mension r [i.e., I(r)=tr„A, /tr&A, ], and nf is the number
of families. Subtracting I(r) times Eq. (13)(iii) from r
times Eq. (13) (i} gives

R/S = —Qio/Qse =
S

r —5I (r)
3r —10I(r)

(14)

This result applies no matter how many extra U(1) factors
there are or how they mix (even if several of the Z"s con-
tribute significantly). Notice that R/S will be non-
negative unless 1/5 &I(r)/r & 3/10. In fact there are no
irreducible SU(5) representations with I(r)/r in this
range. [For increasingly large representations I(r)/r in-
creaIies without bound. ] Thus for the case we are consid-
ering R /S is always non-negative.

Let us consider the special case where all Q; are equal
(Q;=Q all i) and where all the Q are equal (Q =Q' all
i}. Then there are three homogeneous equations for four
unknowns Qio, Qz„g, and Q'. We can use the two

linear equations (13)(i) and (13)(iii) to solve for (Q+Q')
and Qio in terms of Qs, . Then substituting into the cu-

bic equation (13)(ii), one gets a quadratic (not a cubic) for
Q. The fact that we get a quadratic means that there are
not always real roots. In fact there are only real roots if
I(r)/r &0.47. It turns out that there are only a finite
number of SU(5) representations for which this bound is
satisfied. These are listed below:

5
10
15
24

0
1

3

10

1

3

QO
4
5
13
14

(15)

B. Real representation of SU{5)

One real representation r ofSU(5)

Here there is no solution as there are three homogene-
ous equations and three charges (Qio, QsR, and Q„).
(Note that since the equations are homogenixius the
overall normalization of the charges is irrelevant. Hence
there are really only two unknowns. )

2. One real representation r ofSU(5) per family

Each family is now 10+5'+r. Since we always as-
sume family-independent charges, there are again three
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chatges: Q,p, Q», and Q, . And again, there is no solu-

tion in general. However, for r= 1 there is the "SO(10)-
hke" solution Qip ——1, Q, = —3, Qi ——5. This gives

R/S= —,', V= W=O. Since U(1)' may have an admix-
ture of hypercharge, T need not vanish. For an actual
SO(10} model, however, as shown in Appendix A, we do
have T=O (at least at the tree level). Thus a measure-
ment of T is enough to distinguish this case from SO(10).

(i} 0=9gip+3Q5»+I(r)Q„+I(r')Q„

(ii} 0=30Qip +15gs» +rg„+r'Q„

(iii} 0=30gip+15gs»+rg„+r'Q; .

Solving the linear equations [(17)(i) and (17}(iii)] tells us
that if r, r'&N (N large) then typically Q„are Q, &1/N.
The cubic then tells us that 0=15(2gip +gs» )

+0(l/N'). So that —Q„/Q, .=R/S=( —,')'". [If it
should happen that I(r)/r I(r')/r' &—r z/ then it will
not be true that Q„and Q„,& 1/N and our argument will

not apply. However, as we go to higher repnmentations r
very rapidly increases and it is quite unlikely that this
condition is satisfied for more than a few representations,
if ever. ]

Now if one or both of r and r' are small then we can
get more than one root. However, we have found only
one case where there is a root that gives R /S &0. That is
r +r'=75+200. This gives three roots, for one of which
R /S &0. In all other eases as far as we know

R/S &0

(see Table B.

(18)

TABLE I. The possible values of 8 /8 for the case of the ex-
tra fermions being a pair of real SU{5) representations r+r'.
There is only one case where 8 /S ~0. %'e have only shown the
smallest representations.

1

24

75
200

1

3 0.80
13
14 1.02

X
0.82,0.0015,1.91

0.803,4.82,—0.132
X

3. Two real representations ofSU(5) (r ~ r' }

There are an infinity of real representations of SU(5) to
consider, of course. Nevertheless some statements are
possible. Generally, when r and r' are both very large, the
anomaly equations have only one real root. (Since there is
a cubic equation involved there can be one, two, or three
real roots. ) Furthermore, for this root

R/S +( —, )'

This is easily seen. The equations are

TABLE G. The possible values of 8/S for the case of the
extra fermions being a pair of real SU{5) representations per
fanuly. There are only two cases where R/S&0.

