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Path integrals in parametrized theories: The free relativistic particle
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The connection between the canonical and the path-integral formulations of the quantum
mechanics of a free relativistic particle is discussed as a model of theories in which time is one of the
dynamical variables (parametrized theories). Several features central to the canonical formulation,
such as the choice of Hilbert space, are reflected in the measure of the sum over paths and especially
in the range of integration.

I. INTRODUCTION

Hamiltonian quantum mechanics and Feynman's sum
over histories method provide two alternative approaches
by which to construct the quantum mechanics of a physi-
cal system. In the canonical approach one identifies a
preferred time, isolates the physical degrees of freedom,
constructs a Hilbert space, establishes commutation rela-
tions, and calculates dynamics by solving the Schrodinger
equation. In the path-integral approach one identifies the
histories (paths), supplies an action for each, chooses a
measure for the sum, and calculates transition amplitudes
as sums over histories. Given a classical system, there is
often considerable choice in the steps along the road to
quantum mechanics via either approach: A different
choice of time, Hilbert space, unitarily inequivalent com-
mutation relations, or operator ordering, for example, will
lead to different canonical quantum theories. Typically
some of these choices seem more natural than others, but
perhaps that is only because we are more familiar with
them. In the path-integral approach the possibilities for
choice are even more obvious. Even classically there are
many different ways of parametrizing a history and many
different physically equivalent actions. Certainly there
are many measures one can use to define an integral.

Given a particular canonical formulation of a system's
quantum mechanics, the question naturally arises as to
whether one can directly write down the corresponding
sum over histories formulation. In particular, what are
the choices of histories, action, measure, etc., which corre-
spond to a given selection of time, Hilbert space, commu-
tation relations, etc. . For simple theories, whose actions
are quadratic functions of the velocities with constant
coefficients, this is not a big problem. In these cases,
there is an essentially unique natura) choice in each ap-
proach, and the choices correspond to each other. This is
the situation in nonrelativistic particle quantum mechan-
ics and familiar gauge field theories. For more complicat-
ed theories or theories expressed in a more complicated
forro, however, the 1ssuc bccoG1cs sigmflicant. This 1s
especially the case for pararnetrized theories in which
time —the variable so central to the canonical theory —is

one of the dynamical variables. The action is then invari-
ant under reparametrizations of the time and as a conse-

quence sums over histories involve a nontrivial measure

analogous to that arising from the invariances of gauge
theories. The form of the measure which corresponds to a
given canonical choice of time is, however, much more re-

stricted than that which might have been imagined in

analogy with gauge theories or guessed from invariance
arguments. There is thus a close connection between the
particular form of canonical quantum mechanics and the
corresponding form of the measure in the sum over his-
tories.

The simplest example in which this feature emerges is
nonrelativistic particle quantum mechanics rewritten as a
parametrized theory. VA have analyzed the connection
between canonical and path-integral quantum mechanics
for such systems in a previous paper. ' However, the most
intriguing and important example of a parametrized
theory is general relativity. The action for general rela-

tivity is invariant not only under reparametrizations of a
given fohation of spacetime but also under a switch to an
entirely different foliation. The central problem in for-
mulating a canonical theory of gravity is the choice of the
variable to play the role of time. One expects that any
such choice must be reflected in the measure for the cor-
responding sum over histories. The situation is character-
istically different from that of a nonrelativistic particle.
For example, one possible action for general relativity (ob-
tained from the Arnowitt-Deser-Misner (ADM) action by
eliminating the lapse function) is not quadratic in the ana-

logs of the velocities but rather has a square-root form
remimscent of a relativistic particle:

S[g,s,¹]=I dt f dsx(gR(U, bU'" —U ))'~

where

(1.2)

Herc, g~ is the spatial metric on the spacelikc hypersur-
face X labeled by the time t, g =det(g, b) is its deter-
minant, and R is the spatial scalar curvature on X. A
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vertical bar denotes a spatial covariant derivative, and a
dot a time derivative. The shift vector ¹ was left in the
action while the lapse function N has been eliminated by
using tlM Hax11lltonian constI aint.

