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%e define a new set of squeezed states using group-theoretical methods. The definition is based

on the Holstein-Primakoff realization of both SU{2) and SU{1,1). Generalizations of these realiza-

tions are presented, connected arith the Brandt-Greenberg generalized Bose operators. The new

states exhibit interesting squeezing properties, depending in a characteristic may on the dimension of
the irreducible unitary representation adopted. %e also discuss the asymptotic behavior and present

a set of relevant numerical results. Unexpected and interesting scaling behavior appears.

I. INTRODUCTION

Glauber's coherent states' correspond, in configuration
space, to minimum-uncertainty Gaussian wave packets
whose width is everywhere equal to that of the vacuum
state, produced when a harmonic oscillator interacts with
a classical field of force.

In view of the problem of detecting effects close to the
sensitivity limits imposed by quantum mechanics (such as
gravitational radiation or multiphoton eigenmodes of the
electromagnetic field in an optical cavity ), a different set
of states has been proposed, which in configuration space
correspond to Gaussian wave packets with widths distort-
ed from that of the vacuum. The latter are referred to as
squeezed states. Squeezed states should indeed be thought
of as states obtained by displacing a squeezed vacuum by
the same displacement operator which generates Glauber's
coherent states Howe. ver, since all the relevant informa-
tion and features are contained in such a squeezed vacu-
um, it is the latter which is more often referred to as a
squeezed state.

In a recent paper by Fisher, Nieto, and Sandberg the
concept of squeezed coherent states of a harmonic oscilla-
tor was thoroughly reviewed in view of a possible higher-
order generalization of the squeezing operator which
might lead to new distribution functions and allow a dif-
ferent nonlinear detection scheme resorting to multipho-
ton states.

The result was negative in the sense examined by Fisher
et a/. in that it yielded operators leading to a nonanalytic
ground state. However, O'Ariano, Rasetti, and Vadacchi-
no produced a different generalization, resorting to gen-
eralized k-boson operators, which corresponds to non-
Gaussian multiphoton squeezed states.

It is of interest to mention here that the customary
squeezed states can be viewed as coherent states for
SU(1,1) in the framework of the concept of generalized
coherent states for an arbitrary I.ie group.

In this paper we rely on this group-theoretical approach
to define a new set of highly nontrivial generalized
squeezed states which in suitable limits reproduce both

=(2o+1—n )'"a',
J3 ———,[J+,J ]=n —cr .

(2.1)

the usual squeezed states and those of Ref. 6. In addition
we study the squeezing properties of these states as well as
the relation between the different realizations and the dif-
ferent limits.

From the group-theoretical point of view these general-
ized squeezed states are connected with both SU(2) and

SU(1,1) in their Holstein-Primakoff realizations.
In the SU(2) case the number of photons is finite, and

there ensues an interesting lower bound on the amount of
squeezing one can possibly achieve.

The notation used throughout the paper is standard. In
Sec. II the multiboson Holstein-Primakoff coherent states
for SU(2) are defined, and their relation to the generalized
Bose operators is analyzed. In Sec. III the squeezing
properties of such states are thoroughly discussed in gen-
eral whereas Sec. IV is devoted to their asymptotic
behavior. In Sec. V both the definitions and the analysis
are carried through to the SU(l, l) case. Section VI con-
tains a collection of numerical results, meant both to
check the analytical results of the previous sections and to
clarify some global behavior. Some unexpected scaling
properties of the optimal squeezing with respect to the un-

itary irreducible representation label appear. A summary
and some further discussion are presented in Sec. VII.