3,0.794,3.78
13
14

1

3

0.795,—2.74, —0.365

3

0.794

0.794

X

I&. SU(3) xSU(2}xU(1)r xU(1)'

In this case there are six anomaly equations to satisfy:

(i) SU(3) XU(1)' anomaly=O,

(ii) SU(2) XU(1)' anomaly=O,

(iii) U(1)r X U(1)' anomaly=0,

(iv) gravity XU(1)' anomaly =0,
(v) U(1)r XU( 1)' anomaly=0,

(vi) U(1)' anomaly=O .

(19)

One possibility that always solves the equations is a U(1)'
which acting on the fermions is the same as U(1)r. [Of
course we assume that the fermions are anomaly-free
under SU(3) XSU(2) XU(1)r.] Furthermore it is not hard
to see that to any set of U(1)' fermion charges which satis-
fy Eq. (19) we can add an arbitrary constant times hyper-
charge ( F}and still have a solution. Thus without loss of
generality we can add a seventh condition, namely

(vii) tr F F'=0,
fermions

(19)

4. Tioo real representations r +r' per family

Each family is taken to be 10+5 +r +r'. The preced-
ing discussion applies here as well. That is, for large r
and r' we get R/S=+( —,

' )'/s and for all cases one finds
R/S& 0 with (as far as we know) only a single exception.
For r+r'=24+75 we find that two of the three roots
give R/S&0 (see Table II). We see in Table I that R/S
approaches + ( —')' =0.793. . . quite rapidly indeed
even for small representations. So that in fact R/S = —,

'

or 0.79 except in four special cases.
For more than two real representations there is no pre-

diction for R/S: it can be positive, negative, or zero.
However, when there is a prediction due to the anomaly
conditions, we have found that R/S is virtually always
& 0. The reason for this is rather simple. There is a ten-
dency for the 10 and the 5' to have U(1)' charges of op-
posite sign so that their anomalies will tend to cancel
rather than add. It is not surprising therefore that in the
cases where U(1) is unified, as in SO(10) or SU(N), N & 6,
we find also R /S & 0 [see Eqs. (10) and (11)].
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where Y' is the charge of U(1}', with the understanding
that for any solutions to Eq. (19)(i)—(19)(vii) we can al-
ways take a linear combination with hypercharge.

Altogether, then, we have five conditions linear in Y',
one quadratic, and one cubic. As before, to get any non-
trivial solution we must assume that there are some extra
light fermions. We will for the most part consider ciises
where there are some additional fermions per famt'ly, and
where their charges are independent of family. We must
add fermions that are already anomaly-free under
SU(3)XSU(2)XU(1)r. The simplest cases are those of
real representations and complex-conjugate pairs.

If we denote the charges of (e)t. , (," )L, , (tt)L, , (d)t. ,
(e+)t, rt, , and rt, by a, b, c, d, e, g, and g', respectively,
then the equations are

(i) 0=2a +c +d +Ii(r){g+g'),
(ii} 0=3a+b+Ii(r)(g+g'),
(iii) O=a+3b+8c+2d+6e+6Y(r} (g +g'),
(iv) 0=6a+2b+3c+3d+e+d(r)(g+g'),
(v) 0=a~ b 2c +d +e —+Y—(r)(g g' ), —
(vi) 0=6a'+2b'+3c +3d'+e'+d(r)(g'+g'),
(vii) 0=a b —2c +d +e +—d {r) Y(r)(g —g'),

(20)

where Ii{r},etc., have obvious definitions. Now, there are

A. One conjugate pair of fermions ( r +r ~ ), plus any
number N, of SU(3) XSUQ) XU{1}& singlets, v&, per family

We will show that there are always two classes of solu-
tions (corresponding to the two roots of the quadratic
[Eq. (19)(v)]) which we will call the "ordinary" solution
and the "peculiar" solution. The "ordinary" solution for
N 0 gives the trivial prediction R =S= V = IV =0 and
for N 1 or N) 3 gives the "SO(10)-like" solution
R/S = —,', V= W=O. [As noted above, the SO(10)-like
solutions can be distinguished from actual SO(10) by the
fact that T=O for SO(10), while T need not vanish if
there is no SO(10).] For N=2 one can have either the
SO(10)-like or the trivial solution. The "peculiar" solu-
tions give different predictions for every choice of r. To
obtain these peculiar solutions requires solving a quadratic
and cubic simultaneously which is rather messy and gen-
erally gives bizarre irrational charges. We have little to
say about these solutions and concentrate on the "ordi-
nary" ones. There is one case though where the "pecu-
liar" solution is easy to obtain. If r is one of the "known"
representations of SU(3)XSU(2)XU(1)», like (3,2,—,