The transition between the canonical quantum mechan-
ics of general relativity and its sum over history formula-
tion has been extensively studied. ' Unfortunately,
such analysis is far from being transparent due to the
complexity of the theory and to its infinites. By and large
these works have concentrated on the local form of the
measure and not on its global properties such as the
ranges of integration. Considerable insight into the issues
which arise in the general relativity can be obtained by
looking at simpler reparametrization invariant systems
which also have a "square-root" action. The simplest of
these is the free relativistic particle in fiat space. The
transition between canonical and sum over histories quan-
tum mechanics is clear-cut for the relativistic particle be-
cause it is a finite-dimensional, indeed trivial, system
whose quantum mechanics is well understood. We shall
study this transition in this paper.

The quantum mechanics of the free relativistic particle
has been investigated both in the single-particle version of
this theory' and in the many-particle theory. '~ Both ver-

sions can be given canonical and sum over histories for-
mulations. ' ' We shall concentrate here on the transi-
tion between the two. To obtain the simplest example we
shall consider the theory of the relativistic particle in its
single-particle form. At the expense of some manifest rel-
ativistic invariance, this theory gives a very clean example
of the connection between Hamiltonian and sum over his-
tories quantum mechanics for a theory whose action is not
quadratic in the momenta. We shall comment on the con-
nection with the many-particle theory in the conclusion.

The issue of particular interest for us is the way that
the Hilbert space for the canonical theory of a single free
relativistic particle is reflected in the measure for the sum
over histories. We shall find that knowledge of the local
measure is not enough to define the sum correctly but that
global issues are also involved. We will be able to cast the
sum over histories into a variety of forms corresponding
to different possibilities for the classical action but there
will also be some classical actions for which no corre-
sponding sum over histories seems available. In the ex-
tended Lagrangian form of the action with multiplier we
shall find a measure which, like its analog in general rela-
tivity, appears to be reparametrization noninvariant.
It will prove to be invariant, however, on closer inspec-
tion.

II. CLASSICAL THEORY
GF THE RELATIVISTIC PARTICLE

In this section we shall review the classical theory of
the free relativistic particle setting out the various ways in
which its dynamics can be summarized by a variational
principle. The several possibilities correspond t0 whether
redundant variables, such as a pararnetrized time, are used
in addition to the physical ones to describe the motion
and, if so, to whether the consequent constraints are en-

forced explicitly or with a Lagrange multiplier. For each
case there are two forms of the action: One in which it is
a functional of configuration space variables and veloci-
ties (the Lagrangian form); and a second in which it is a
functional on phase space (the Hamiltonian form).

The physical degrees of freedom of a relativistic parti-
cle are its position x'(r) at a given time. The action
which summarizes its dynamics is

S[x']= rn J—dt 1—
2 I /2

dx
(2.1)

r~r'=f(r), x (r}~x' (r)=x (f(r)), (2.3)

for an arbitrary monotonically increasing function f (r)
which leaves the end points of integration unchanged.

The action (2.2) is not the only Lorentz-invariant action
which summarizes the dynamics of the particle. A form
more closely analogous (Table I) to the Hilbert action for
general relativity is obtained by introducing a "lapse"
multiplier N(r):

$[x,N]= —,'m f dr(N '(x ) —N) . (2 4)

Variation of this action with respect to the x and N
yields equations which are equivalent to the equations of
motion plus the statement that N is the rate of change of
the proper time with respect to the label time r The ac-.
tion (2.4} is invariant under reparametrizations of the la-
bel time which, besides Eq. (2.3), also imply the change of
the lapse:

N(r)~N'(r) =f(r)N(f (r)) . (2.5)

Further insight into the relation between the three La-
grangian forms of the action (2.1), (2.2), and (2A) can be
obtained by studying their Hamiltonian counterparts. A
physical phase-space path is described by the particle's po-
sition x'(t) and the conjugate momentum p, (t} The.
physical Hamiltonian is

Ii (x ',p, )=((p, ) + ln 2) ' i . (2.6)

An action which summarizes the Harniltonian dynamics
of the particle is

S[x',p, ]=I dt p, —h(x', p, )
dt

(2.7)

Independent variations with respect to the x' and p, yield
Hamilton's equations of motion. This action is the Ham-
iltonian form of (2.1).

where m is the particle's rest mass and we have intro-
duced the obvious notation that (u') =5,bu'u . As
throughout, we have used units where iii= 1 =c.