II. MULTIBOSON HOLSTEIN-PRIMAKOFF
RELATIONS FOR SU{2}

The Holstein-Primakoffs relations form a realization of
the SU(2) algebra in terms of a single Bose operator (no-
tice that wherever the functions of the operator n occur, it
is implied that these functions are only evaluated in eigen-
states of n and therefore considered equal to the functions
of the eigenvalue; the commutation relations are obtained
in the same spirit):

J =(2o n)'~ a,—
J+ =Jt =at(2on)'". —
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Here [a,a ]=1 and n=a a. The states spanning the
basis for the (2o+1)-dimensional representation of SU(2}
are the normalized bosonic states

)
n ) =(n!) '~ (a )"

( 0), n =0, 1, . . . , 2a

with J3 eigenvalues ranging from —a to a, respectively.
We may generalize the relations (2.1) as follows. Writing

J' ' =a "f» (n ) =f» (n+ k)a

J(k) f (n )(a t}k

we obtain

(2.2)

Ili[J(k) J(k)] n f i(~) n+k ~ f 2(~+k)
(n —k)! n!

f», (n) =((n —k)!/n![[n/k]] I2o+1—[[nlk]] j )'~

(2.4)

This result could have been obtained by starting from the
usual Holstein-Primakoff relations, Eqs. (2.1), and substi-
tuting the generalized Bose operators

A (~k) -fk(n )(a t)k,

N(») =~(k)~(») =[[n/k]],
(2.5)

where

(2.3)

Identifying
~
0) with the ei)enstate

~
J3 ' ———o ) the

form of J' ' suggests that J3 ——[[n/k]] —a so that the
complete representation is spanned by the states
~0), ~k), . . . , ~2ak) corresponding to eigenvalues of
Ji ' equal to a,—a+—1, . . . , a, respectively. [[x]]
denotes the largest integer (x. Comparison of this form
of J3 ' with the right-hand side of Eq. (2.3}provides a re-
currence relation for fk ~(n ), which can be shown to result

g;a) =exp[a(gJ+ —g'J )] I
J,= —a;a (3.1)

where g is a complex parameter, and
~
J3 ———a;a) is the

eigenvector of J3 corresponding to the eigenvalue —o.
Using the Baker-Campbell-Hausdorff formula for SU(2)

exp((J+ —g*J ) =e +e 'e (3 2)

where

III. SQUEEZING PROPERTIES OF MULTIBOSON
HOI, STEIN-PRIMAKOFF COHERENT

STATES FOR SU(2)

Harmonic-oscillator coherent states' are quantum states
having the following properties: the uncertainty product
Mbp attains its minimum value, with M =6@=1/v 2
(()i=1); they evolve quasiclassically and they have the
form exp(Aa ) ~0). The question that now arises is the
folio win~: Can we improve upon the uncertainty
(M) = —,, for example, while still maintaining the quasi-
classical evolutions The solution (the squeezed states)
suggested by the form exp(Rat)

~
0), where a,a generate

the Weyl algebra, is exp(p J+ )
~
0), where J+ is a bosonic

realization of a raising operator in a more general algebra.
The squeezed states are then coherent states for the group
of such an algebra. We recall the construction of coherent
states of SU(2) according to the general definition for an
arbitrary I.ie group given by Perelornov' and Rasetti. "

The set of coherent states for a Lie group 6 is obtained
using a unitary irreducible representation (UIR) of the
group, choosing a fixed vector

~

a)) in the representation
space, and acting on it by the whole group. It turns out
that the coherent states are labeled by means of the left
cosets of the group 6 with respect to the subgroup leaving

~
cu) invariant up to a phase factor. For the SU(2) group

the set of coherent states within the (2o+1}-dimensional
UIR is given by the formula

f»(n)= [[[n/k]](n —k)!/n! j'~ .
tan(

( g ) ), P= in(1+
( g [

'),

Eq. (3.1}can be rewritten in the form

(3 3)

These generalized Bose operators satisfy the usual boson
commutation relations [A (»),A (») ]= l.