'
) or

(3', 1,——', ), etc., then the "peculiar" solution is just ob-
tained from the "ordinary" one by interchanging the U(1)'
charges of r and its known counterpart with the same
SU(3) XSU(2) XU(1)„quantum numbers. We call such a
solution a "flipped" solution. For example, if r =(3,2, —,

'
}

the flipped solution interchanges r and (q )L .

seven homogeneous equations and seven unknowns (really
six since the overall normalization of the charges is arbi-
trary). Thus we expect no solutions. However, there is a
solution. Consider

F
2

Z. %=2

Let us suppose there is exactly one
SU(3) XSU(2) XU(1)r singlet (which we will call hence-
forth vL ) in addition to r+r', per family. Denote the
U(1)' charge of vL, by f. Then Eqs. (20) are modified by
adding f to the right-hand side of Eq. (20) (iv) and f' to
the right-hand side of Eq. (20) (vi). Now there are eight
unknowns so we expect one. parameter solution {the pa-
rameter being the normalization). In fact there is a tiuo-

parameter solution. That solution is

+u (1,—3, 1, —3, 1,5),

(g,g') =s(1,—1),
(22)

where s is fixed in terms of t and u by the orthogonality
condition Eq (20) (vi. i). The numbers multiplying t are
the hypercharges, while those multiplying u are the U(1)'
charges of SU(3) XSU(2) XU(1)r XU(1)' C SO(10). This is
the "ordinary" solution, which gives R/S= —,', V=W
=0, T arbitrary. The "peculiar" solutions on the other
hand have only one parameter (which is the normaliza-
tion) as expected. But they are quite messy (involving ir-
rational charges) and have to be found case by case. In
Appendix 8 we show that there are no other solutions
than these.

Here we have the extra fermions (r +r'+vL, +vL, ) per
family. If we call the U(1)' charges of the two vL, fi and
f2, then we modify Eq. (20) by adding fi+fi to Eq.
(20)(iv) and fi +f2 to Eq. (20)(vi).

Noir eve have nine unknowns and expect thoro-parameter
solutions where one of these parameters is the overall nor-
mahzation. And indeed the following is a two-parameter
solution:

( gg')=s{1,—1) .

This obviously satisfies the six anomaly conditions. The
remaining condition, orthogonality to Y [Eq. (20)(vii)],
fixes the ratio s/t. This is what we call the ordinary solu-
tion. If r is the same as one of the known representations
of SU(3) XSU(2)XU(l)r then there is a "flipped" solution
as well. Otherwise there is no "peculiar" solution in this
case. In Appendix 8 we show that there are no other
solutions than those given here. Note, as we said above,
that we get R =S= V = W =0.
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(a,b,c,d, e)=t( —,', ——,, ——', , —,', 1),

(g,g')=s(1, —1),
{fifI)=u(1 -1»

(23)

where s is fixed in terms of u and t by the orthogonality
condition, as before. {Another two-paimneter ordinary
solution has fI or fi ——0 and is just equivalent to the
N= 1 case.) There are also (messy) two-parameter "pecu-
liar" solutions. The "ordinary" solutions just given are
unique (see Appendix 8) and give the "trivial" solution {or
the degenerate solution with f~ or fI 0, t——he same result
as N= 1).

(a,b,c,d, c)=(0,0,0,0„0),

(fI,fI)=s(1,—1) .
(26)

(a,b, c,d, e,fI ) =u(1, —3, 1,—3, 1,5),
(fi,fs)=s(1,—1) .

(27)

There are also the solutions from pex~atting the f&. This
gi~es the SO(10)-like result.

For N & 4 there is an ( N —1)-parameter solution:

This gives the "trivial" solution E. =8= V =8'=0, T ar-
bitrary. There is '8180 8 Onc-parameter solllfioil with fI of
fI——0 and the remaining charges as in the N= 1 case.
This gives thc saInc SO(10)-like fcsult 88 N= 1.