The action (2.1) is not manifestly Lorentz invariant.
That can be achieved by parametrizing the time. We
describe the motion by a parametrized path x =x (r) in
Minkowski space x =(t,x'). The parametrized action is

S[xa] yg J dr( (x a)2)1/2 (2.2)

where a dot denotes a derivative with respect to the pa-
rameter r. As physically it must be, this action is invari-
ant under reparametrizations of the label time,
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Variables

TABLE I. General relativity and the relativistic particle.

General relativity
in 3+ 1 form

gaP

Relativistic
particle

Physical
variables

+ Time

+ Multipliers

Action S= dt d x N(g' (K,bK' —K )+8)
K~—= 2& '~ —gab+&(a fb)~

5 =— d+N '{ ) —N)
2

Invariance x' =f (x~} r'=f(r}

Constraints

Physical degrees
of freedom

H:g'~ —(st,qm n) g—'~2R—=0
00= 27Ttg ~b 0

cc 77%'J
gab

a = ((p.)'+m') =0= 1

2127

The Hamiltonian form of (2.2) may be obtained by first
constructing the momenta p conjugate to x in the usual
way. As a consequence of the reparametrization invari-
ance there is a constraint which fixes po for a given p, .
We can write it in the quadratic form

follows from the constraint (2.8). The expression (2.10) is
again the same action but with the constraint enforced by
a multiplier. The corresponding Lagrangian forms (2.1),
(2.2), (2.4) are obtained from these Hamiltonian actions by
a Legendre transformation in the usual way.

H—= ((p ) +m )=0,1

202
(2.8)

III. HAMILTONIAN QUANTUM MECHANICS

if we agree that p~ is future pointing, po&0. Equation
(2.8) is the condition that the super-Hamiltonian H on the
extended phase space x,p vanish. Consequently, the ac-
tion

S[x,p ]=f d~p x

summarizes the dynamics on the extended phase space
provided that x and p are varied subject to the con-
straint (2.8).

With the action (2.9) the constraint (2.8) must be en-
forced explicitly. It can be enforced implicitly by using a
Lagrange multiplier N (r):

S[x,p, N) =f dip x I NH (x,p ) ) . — (2.10)

Variation with respect to N yields the constraint {2.8) and
independent variations with respect to p and x yield the
equations of motion. The action (2.10) is the Hamiltonian
version of (2.4} and N in that expression is seen to be a
multipher enforcing the constraint.

We have presented six forms of the action, (2.1), (2.2),
(2 4), (2.7), (2.9), and (2.10), as though plucked from the
air. In fact, it is possible to proceed systematically from
one to the other and we shall briefly indicate how to do
so. Start with (2.7}; it is a general form for the action
written on physical phase space. The expression (2.9) is
the same action rewritten with t =x (w) and h =pa(r) as

Is it possible to write down directly the sum over his-
tories quantum mechanics of the relativistic particle
which is equivalent to its canonical (Hamiltonian) formu-
lation? In this section we shall briefly review the canoni-
cal formulation. In the next section we shall pass from it
to the path-integral formulation.

The Hilbert space of states of a single free relativistic
particle is spanned by the states of definite momentum

~
p). We choose the momentum eigenstates to have rela-

tivistically invariant normalization

f
2p

(3.1}

( x', t
i x, t ) =5(x—x') .

The Newton-Wigner wave function P corresponding to a
state

~ g) is

where p'=(p'+m')'".
There are two interesting definitions of states with posi-

tion labels. First there are the Newton-signer states'

~
x,t)=(2~) ~~2 f d p(2p )

'~ exp(ip x ) ~p) .

(3.2)

For fixed t, these are complete, orthogonal, and normal-
ized so that
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g(x, t)=(x, t ~g} (3.4) ( x",t"
~

x', t') =f d'x (x",t"
~
x, t ) (x,t

~

x', I'},
and lt obeys

i B,p= (m V—)'~ P . (3.5)

The inner product between two states in terms of their
Newton-Wigner wave functions is

(pi ~
It2) =f dix f;(x,t)pz(x, t) . (3.6)

The Newton-Signer states are not relativistically in-

variant 1n the seIlse that the construction (3.2) carried out
on a I.orentz-boosted slice will yield a different state. The
closely related states

~x ) =(2n}3~ .f d p(2p ) 'exp(ip x ) ~p) (3.7)

are relativistically invariant but they are not orthogonal.
The corresponding wave functions

{|}(x ) = (x
~ P ) (3.&)

(m —V )/=0.