Performing the indicated substitution we obtain

J+ =(2o + 1 N(k) A (k))—[k) 1/2

= [2a+1—[[nlk]] j (~if»(n)(at)»,

gJ+
~
ga) =N 'e +

~
Ji ———o-,o) . (3.4)

N is a normalization coefficient and we chose to label the
coherent states directly in terms of g. In the k-boson
Holstein-Primakoff realization of the UIR of SU(2), the
vector

~
J3 —— a;a) tur—ns out to be the vacuum and the

coherent states are written in the reduced form

J(k) (J(k) )('
(2.6)

~g;k, a)=N 'e + ~0) . (3.5)

J3"' N(») o= [[n /k ]—]——a. —
Expanding the exponential and using the properties of the
J'+ operators we obtain

Comparison of Eq. (2.6) with Eq. (2.4) gjves

f»~(n)=I2a+1 —[[n/k]]j' fk(n) . (2.7)

2' p l I —]
~gka)=N ' g ~ g fk (n pk) (a )"'~0) . —

l =0 p =0
L

(3.6)
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ZEST 2g
I g;k, o) =X-' g g'

I =0
This is the general expression for the SU(2) coherent
states, whe~e

I
kl ) are the weight vectors of the (2o + 1)-

dimensional representation, namely, the eigenvectors of
Z',". Since

(3.7)

(g;k, o
I g;k, o) = (1+ I g I

)

it follows that

N=(1+
I gI )

Furthermore,

(3.8)

(3.9)

In Eq. (3.6} the number operator n can be replaced by its
eigenvalue kl. Using the explicit form of fk (n), Eq.
(2.4), Eq. (3.6) becomes

For k =2,

&.') =&.&=o,
4o

I 0 I

'
1+ I(I'

((at)2)
(1+ Ikl')"

T

2&
x g IgI", &(2o—1)(21+1).

l =0

For k &3,

&")=&.)=o, &(")'&=(")=o,

( t )
2crk I(I'
1+

I 4 I'

(3.16)

(g;k, o
I
a a

I g;k, cr) =
1+ICI'

(g.k o
I
(at)km

I
g.k o)

ge m 2n 20' 2cT
21

I/I 2)20' 1 1+m

(3.10}

IV. ASYMPTOTIC BEHAVIOR

Since, by Eq. (3.10),

(g;k, cr
I [[n/k)] I g;k, o)=

1+
I 0 I' (4.1)

(g;k, o
I

(at)" +"
I g;k, o) =0,

' 1/2
[k (1+m)]!

(kI)!
(3.11}

it is reasonable to investigate the limiting forms of the re-
sults presented in the previous section in the limit in
which o~ ao such that p=@ 2o

I g I
remains finite.

Clearly,

For k =1 we obtain

r=1,2, . . . , m —1, m =1,2, . . . .

20'

(1+ IgIz}2~ 1
v'2cr —1,

+2
t)2

(1+ I&I')'

(3.12)

T

2'
V(2cr —l)(2o' —1 —1), (3.13)

1=0

&,f, ) (3.14)
1+ I(I'

from which (M) = &x') —&x &' and (&p)'= (p'& —&p &

follow via the relations x =( I/v 2)(a +a) and p
=(i/v 2)(a —a):

(~)'= —,
' + (a'a &

—&a'& &a &+«[&(a t)') —(at)'),
(3.15)

(bp)'=-,'+ &.")—&")&.) -R.[&(")')—&")'] .

2

& [[n/k]] & =
2

2
1

P

p 20
1+2

(4.2)

2

2'
~Pn 1

P
80.

(4.3)

In the same limit we have (2o+1—[[n/k]])' ~2cr, so
that

J+ ~V2crA~k~, J ~V2aA~k~(1) [k) (4.4)

and the k-boson Holstein-Primakoff coherent states
reduce to the generalized k-boson coherent states. This
result is well known in the case k = 1 corresponding to the
standard Holstein-Primakoff coherent states reducing to
the Glauber coherent states. ' Retaining terms up to or-
der 1/o in Eq. (3.11) we obtain, selecting for simplicity g
to be real and positive,

&g;k, o I(a ) I g;k, o)=e i'p 1+ P g p2'
4o i 0 1!(1+m)!(kl)!