For N=3 there is a two-paraineter solution:

Now we have N vL, with U(1)' charges f;
(i =1, . . . ,N &3). Equation (20)(iv) has an extra term

,f; on the right-hand side and Eq. (20) (vi) has an ex-

tra tenn g,. , (fI ) . There should be N-parameter solu-

tions. Consider

N

a,b,c,d, e,tr= g ft ——u (1,—3, 1,—3, 1,5),
/~1

N N
(28)

N

a,b, c,d, e, g ft t ( , ,————,—,——,, —,, 1,0)1 1 2

I =1

+u(1, —3, 1,—3,1„5),

(g,g')=s(1, —1),
N

(fi,fi, . . . , fthm) solutions of g(f&)'= g f&

If we call gp & f& ——o then the equations become just the
same as for N~ 1 with f replaced by cr. So obviously Eq.
(24) is a solution since Eq. (22) is. Equation (24) is an N-
parameter solution: s is fixed by the orthogonality equa-
tion, which leaves t, u, and fi through fN. This is the
unique (see Appendix 8) "ordinary" solution, and gives
the SO(10)-like solution. There are also N-parameter
famihes of "peculiar" solutions.

(a,b,c,d, e f)=u(1, —3, 1,—3, 1,5) . QS)

This gives the "SO(10)-like" result.
For N =2 there is a one-paraineter solution:

B. Extra fefinions (per family) are vt,

[SU(3)XSU(2) XU(1)r singlets]

The reasoning is very similar to that in the previous
ca.e {Appendix 8). We will simply state the result. In the
case IV A we solved the five linear conditions and substi-
tuted into the quadratic. This gave two roots correspond-
ing to the "ordinary" and "peculiar" solutions. Here
however when we solve the five linear conditions and sub-
stitute into the quiidratic, we find the qm»~~tie is identi-
cally satisfied. Hence there is only an "ordinary" family
of solutions; for N 0 there is no solution, for Ã i there
1s a one-parQIQetel sohltlon:

The N —1 parameters may be taken to be fz, . . . , —f~
which detcimI'nc fI through the second expression of Eq.
(28}, and determine u through u =-,' g; I ft. This gives
the SO(IO)-like solution.

C. Two conjugate pairs {rI+r~ )+{rI+rI ) per f~IIIIly

Here we expect two-parameter solutions. If we call the
U(1)' charges of the extra femtions (g,g') and (h, l'I') then
a two-parameter solution is

(a,b,c,d, e)= t ( —,', ——,', ——', , + —,', 1),

(g,g') =s(1,—1),
(h, h'}=tu(1, —1),

(29)

with one parameter fixed by the orthogonality condition.
This gives the trivial result R =S=V= IV=0, T arbi-
trary. This however is Iiat the unique solution. In general
there are other two-paftimeter families of solutions. They
would be messy and would have to be found ca!e by case,
which we have not done. (If rI and rI are in the same
representations as known fe.~anions then some of these
other solutions can be found by "flipping. "}

D. One rea1 representation r per fami1y

Here one expects no solute. on as there are only s~x pa-
rameters {flue, wl'thollt fhc normahzafioil} alld scucII equa-
tions. If r =vL, then there is the 80{10)-like solution of
course. This is a consequence of the group theory of
SO(10}. Amazingly, however, there is another simple case
with a solution, and it has no apparent group-theoretical
reason to exist.

80 coaj'Ngate pairs p/ss Vz, per family

Here there is an obvious three-parameter "SO(10)-like"
solution. However other solutions exist as well.



If r=(1,3,0) representation of SU(3) XSU(2) XU(1)r
then there is a solution (where g is the charge of r)

(a,b, c,d, e,g) =u(1, —, , ——,, ——,, —,, ——, ) .13 2 4 4 Io

We have found no other cases with solutions.

(30)

F. All extra fermions are SU(2)t, singlets

Here the SU(2)~X U(1)' anomaly tells us

3a+b =0.
The same comments apply as in Sec. IV E.

(32)

V. SUMMARY OP RESULTS

In the Introduction we mentioned three motivations for
looking at the anomaly constraints on extra Z' bosons.
We will discuss our results under these three headings.

(1) One object was to see whether the tests of grand uni-
fication in v scattering given in Ref. 2 really tested grand
unification or only anomaly freedom. The signature of
grand unification is that V=8'=0. And if GXU(1) is
further unified then the ratio R /S takes on characteristic
values, such as R/$=1/3 for SO(10) and R/$=2 for
many SU(N} models. We have found a number of cases
with no grand unification where, nevertheless, V=K
=0 and where R /S= 1/3. These so-called "SO(10)-like"
solutions, however, can be distinguished from SO(10) by
the fact that in SO(10} we have T~O whereas anomaly
freedom alone does not constrain T. The cases with this
"SO(10)-like" result are (1) the extra fermions per family
are all vt, , {2) the "ordinary" solution when the extra fer-
mions per family are [r +r'+N(vt, )], and (3} a particu-
lar family of solutions when the extra fermions per family
are (r, +r i +r, +r2 +vL ).