The inner product is then

(3.9)

(3.10)

Quantum dynamics of the free relativistic particle may
be thought of as defined by either (3.5) or (3.9}. It is most
conveniently specified by giving the propagator. There
are two forms corresponding to the two defmitions of
position states: the Newton-VA'gner propagator
(x",t" ~x', t') and the invanant propagator (x" ~x' ).
They are, of course, but different representations of the
same object. The Newton-%igner product enjoys a simple
composition law

are easily seen to be positive-frequency solutions of the
Klein-Gordon equation

but is not relativistically invariant. The invariant propa-
gator has a more complicated composition law:

(x" ~x' )= i —f 1'x(x" (x')B, (x ~x' ) . (3.12)

(propagator)= g exp(iS),
paths

(4.1)

where S is an action. One expects different forms of (4.1)
corresponding to which of the several forms of the action
is used and to whether the integration is over configura-
tion space paths or phase-space paths. In this section, we
shall derive those forms which reproduce the Hamiltonian
quantum mechanics discussed in the previous section.

We begin with physical phase space. In the Newton-

Wigner representation the relativistic particle may be
thought of as a physical system with the Hamiltonian
(2.6), orthonormal position states

~
x, t ), and orthonormal

momentum states (2p )
'~ ~p). It then follows from

quantum mechanics that the propagator can be represent-
ed as the phase-space path integral:

3 Q3(x",t"
~

x', t') = f exp{iS[x,p]) . (4.2}
[(2Ir)']

Here, S[x,p] is the canonical action (2.7) for the physical
degrees of freedom. The sum is over phase-space paths
which move forward in the time t and can be specified
concretely as follows: Divide the time interval [t', t"] up
into slices t(K), E =0, 1, . . . , N, with t(0)=t' and
t(N)=t". The path integral (4.2) is the limit as %~00
of multiple integral

IV. PATH-INTEGRAL QUANTUM MECHANICS

The starting point for a sum over histories formulation
of the quantum mechanics of a free relativistic particle is
a path integral for the propagator of the schematic form

(x",t"
~

x', t') = lim f, g d3p(E)d'x{E)C(x(E),t(E)
~

x(EC —1),p(E —I),t(E —1)),
(2Ir) g

(4.3)

where C(x",t"
~

x', p', t') is the "classical propagator" to
go from one slice to the next. The classical propagator is
defmed in terms of the classical action by

C(x",t"
~

px', t')={2 )Ir, exp(iS(x", t"
~

x', p', t')),
(4.4)

t(1), from t(1) to t(2), and so on. For small time steps one
discovers that the propagator can be represented as the in-
tegral d p'C x",t" x', p', t', whence the identity 4.3
in the limit. For the relativistic particle, whose Harnil-
tonian depends only on momentum, this approximation is
in fact an identity for all times. That is

where S(x",t"
~

x', p', t') is the phase-space principal func-
tion defined by integrating the action along the classical
configuration space path with constant momentum. In
the ease of the relativistic particle,

S(x",t"
~

x', p', t') =p'. (x"—x') —((p') +m )'~ (t"—t'} .

(x",t"
i
x', t')
=f d'p C(x",t"

i
x', p', t')

3exp / p' x —x
(2ir)

(4.6)

(4.S)

The form (4.3), which is an interpretation of (4.2), can be
derived as follows. The propagator from t' to t" can be
represented as a coinposition of propagators from t' to

—(p +m ) (I"—I')}], (4.7)

for all t' and t" The path integr. al (4.2) or (4.3) is then
just an expression for the composition of propagators.
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F(t, ~) =~—f(t) =0 (4.8)

assigns a unique value of ~ to each t. Without loss of gen-

erality, f ( t) may be taken to be a monotonically increas-

ing function. We then introduce a functional integration
over x =t by substituting into the path integral (4.2) the
identity

1=f dx 5(F(x,~))ax'
(4.9)

on each internal time slice E =1, . . . , X —1. The result

may be written

[(2~)'] axo

T"

X exp / d'rp~x
T'

(4.10)

The notation is as follows: x =dx /dr, ~' and i" are
the values of ~ corresponding through (4.8) to t' and t"„
and po is defined to be —(p +m )' . The integral is un-

derstood to be defined by a skeletonization process similar
to (4.3) with one of each factor in square brackets in the
measure included on each internal slice.