' ]/2

1 — [1(1 —1)+(1+m)(l +m —1)]So.



MULTIBOSON HOLSTEIN-PRIMAKOFF SQUEEZED STATES. . . 2335

Some interesting special cases are k =1,

&o')=p- P
4a

&( t)')=p' — (p'+2p');t2 2

4o.

(4.6)

(4.7)

(&p )';„=—,
'

+2p() —~2F) (p('))+ —8 (p()) . (4.16)

From the definition of F„(p), Eq. (4.9), it follows that

where B(p ) is the coefficient of I/o in Eq. (4.12).
Furthermore,

and k =2,

&(o t)2)-v 2F) (pz)+ [p Fi(p )
2 20'

~F.(p')

so that

2p —F„(p')+ F„—+3(p )

. P .
"

P
(4.17)

where

—F3(p') —F3(p')], (4 8) BB 1 4 4 2

()p 2v 2p
[p (2p -5)F) —(2p +2p -3)F3

oo ~ I

F,(x)=x"~ e "g —3/2! +n
l =0 I! (4.9)

—(2p —7)F5+2F7 ]—4p

Solving Eq. (4.14) numerically we obtain

(4.18)

Note that Fi(p ) =pF(p ), where F(p ) is defined in Ref.
6. Thus, for k =1 we obtain

2

(M) =——

2 I P(bp)'= +—
Po-—O 6467

Substituting this value in Eq. (4.15) we get

y= —0.2294 .

Finally, from Eq. (4.16) we find

(bp);„0.158 72+0.05473—

(4.19)

(4.20)

(4.21)
These results imply that to first order in I/o the uncer-
tainty product remains minimal. Thus, for large but fi-
nite 0. we obtain near-minimum uncertainty and nonzero
squeezing. For k =2

(~) = —,
' +2p'+ "{/2F)(p')

The values of po and of (bp);„(o=oo) are just the
values corresponding to maximal squeezing for the gen-
eralized boson k =2 coherent states of Ref. 6.

V. MULTIBOSON HOLSTEIN-PRIMAKOFF
COHERENT STATES OF SU(1,1}

[F,(p )+F,(p') —p F, (p')]+po 2v2

(4.11)

The commutation relations of SU(1,1)

[J3,J+]=+J+, [J+,J ]= —2J3 (5.1)

(hp) = —,'+2p ~2F)(p )

+— [F3(P')+F5(P ) —P Fi(P )]—P'
o 2v2

(4.12)

p;„=p()+ +O(1/o') (4.13)

we find that po is the solution of the zeroth-order equa-
tion:

Equation (4.12) results in squeezing of (hp) . Had we
selected g negative we would have obtained squeezing of
(rhx) . For each finite cr the value of p;„corresponding
to the optimally squeezed (bp);„is given by differentia-
tion of (4.12). Writing

J+ ——(2cr —1+A(k}A(k) ) A {k),(k) t 1/2

J =[J+ ] =A(k)(2o —1+A{k)A(k))
(k) (k) 1/2

J3 [J3 1 A(k)A(k)+o .(k) (k] 7

(5.2)

Note that the representations labeled by o. are now infinite
dimensional. The special case k =1 was considered by
Gerry. ' The SU(1,1) coherent states are defined as

~z;o)=e + (J3——o-,o) . (5.3)

Using the Baker-Campbell-Hausdorff formula we obtain

can be realized by expressing the generators J+ and J3 in
terms of multiboson operators.

Thus, in the UIR corresponding to the eigenvalue
(o —o) of the Casimir operator J3 ——,'(J+J +J J+)
we have

i3F)
4p() —v 2 =0 .