We have found no nonunified cases where anomaly
freedom alone predicts V= W=O and R/S+1/3. It is
possible, then, always to separate the predictions of grand
unification from those of anomaly freedom. Grand unifi-
cation predicts V = JV =0 and either R /S+1/3 or
R /S = 1/3, T=O. In some cases anomaly freedom alone
can predict V = IV =0, R /S = 1/3, T arbitrary.

(2) We are also interested in the case where SU(3)
XSU{2)XU(1)r is grand unified (since there is evidence
for that) but the extra U(1) is not, and whether any values
of R /S are preferred because of anomaly freedom in such
a case. We have indeed found some predictions.

If SU(3) x SU(2) x U(1)r x U(1)'cSO(10)x U(1)' then it
is easy to see that Qis ——Qs, so that

E. All extra fermions are color singlets

If all the extra fertnions are color singlets then the
SU(3) XU(1)' anomaly tells us that

2a+c+d =0.
This result clearly does not depend on how many extra
fermions there are, or whether they are associated with
families, or how many Z' bosons there are or how they
1Tiix.

R/S= —1 .
An example of this is furnished by SO(10) (or Es, etc.)
unification where the extra U(1)' is part of a family group.

If we have SU(5) unification then we have found vari-
ous interesting cases. For example from Eq. (15) we see
that certain simple cases lead to R/S taking one of the
values 0, ao, —,', —', , and «. More generally, we have
found that if the U(l)' charges are "family independent"
(i.e., the same for repeated representations) then virtually
always when there is a prediction for R /S it comes out to
be positiue. (Two isolated exceptions were noted in Secs.
III83 and III84.)

(3} Finally we are interested in what predictions could
be made if there is no grand unification, just on the basis
of anomaly freedom. In general, there is the interesting,
and potentially useful, fact that the predictions for a, b, c,
d, and e (when there are predictions} are correlated with
the number and type of extra light fermions. [A rather
amazing example is provided by the case where, in each
family, there is a (1,3,0) of SU(3)XSU(2)XU(1)r. This
has the solution given in Eq. (30).] So that, if there are
extra light Z bosons, a measurement of deviations from
the standard model in theory could tell us a great deal
about the spectrum of undiscovered light fermions.

A useful general prediction is that if all extra light fer-
mions are color singlets 2a +b +c=O and if they are all

SU(2)L singlets then 3a +b=O [see Eqs. (31) and (32)].
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APPENDIX A

To see how the charge of the extra U(l) [U(1)'], which
we denote Ir', can have an admixture of hypercharge Y,
let us look at an example. Consider an SU(7) model where

SU(7) SU(5) x SU(2) SU(3) x SU(2) x U(1)& xU(1),

SU(3) x SU(2) x U(1)-„

SU(3)xU(1) .

Let the generator of U(l)» be

—= —,
'

diag(3, 3,—2, —2, —2,0,0),

and the generator of U{1)2be

X =diag(0, 0,0,0,0, 1, —1 ) .

Superlarge bredung can be done by, among other things,
Higgs-boson vacuum expectation values (VEV's) like
(Q~, ) =aI'+PX, and (H )+0. Let the further break-
ing of U(1)rxU(l)z down to U(1)- be done by, say,
(b ' )+0. Then it is easy to see that

F F
2 2
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is the unbroken "hypercharge. " That is, Y is the genera-
tor corresponding to the ordinary Z boson. If the known
fermions are in f~~~' and g~ (a,P=1, . . . , 5) then Y act-
ing on these particles will give the usual hypercharges. It
is not hard to see that the charge to which the Z' couples
0 O=C(b, o)+ g (f;)3, (81)

pressions for o, c, d, e, and (g —g'), we get these in terms
anly of b and o. Substituting them into the cubic equa-
tion one gets an equation of the form

F' ac 12 —+5X = 12 —+ 17X .F F
2 2

[Since Y and Y' are generators of the simple group SU(7),
we have tr~ YY'=0.] Notice that Y' contains an admix-
ture of Y which is hypercharge. So even if all interactions
are unified in a simple group like SU(7) the U(1)' charges
(a,b,c,d, e) can have an admixture of hypercharge If.
there is no unification then of course it is obvious that Y'

can mix with hypercharge.
There are some cases where Y' cannat have an admix-

ture of hypercharge. Consider SU(6), for example. If we
embed SU(3) X SU(2) XU(1)zX U(1)' in SU(6), the genera-
tors of U(1)z and U(1)' will be

—=—,diag(3, 3, —2, —2, —2,0),F
6

X =diag( —1, —1,—1,—1, —1,5) .