The action in (4.10) is the action (2.9) on the extended
phase space x,p but the integration is over the subspace
restricted by the vanishing of the super-Hamiltonian (2.8).
We can extend the integration by introducing a 5 function
to enforce the constraint. If the identity

m ' f dpo ipo i
8( —po)5(H)=1 (4.11)

is inserted on each slice but the first, there results

Fquations (4.2) and (2.7) yield an expression for the
Newton-Wigner propagator. The left-hand side of (4.2) is

not relativistically invariant because the Newton-%igner
states are not relativistically invariant. The right-hand

side of (4.2) is not relativistically invariant because the

sum is over paths which move forward in the time of a

particular Lorentz frame —the frame in which the
Newton-Wigner states are defined. This property of paths
is characteristic of single-particle theories. Of course, the

quantum theory is relativistically invariant because there
is a unitary connection between the theories formulated in

any two Lorentz frames.
Equations (4.2) and (2.7) give an expression for the

propagator as a path integral over the physical phase
space. %e shall now show how this can be converted
into equivalent path-integral expressions involving
parametrized time and the Hamiltonian actions of Sec. II.
The method in each case is the same. ' We add to the
path integral integrations over redundant variables in such
a way that the action is modified to the desired form but
the value of the integral is unchanged.

We first parametrize the time. To do this we pick a
function F(t,r) of the form F(t,r) =~ f(t) w—hich
through

( x",t"
i
x', t') =f [8(—po) [ [F,H I i

5(F)5(H)]
[(2m) ]

gl
Xexp i dent x (4.12)

where [A,BI is the Poisson brackets of A and 8. The
square-bracket notation in (4.12) is intended to indicate
"one such factor for each appropriate time slice." To
avoid introducing cumbersome notation we have not tried
to indicate whether a factor would be included on the last
slice or whether it should be omitted. For that the reader
should refer to the derivation. In (4.12), the propagation
is expressed as an integral over the extended phase space
with the appropriate action (2.9) and the constraint en-

forced explicitly. The Poisson brackets

[F,HJ = (4.13)

are the analog of the "Paddeev-Popov determinant" in

gauge theories and 5(F) is the analog of the "gauge-fixing
5 function. " The forms of F which will reproduce canon-
ical quantum mechanics are, however, much more re-
stricted than the possible forms which can fix a gauge in a
gauge theory. F can depend on no variables other than t
and ~ and must single out a unique slicing in t for the
given slicing in 7. Note also the 8( —po) function which
has no counterpart in gauge theories, but which is needed
to restrict the solutions of the constraint equation to the
positive mass shell. Its inclusion, of course, amounts to
limiting the range of the po integration.

The constraint of the classical theory of a relativistic
particle can either be enforced explicitly in variations of
the action (2.9) or implicitly by introducing a Lagrange
multiplier as in (2.10). Equation (4.12) is the form of the
path integral in which the constraint is enforced explicit-
ly. Forms may be found in which it is enforced implicitly

by "exponentiating" the 5 function. There are several

ways to do this.
First, we can write

0O

5(H) = f dN @exp( iXeH)—
2%

(4.14)

By 5 p we mean a factor of dpodpidpzdp& on each ap-
propriate slice. Equation (4.15) is a path integral for the
propagator over all curves in the extended phase space
x,pN consistent with the propagator's arguments togeth-
er with a functional integral over a multiplier X(~) not
fixed on one end of the range [r', r"] The range of .this
integration is important: X ranges over the whole real
line. The action in (4.15) is the action (2.10), i.e., the

for any e. If this identity is used to replace 5(H) in (4.12)
on each slice ~here it occurs, and e is chosen to be the
spacing in w between that slice and the previous one, then

( x",t"
i

x', t')

=f '"'p," [.8( —p. )
~
[F,HI ~5(F(x',.))]

