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Using the "Hadamard" formalism, we derive the general expression of the renormalized vacuum

expectation value of the stress tensor of a massive scalar field. %e apply this formalism to the
O(1,4)- and E(3)-invariant vacua of de Sitter space.

I. INTRODUCTION

The vacuum expectation value of the stress tensor
(T,b) is the central object of the quantum field theory in
curved spacetime because (i) the particle concept is very
nebulous in curved spacetime and a quantity such as
(T,b) is more objective, and (ii) the (T,b) expectation
value acts as the source in Einstein's field equations, and
it governs the back reaction of the quantum field on the
spacetime geometry. Therefore, in order to evaluate this
effect, a compact expression of (T,b ), showing in detail
the influence of the background geometry but also of the
quantum state, would be very helpful.

Because the quantum stress tensor, which is a product
of distributions, is ill defined, renormalization is required.
Much work has been done since the mid-1970s on com-
puting (T,b ) (for a review see Ref. 2). Among all the
employed methods, the axiomatic approach introduced by
Wald3 and developed in connection with the Hadamard
formalism by Adler et al. , Wald, and also Brown and
Ottewill seems to be the most powerful

Contrary to the commutator function which is state in-
dependent in a globally hyperbohc spacetime, the vacu-
um expectation value of the anticommutator,

Il. EADA MEED DEVELOPMENT OF 6'"(x x')

I.et us consider a free massive scalar field P(x) propa-
gating in a curved spacetime, whose action functional is

S[P]=——,
' fd xg' (g~P"P' +fRP +rrt P ) .

This gives rise to the field equation

(Cl —trt i—Pt )P(x)=0 . (2.2)

The anticommutator function 6'"(x,x'), which contains
all the information about the Fock-space structure, also
satisfies the wave equation (2.2). We shall suppose that
6"'(x,x') has a singular structure represented by the Ha-
damard development:7 i.e., 6'"(x,x') can be written, at
least for x', in a small normal neighborhood of x, as

6'~i(x, x')6'"(x,x')=(2m) 2 ', + V(x,x')intr(x, x')
cr(x,x')

and also for the E(3)-invttriant vacua, ' are evaluated. In
particular, the Bunch and Davies result' is rearjily ob-
tained. In the following, we shall use the conventions of
Hawking and Ellis. '

6"'
i
(x,x')=(

i IP(x),P(x')I
i ), + IV(x,x') (2.3)

depends upon the state
~

). The Hadamard formalism
assumes that the singular part of 6"'(x,x') is given by
the geometrical Hachunard ansatz. Despite the con-
straints imposed by this hypothesis on the Fock-space
structure, there is always a large class of Hadainard vacu-
um states. Fulling, Sheeny, and %aid have sholem that
the Hadamard singularity is preserved by time evolution.
This ensures that the Hadamard vacua are unitarily
equivalent' and that the renormalization of T,b is well
deflilled.

By extending the Brown and Gttewill approach, we
present the Hadamard definition of the renormalized
stress tensor for the nonconformally invariant case and ere
discuss its ambiguities (Secs. II snd III). In Sec. IV we il-
lustrate the power of this method by computing several
stress tensors in de Sitter space. The renormalized stress
tensor for the full family of de Sitter-invariant vacua, "

where tr(x, x') is one-half the square of the geodesic dis-
tance between x and x' and where b(x,x') is the Van-
Vleck determinant given by

V(x,x')= g V„(x,x')cr",
n=0
+ 00

W(x,x')= g 8'„(x,x')cr" .

(2.4)

(2.S)

Applying the wave equation to 6'"(x,x') yields the Ha-
damard ro:ursion relations for the coefficients V„(x,x')
and IV„(x,x'):

4(x,x') = —[g(x)] '~Det — ' [g(x')]
t)x Bx

V(x,x') and IV(x,x') are both smooth symmetric func-
tions which can be expanded in powers of cr as
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V + V. ~"—V,x-'"S'".,~"+-,'(a —m' —gR)a'"=0,

(n+2)(n+1) V„+i+(n+1)V,+i ,c.r' —(n+1)V„+id, '~ 6'~ ,o"+ —,(CI —m —(R}V„=O,

(n +2)(n +1)W'„+i+(n + 1)W„+i ,u" —(n + 1)W„+i6 ' b, ' ,o". + —,
'

(C:I—m —gR) W„

+(2n +3)V„+i+V„+i.,o"—V„~id '~ 6'~2.,o"=0 .