~P ~=~0
(4.14) ia;o)= e '

i J3——o-,o),as+
(5.4)

y is given by

98 BF)y= 2
2~p a=co . (3p e=eo

(4.15)
00

(aka)= g a
m=0

~

km ), (5.5)

where a =(z/
)
z

(
)tanh(

(
z

)
) and

) a, o ) is normalized.
In complete analogy with the SU(2) analysis we obtain

1/22'+ m —1
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M=(1 —/a/ ) (5.6)

(a;k, rr! ata! a;k, o) = 2ko /a f'
(5.7)

0.5 —-10

Furthermore, for k =1

2' +P?2 —I

~' m=O

v'2o +m, (5.8)

E

0.0

&(V'(2cr+m)(2o+m +1), (5.9)

-0.5

0.5

—-2.0

and for k =2 FIG. 2. Behavior of the squeezing parameter g and of the po-
sition uncertainty for the most-squeezed one-boson SUQ)
Holstein-Primakoff states.

&&&(2o+m)(2m +1) . (5.10) The limit of the second kind requires that a~ 1. For
k =2 we obtain, in this limit,

The position and momentum uncertainties are obtained in
terms of the above matrix elements. The definition of J'+'
for SU(1,1), Eq. (5.2), suggests two interesting limits: (a)
o~ao with (A(k)3&k)) finite, and (b) o finite with
(A (k)A(k) )~ co.

The limit of the first kind, if taken in such a way that
)o= !a Intr remains finite, results in

! a;k, a) e '"'!0), (5.11)

which is again the generalized boson coherent state.
Note that in this limit (a a ) =kp, which is finite, as re-
quired.

(5.12)

so that ! a) becomes a particular harmonic-oscillator
squeezed state. The a~00 asymptotic expressions are
obtained in complete analogy with the SU(2) case. Upon
computing them one notices that the results for (M)z and
(Ap), both for k =1 and k =2, are obtained from the ex-
pressions given in Eqs. (4.10)—(4.13) for SU(2) by revers-
ing the sign of the coefficients of I/o.

VI. NUMERICAL RESULTS

To illustrate and amplify the previous discussion we
present the results of some numerical computations.

0.5

p =0.5

0.3
0.0 0.5

0.10
0.0

FIG. I. Position uncertainties for one-boson SU(2) Holstein-
Primakoff states with a constant p, and momentum uncertain-
ties for the corresponding SU(I, I) states.

FIG. 3. The most-squeezed momentum uncertainties for the
two-boson Holstein-Primakoff states [SU(2) and SU(1,1)].
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0.8

0.4
0.0

FIG. 4. The squeezing parameter for the most-squeezed
two-boson Holstein-Primakoff states [SU(2) and SU(1,1}].

A. Single-boson case ( k =1)

Computing (M) or (bp)i vs o, for a constant value of
p, we obtain the behavior presented in Fig. 1, exhibiting
an approach to the limiting value corresponding to an
unsqueezed harmonic-oscillator coherent state, as cr~ ao.

The (M) vs 1/0 curves, for constant p, indicate a
close-to-linear relation with the intercept and asymptotic
slope in agreement with Eq. (4.10}. Figure 2 shows that
the optimal squeezing of (dLx) increases with o, with
(M);„~0for large o. Also shown in Fig. 2 is the op-
timal value of the squeezing parameter g;„.Figure 2 in-
dicates that (doc);„-cr s and g;„-cr where 5 is ap-
proximately equal to —,

' in the SU(2) case.

8. Taro-boson ease ( k =2)

Calculating the maximum squeezing of (bp) as a func-
tion of p, for different values of cr, we obtain the results
presented in Fig. 3. The corresponding values of p are
presented in Fig. 4. Note that both (bp) and p are very
close to being linear in 1/cr over the range presented. The
intercepts of both curves with the 1/cr =0 axis, and their
slopes, agree with the analytically derived values, Eqs.
(4.19)—(4.21). Note, further, that for cr~oo both the
SU(2) and the SU(1,1) curves approach the generalized bo-
son values. 6

VII. CONCI USIONS

The new set of generalized squeezed states defined and
investigated in the present paper are actually the group-
theoretical coherent states of the SU(2) and SU(1,1) Lie
algebras. The Holstein-Primakoff realizations of these
algebras in terms of the harmonic-oscillator ladder opera-
tors and, in particular, the realization introduced in the
present paper in terms of multiboson operators, enabled
the investigation of the squeezing properties of the

group-theoretical coherent states with respect to the
harmonic-oscillator dynamical variables.