[(2~)']
+C

&exp i dz p x —XII . 4.15
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Pouo

Xexp Ii {p~x eN (H— i ri—})I

(4.16)

in the limit q~o+. Using this identity to replace the
combination on the left-hand side on every slice it occurs
in (4.12) we have

(x",r"
i
x', r'}

p X
g g p ~ Q

[(2~)']
gl

)&exp i dv. p x —XH . 4.17

Equation (4.17) is essentially the same as (4.16) except
that the ranges of integration are different. The po in-

tegration is unrestricted, while the N integration is re-

stricted by the 8(N) function to be positive; a restriction
ultimately arising from the restriction of the configura-
tion paths to move forward in time. In (4.15) and {4.17)
we see that even with the same action there may be several
different path integrals expressing quantum dynamics.

The expressions (4.2), {4.12) and (4.15), (4.17) are
phase-space path integrals involving the Hamiltonian ac-
tions (2.7), (2.9), and (2.10) introduced in Sec. II. One can
attempt to find the corresponding Lagrangian forms by
integrating out the momenta in the phase-space path in-

tegrals. This is not always possible. There is a momen-
tum integration to be carried out on each internal slice of
the iterated integral (4.3). To reproduce a Lagrangian
path integral the result of this integration must be of the
form exp(iS) for some Lagrangian action at least for
small values of the spacing e between the slices. If the ac-

l

parametrized action (2.9) with a multiplier enforcing the

constraint.
Equation (4.14) is not the only way of exponentiating a

5 function and (4.15) not the only path integral for the

propagator with lapse multiplier. As one alternative %e
can write

f dpo
~ po ~

0( po—)5(H) exp(ip x )

a& po exp(/p~x )
"Po2s' H —iq

tion becomes large as e becomes small this form naturally
emerges as a steeyest-descent approximation to the in-

tegral over momenta. If, however, the action does not be-
come large as e becomes small one would expect the
necessary form to emerge only "accidentally. "

The integrating oui the momenta in the path integral
on the physical phase space built on D spatial dimensions
provides a good example. The relevant integral is

d P ei(y x—(p2+m )'D

(2~)n
(4.18)

where the exponent is the phase-space principal function
S(x,t

~
O, p, O) given by (4.6). We first note that the prin-

cipal function evaluated at the extremizing p does not be-
come large for small t. The integral cannot be legitimate-
ly approximated by steepest descents. In fact, its explicit
evaluation reveals that it is proportional to p'~"'~ o',

where S is the principal function of the action (2.1) for
even D, but not for an odd D. For an odd D, the propor-
tionality does not hold even in a small t limit and a stan-
dard Lagrangian path integral cannot be constructed.

Integrating out the momenta in (4.10) or (4.12) is no
easier because they are of the same form as those in (4.2).
There remain the forms (4.15) and (4.16) in which the
constraints are enforced by a multiplier. The crucial in-

tegral in (4.15) is that over po:

dPOPoe"p ' Po& + Po
~ o & z

0 262
(4.19}

For small e this has an expansion of the form
' 1/2

+C2 (x )+.
L

(4.20)

where Co, C„and C2 are nonvanishing numerical con-
stants. Here we have used in an important way the fact
that in (4.15) any smooth function F will restrict x to be
of order unity, not of order e. If C, vanished, (4.20)
would be an expansion of exp(iS) for S an integral over
time. But C~ does not vanish and we do not recover
naturally a Lagrangian path integral from the momentum
integrals in (4.15).

Equation (4.17) is the one form of the phase-space path
integral for which the integrals over momentum can be
carried out. They are Gaussian. The result is

5N x 1 m(x",r"
~

x', t'}=f — 8{%)(ex ) 5(F(xo,~)} exp i 2m f d+N —'(x ) —N) . (4.21)
[—(2~)'it N Bx

This is the Lagrangian form of the path integral corre-
sponding to the action (2.4). It has a nontrivial measure.

V. REMARKS AND CONCLUSIONS

The sum over h1stories quantum mechanics of the s1n-

gle free relativistic particle can be cast into inany forms.