Now, if the ordinary fermions are to have the correct hy-
percharge assignments, we can see that the hypercharge
(the charge to which the ardinary Z boson couples) must
be exactly Y/2 with no admixture of X. Hence the charge
of the extra U(1) is just X with no admixture of Y. This
is obviously a peculiarity of SU(6) among all the SU(N)
groups.

The same holds also of SO(10). For if we embed
SU(3)XSU(2)XU(1)rXU(1)' in SO(10) the charge X of
U(1)' will be 1, —3, and 5 on the SU(5) representations 10,
5', and 1 in the spinor of SO(10). If the hypercharge as-
signments of the usual fermions (which we take to be in
the 16) are to come out right, then the hypercharge has no
admixture of X, and hence the charge of the extra U(1)
can have no admixture of Y.

Thus for both SU(6) and SO(10) there is the prediction
T=O. But in general, in unified models and in nonunified
models, T is unconstrained.

where C is a homogeneous cubic in b and cr N.ow sup-
pose N 1. Then Eq. (81) reduces to (since then o =fi )

O=C(b, o)+o (82)

C(b, o)= —o3 (83)

identically Thus. the cubic just gives, for X=1,0=0 and
is redundant.

Now if %=2 the only thing to change is the second
term in (81). Thus Eq. (83) still must be true. Hence the
cubic equation noir is

0= —o'+(f i)'+(f2)',
o=fi+f2 .

(84)

This gives

3fif2(fi+f2) =o .

The roots fi ——0 and f2 ——0 are equivalent ta the N=1
case. So the new case is

&=(fi+f2) =0

and all the equations become equivalent to the N=O case.
This is just solution (23) in the text. Sa we have found
that there are no other solutions than in the text.

If %=3 the cubic equation is

o=(fi+f2+f3}' (fi'+f2 +f3—) ~ (85)

Since we know that Eq. (22) is a two-parameter solution
(where the two parameters can be chasen to be b and o), it
follows that (82) has solution for any b and o' in some
range of values. This implies that

APPENDIX 8

%'e prove the assertions in Sec. IV 8, about the unique-
ness of the solutions. Consider the case of the extra fer-
mions (per family) being rL+rL'+n(vz ). Denote the
U(l)' charges of the rl, rL' by g,g', and of the neutrinos by
f;, i =1, . . . , N. Call g,.f;=o. Then the five line—ar
equations in (20) depend on a, b, c, d, e, g, g', and o.
Thus we can solve for a, c, d, e, and (g —g') in terms of
b, o, and (g+g'}—=X. Substituting into the quadratic
gives two solutions for X in terms of b and cr. It turns out
that one of these is always X=0 corresponding to the "or-
dinary" solution with g =g'. (This can be checked expli-
citly. ) So the quadratic is of the form X[X—f(b,o)]=0
where f(b,o) is linear in b and o. I.et us consider the or-
dinary (X=O} solution. Substituting X=O into the ex-

gfi —g(f )'. (86)

This is a quadratic equation for fi in terms of f2 and f3
and so has at most two roots. They are fi —— f2 and-
fi —— f3. In the degen—erate case f2 f3,fi is undeter-———
mined. These three cases are clearly just equivalent under
interchanging the f;, so consider without loss of generality
fi =—f2 Then o=f3 and g,. (f;) =(f3)3=o3 and the
equations collapse to the N= 1 case. Thus we have found
all of the three-parameter solutions (the parameters are b,
o', and f) and they are just those discussed in case (A3) in
the text [Eq. (24)].

For N &4 there should be N-parameter solutions. The
cubic is now
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We can solve the resultant quadratic for fi in tea~a
of f2,f3, . . . ,fN. (There are two roots. ) Then
o= g, f;=o (fi,fi, . . . ,fN) is a definite function of
(N —1) parameters. Since (86) says that g, (f&)'=cr',
all the equations now only depmd on the f; through o
and give the same solutions as the N= 1 case. These are

two-pariuneter solutions in terins of b and o. But o itself
depends on fq, . . . ,f~. Thus there are N free parameters
b, f2, . . . ,fn. The predictions for (a,b,c,d, e) are clearly
exactly the same as for the Ã 1 case. That is, the pre-
dictions are SO(10)-like. So the result is that the "ordi-
nary" solutions discussed in the text are unique.
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