(2.6)

(2.7)

(2.8)

where

f( x ) = lim [F(x,x')),
f b(x) = lim [F(x x ); b]

Z ~Z

We shall write the covariant Taylor-series expansions for
the symmetric biscalars Vp(x, x'), Vi(x,x'), V(x,x") and
Wp(x, x '), Wi (x,x '

), W(x,x ') and introduce their Taylor
coefficients up(x) up, b(x), . . . , with the notations of (2.9).
From 2a=g, bo "o'b, we get the identities

u(x) =up(x),

u~(x) =uo(x) b+ui(x)g b,
and similar relations between w(x), wp(x), wp, b(x), and
w,b(x).

Use of the Taylor series for the Van-Vleck determinant
(see the Appendix} in the recursion equations (2.6) and
(2.7) yields the Taylor expansions of the V„(x,x') coeffi-
cients. The boundary relation (2.6), which provides the
"starting term" Vp for the recursion relations„gives

up(x) = —,[m +(g—
6 )R],

1
u~b(x) = , u. ..+ , u,R.b —C., ——(2.10)

(2.11)

where C,b is defined in the Appendix. The relation (2.7)
with n =0 gives

ui(x)= —+Cluo+ —,'up + —,
' C,' . (2.12)

The differential equations for V„(x,x') are a set of trans-
port equations which can be integrated along the geodesic
from x to x'. These equations determine V„(x,x')
uniquely. By giving Wo(x, x'} all of the remaining
W„(x,x') (n & 1) are uniquely determined by the recur-
sion relations above. Wp(x, x'} is not completely arbi-
trary: It must give rise to a symmetric function W(x,x')
satisfying (2.8). b(x,x') and the coefficients V„(x,x') are
determined in terms of the local geometry, and therefore
the singular part of 6'"(x,x') is also determined by the
local geometry. The vacuum state dependence is con-
tained in the function W(x,x'} through the choice of
Wo(x, x').

Let us now recall some property of the covariant
Taylor-series expansion. If F(x,x ) is a symmetric bisca-
lar possessing a covariant Taylor-series expansion in a
neighborhood of the point x, we can write'

F(x,x') =f(x)—,
' f(x).,a"—+,' f,b(x)o"u'b—

,' [f,b(x) , ——,' f(x) ,b., ]o—"o'er". +O(cr '),

(2.9)

1 2+ 6 Uo~gb+ 2 Uo gab . (2.13)

It should be noted that in the conformally invariant case
(m =O,g= —,) in uo function and the trace of the u, b ten-

sor vanish.
Similarly, using (2.8) with n =0 one can obtain the ex-

pressions of the w, b tensor in terms of the Taylor coeffi-
cients wo and wp, b of the biscalar Wo(x, x'):

wa (x}=(wo b 4gabw—od )
d

R+ LUO+ 2 UONO 2 U1 gab (2.14)

It should be noted that wp, b does not contribute to the
trace of w, b.

Now we have the necessary quantities for the computa-
tion of the stress tensor at our disposal. However, in or-
der to demonstrate the conservation of the stress tensor in
the next section, we first need to derive an important rela-
tion about the divergence of w, b This rela. tion follows
from the symmetry property of W(x,x') which allows us
to express the third Taylor coefficient in terms of w and
w,b, (2.9). W(x, x'), unlike V(x,x'), is not a solution of
the wave equation but it has to satisfy

(CI—m —gR ) W(x,x') = —6u, (x)+2ui. ,o"+O(u) .

Inserting the Taylor expansion of W(x,x') up to the third
order in cr' into the previous equation yields

[w,b
—,'g,b(w d —m w+——,Dw)]'

=2ui. ,+ ,
' R,bw —,

' (Rw—., —(2.15)

Equation (2.15) can be expressed in terms of wp(x) and
web, b(x) and then appears as a constraint on Wp(x, x'). '

Additional constraints could be obtained from the higher
order of the Taylor expansions. They follow by demand-
ing that Wo(x, x') be chosen in such a way that the result-
ing two-point function is symmetric.

III. "HADAMARD" DEFINITION
OF THE STRESS TENSOR

Armed with the properties of the Hadamard develop-
ment of G"'(x,x'), we can give a definition of the renor-
malized expectation values (p )„„and (T,b)„„. The

The expressions for up, b(x) and ui(x) could be expressed
in terms of the Riemann tensor and its derivatives but we
prefer to keep them in these more compact forms. Later
we shall also need the expression for u, b

gf 1 I
ugb(x)= (Cab ggabCd )+ & (upab 4 gab+up)
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principle behind the computation of the renormalized
stress tensor from the Hadamard function was already
described by Brown and Ottewill in Refs. 5 and 15 in the
conformally invariant case. We shall present this method
in the massive case and describe its ambiguities.