In both the SU(2) and SU(l, l) cases, the single-boson
and two-boson Holstein-Primakoff states exhibit squeez-
ing of either position or momentum, depending on the
phase of the squeezing parameter. However, for a Hamil-
tonian of the form H =coct a+const, we have, for a real
squeezing parameter,

[~(t)] =(M) cos (cot)+(hp) sin (cot),

with a similar expression for [hp (t)], and so the squeez-
ing oscillates between (M) and (bp)' with frequency 2co.

For finite values of the label of the irreducible represen-
tation cr the maximum amount of squeezing is finite; i.e.,
neither (b,x} nor (hp) can shrink indefinitely.

The optimal squeezing of the single-boson SU(2) exhib-
its an interesting asymptotic behavior, i.e., (M) =cr
Thus, arbitrarily high squeezing can be achieved by in-
creasing cr to sufficiently large values. Note that o can be
interpreted as the maximum number of photons available,
%~i„which is certainly finite in any conceivable experi-
mental setup. Thus, in this case the presently proposed
states have one physically derivable property the familiar
Glauber coherent states do not have: i.e., they presuppose
a finite rather than infinite number of photons. From the
asymptotic relation mentioned above we obtain an in-
creasing lower bound on the amount of squeezing achiev-
able, i.e., (Lb&) & cX~s ', where c is some universal con-
stant, which according to our numerical results is of order
unity. While this result is very preliminary, it suggests an
interesting approach to the general analysis of the ulti-
mate limits of attainable squeezing. For the two-boson
realizations of both SU(2) and SU(1,1) the optimally
squeezed states approach the optimally squeezed general-
ized two-boson squeezed states of Ref. 6 in the limit
cr~cc. Actually, by approaching that limit with a se-
quence of squeezed states such that the parameter
p=g~2cr is an (arbitrary} constant, we obtain the Glauber
coherent states in the single-boson case and the general-
ized boson coherent states in general. The asymptotic ap-
proach to this limit was studied analytically, to order 1/cr.
Note that the asymptotic expressions obtained for SU(1,1)
are related to those obtained for SU(2) by a reversal of
sign of the coefficient of I/cr. These asymptotic expres-
sions were confirmed numerically for both SU(2) and
SU(1,1) in the cases of the single-photon as well as of the
two-photon Holstein-Primakoff states.

The limit considered above, in which p is kept constant,
involves a finite expectation value of the number operator.
On the other hand, the form of the two-boson Holstein-
Primakoff SU(1,1) operator suggests that a different kind
of limit could be defined, involving n becoming arbitrarily
large. In this limit the two-boson operator J+ attains the
form —,'(a ), suggesting that the corresponding SU(1,1)
coherent states become the usual harmonic-oscillator
squeezed states. Note that for k+2 this limit does not ex-
ist, which may be related to the results presented by Fish-
er, Nieto, and Sandberg concerning the impossibility of a
naive generalization of squeezing.

The results of the present paper suggest several further
avenues of investigation. Among these, the most straight-
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forward seems to be a definition of k-boson Holstein-
Primakoff coherent states in which the vacuum state

~
0)

is re~laced by a linear combination of the form

o cl
~
l). Clearly, such a definition will involve the

whole Pock space rather than the subspace [Ikl';
1=0,1, . . . ) involved in the results presented above. This
will result ill Illucll lllgher flexlblllty, lIlcllldlIlg the possi-
bility to obtain squeezing for any k.

This, as well as an analysis of the squeezing properties

of higher moments of the dynamical variables, will be
considered in the future.
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