There are phase-space forms in the physical phase space,
in the physical phase space augmented by a parametrized
time and its conjugate momentum, and on that extended
phase space augmented further by a multiplier to enforce
the constraint. There can even be two forms on the same
space as (4.15) and (4.17) show. The Lagrangian forms
are more limited. %'e were able ta construct a Lagrangian
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path integral only for that form of the action which was

quadratic in the velocities.
With which path integral should one begin a study of

the sum over histories formulation of the relativistic parti-
cle? It does not matter. As we have seen, one can pass
from one form to another. The different forms, however,
are useful because they display different aspects of the

theory in a manifest way. The path integral over the
physical phase space expresses the quantum mechanics of
the relativistic particle in the most direct way. In a theory
like general relativity, however, such a form is not avail-

able. There one must start from a form such as (4.17) or
(4.21) in which time is parametrized. None of the in-

tegrals is manifestly relativistically invariant.
We have derived the various forms of the sum over his-

tories quantum mechanics starting from the standard
canonical theory. To what extent is there a prescription
for arriving at the sum over histories directly? How

elegantly simple the transition from classical to quantum
mechanics would be if there were a unique way of con-
structing quantum amplitudes, given a classical action.
How useful such a prescription would be for the construc-
tion of a quantum theory of gravity whose canonical
quantum mechanics presents so many problematical as-

pects. Such a prescription may be said to have been given
for gauge theories by Faddeev. ' There, given an action,
one finds its invariances, chooses an invariant measure,
and uses an appropriate gauge fixing so that physically
distinct configurations are counted only once in the sum

over histories. In our concluding remarks we shall discuss
the question of whether an analogous prescription exists
for the quantum mechanics of the single relativistic parti-
cle, and, therefore, by extension whether it is likely to ex-

ist for other parametrized theories.
The choice of variables, action, and class of paths may

be taken as the given starting points of a sum over his-

tories prescription. The crucial question is then whether
one can pick a measure such that the sum over histories
reproduces the canonical quantum mechanics of the free
relativistic particle. As we have seen, the possibility of
doing so depends on the choice of variables, for example,
whether we use physical phase space, physical configura-
tion space, extended phase space, or whatever. Indeed,
unless the action is quadratic in the velocities we did not
(in general dimension) find a path integral for the propa-
gator at all. Suppose, however, we choose a representation
in which the action is quadratic. How then do we choose
the appropriate measure~ There are three parts to this is-
sue: the local form of the measure, fixing the gauge, and
the domain of integration.

A. Local form of the measure

The Lagrangian sum over histories on the extended
configuration space with multiplier provides an easily
analyzable example of a path integral with a nontnvial in-

variant measure. The in variance at issue is the
reparametrization invariance (2.5). The action is invariant
under such a transformation and so is clearly the result of
the integration. The measure in (4.21) would seem to be
not invariant. If we wrote it schematically as

(5.1)

where the product is over time slices, the measure would

appear to acquire several factors of (f) on the execution
of a transformation (2.5).

There is an analogous problem in quantum gravity.
There the canonical measure for a coordinate grid whose
constant t surfaces define the foliation needed in Hamil-
tonian quantum mechanics is ' '

const)&QE ( —g) ~ gdg &(x)
x aP

X (gauge-fixing terms} . (5.2)

E'(K}=f(K)e(K} . (5.3)

The issue of the invariance of the measure is the issue of
its invariance under both (2.5) and (5.3}. An inspection of
(4.17) shows that the factors of e enter in such a way as to
make the measure reparametrization invariant. A similar
in spirit, though much more involved analysis has been
given by Fradkin and Vilkovisky for general relativity.
The existence of combinations, such as eN, which are in-

Here, g is the determinant of the space-time metric and N
is the lapse function N =(g ) which in the action for
general relativity is the multiplier enforcing the Hamil-
tonian constraint (see Table I). Our choice of notation to
stress the analogy between (5.1) and (5.2) is thus not artifi-
cial. Equation (5.2) appears to be not invariant under gen-
eral coordinate transformations because it prefers a partic-
ular set of spacelike surfaces associated with the lapse N.

As stressed by Misner, Leutwyler, and, in greatest de-
tail, by Fradkin and Vilkovisky, however, appearances
can be deceiving. The measures (5.1) and (5.2) do not lack
invariance any more than the standard volume element on
the sphere —sin8d8dp —lacks invariance because it in-
volves a factor sin8 which changes under rotations. To
understand this in the present simple situation, it is useful
to think formally in terms of the space 9'(I) of histories
x~(r), ItI(r) on a fixed r interval I. A single point P in

H(I) thus represents a set of five functions. The action is
a function on this space. The action has the same value at
any two points corresponding to histories connected by a
reparametrization of r as in (2.5). One sees this by chang-

ing coordinates from r to f(r) in the action integral in-

volving the transformed histories. It is then manifestly
equal to its untransformed value.

To evaluate an integral over 9'(I) we can proceed in a
fashion analogous to evaluating a Riemann integral of a
function on a line. We first establish a "coordinate grid"
on 9'(I). A particular time slicing specified by E and
e(K), K =1, . . . , JiI gives such a grid, the "coordinates"
being the values x (K),N(K) specifying skeletonized his-
tories. One then defines a sum and takes an appropriate
limit. As with the action, one demonstrates the invari-
ance of the measure by changing r to f(r} and calculating
how the measure changes. Under such a change not only
do x (K) and N(K) change as in (2.5) but also
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variant under ieparametrizations means that, unlike in
gauge theories, the Lagrangian form of the measure can-
not be guessed from arguments of invariance and locality
alone.

The situation with regard to the local form of the mea-
sure is considerably simpler in the extended phase space
with multiplier. The candidate for a prescription is that
of Faddeev for gauge theories. There one would write for
the local measure on the extended phase space

const X5% 5 p 5 x
i t F,H ) i

5(F), (5.4)

where F=0 fixes the parametrization of time and I F,H I

is the Poisson brackets of F with the Hamiltonian con-
straint. Indeed the measure in (4.15) has this local form.

B. Gauge fixing

Even with a choice for the local measure considerable
care must be taken with the choice of gauge-fixing condi-
tions F in order to arrive at correct results. This point has
been stressed by Teitelboim. ' Consider, for example, the
path integral for the fiel-theoretic (Feynman} propagator
considered by him:

bF(x",x') =J 5 x5 p 5%[8(N)
~
tF,HI ~

5(F)]

must be chosen to reproduce t' and t" at the given values
of r' and r" A. and 8 will thus depend' on t' and t".

The restriction that paths move forward in the time of
a particular Lorentz frame leads to a very restricted class
of functions F which yield a unique parametrization.
They are of the form (4.8) with monotonically increasing
f. If one calculated a path integral such as (4.17) with an

f which was not monotonically increasing or dependent
on x one would not be summing over paths which move
forward in time. This choice of paths or equivalently the
restricted form of the parametrization functions F is one
important way in which the canonical Hilbert space is re-
fiected in the path-integral measure.

C. Domain of integration

Even if the local form of the measure, including a
correct gauge fixing, is known, there is still the domain of
integration to be specified. The restricted ranges of in-
tegration in (4.15} and (4.17}, and indeed in (5.5), are
essential to obtaining correct results. If in any of these
sums the ranges are extended to untrue values of po and
X the correct propagators are not obtained. Thus an ad-
ditional element enters into the specification of the sum
over histories.

Xexp(iS [x,p,Ã]), (5.5) D. Conclusion

where S is the action (2.10). The difference between (5.5)
for the Feynman propagator and (4.15) is chiefiy in the
class of paths. In (5.5) the integration is over paths which
move forward and backward in time while for the
Newton-%igner propagator it is over paths which move
forward in time.

The gauge-fixing condition should assign a unique pa-
rametrization to every path entering the sum over his-
tories. As emphasized by Teitelboim, not every condition
which fixes a parametrization locally does the job global-
ly. For example, linear gauge-fixing conditions of the
ofm

Can the canonical quantum mechanics of parametrized
theories such as the relativistic particle and general rela-
tivity be formulated directly in terms of path integrals'? It
may be that a set of principles can be developed for doing
this. Such principles must specify both the allowed forms
of the action and the allowed measures for the sum over
histories. The example of the relativistic particle shows
that if these principles are to reproduce the Hamiltonian
quantum mechanics of simple examples, it will not be
enough to specify the measure locally to ensure invari-
ance. One will also have to know it in the large.

F(x,r) =r Ax 8—— (5.6)

with A,8 constant will not work in (5.5). Condition (5.6)
will not fix a parametrization for a path which moves
both forward and backward in time.

On the other hand, a condition such as (5.6) can be used
in the sum over histories giving the Newton-%igner prop-
agator because there the paths are restricted to move for-
ward in time. If one calculates the propagator
(x",r"

~

x', r') for fixed r" and r' then the permissible
values of A and 8 depend on whether one thinks of the
limits r' and r" as fixed a priori or as determined from t'
and t" by the condition E=O. In the latter ease any
values of A and B are permissible. In the former 3 and 8
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