We first define the renormalized expectation value

(P )«„. For the Hadamard states, the divergence of P is
always of the same type. It is therefore quite natural to
define (P )«a simply by substracting the geometrical
divergences in the 6"'(x,x') function. Thus,

Sn ($2(x) )„„=wo(x) —uo(x)in@ (3.1)

+2'.bk&0+0 Ilab 2g—ab 0' 2gab4"—.

The standard point-splitting renormalization method de-
fines ( T,b )«„as the limit

The second term above arises because there must exist in

W(x,x') a term of the form [V(x,x'}inp2] in order to
make dimensionless the argument of the logarithm term
V(x,x')Ino in 6"'(x„x'}.The "renormalization" mass p,

may be partially fixed by demanding that in the flat-
space limit, R~d~0, we find the Minkowski result
(P')„„=0.

The definition of the renormalized stress tensor T,b is
in the same spirit. It is formally defined by

T.b=2g '" ~[4]
gQ

=(1 2k}4;.—0;b+ (24 2}g.b4—', d0" &4',.b—

where O,b is state independent. It can only depend on the
parameters of the theory, m and g, and on the local
geometry. The condition that (T,b )„„bedivergenceless
determines the O,b tensor up to a conserved tensor.

Using the expansion (2.9} for W(x,x') one can show
that

~,b [ W] =—lirn &,b (x,x')[ W(x,x')]
Z ~Z

(wab 2 gabwd }+2 (1 2g}wo;ab

+ 2 (24—2»wog'b

pj+P~ b g—b~}wo —wog b . (3.5)

Using Eq. (2.15) one obtains the divergence of Wab[W]:

W,b[w]' = —2ui. ,=( 2uig—,b);b ;a (3.6)

The state independence of this divergence comes from the
properties of the Hadamard development. (Here diver-
gence does not refer to any potential infinities, but only to
a traced covariant derivative. This divergence can be re-
moved by incorporating the term 2uig, b into the O,b ten-

sor. The O,b tensor is writteil as 0 b=2uig b+0 b

where O,b is a divergenceless geometrical tensor. The
( T,b ), so constructed is divergenceless.

The trace (Ta')~ of the renormalized stress tensor is
given by [using (2.14)]

Sn (T,'(x))«„=2ui+3(g' ——,
'

)C3wo —m wo+0, ' „(3.7)

( T,b(x) )„„=lim —,
' &,&(x,x')

X [6"'(x,x') —6«f(x,x')],

where the differential operator &,b (x,x ') is given by

9"ab = (1 2$)Va Vb + (2—g ,' )g~ gdd V"V——"

4Va Vb +2'—ab Vd V'

(3.2)

which reduces, in the conformally invariant case, simply
to 2ui up to the trace of the auxiliary tensor O,b.

The auxihary O~ tensor is composed of two terms.
The first one comes from the presence of the renormaliza-
tion mass term, i.e., from the indeterminacy in the
W(x,x') function which is of the farm [—V(x,x')1 2].
This indeterminacy gives rise to a term ( —W,b[u]lnp, ) in
the expression of O,b, where

P?l
+PIlab 2gab~ } g—.b— (3.3)

and where g, is the geodetic parallel displacement bivec-
tor. ' The 6,",r' function is a reference two-point function
introduced in order to remove the singularities from 6"'
and its derivatives. In particular one would expect that
the difference between two renormalized stress tensors is
given by

82r26( T,b(x) )„„=hm &,b (x,x')[6W(x,x'}] .
X ~X

(3 4)

Therefore, the renormalized stress tensor must be an af-
fine functional of W(x,x ). That is to say„ the definition
(2.2) of ( T,b ) reduces to

Sn ( T,b(x) )«„——lim N, b (x,x')[ W(x,x')]+Oab(x),

~,b[u]=(C,b
——,'g,bCd )

+
2

(g ——, ) Rb ——gb
m'
8 gab~ (3.8)

where '"H,b is defined in (3.9). It should be noted that
M,b[ V] is a conserved tensor, and its trace vanishes in the
conformally invariant case. The second term directly
comes from the definition of O~ as a geometrical can-
served tensor. Following %aid's arguments, ' ' one can
show that the only geometrical conserved tensors are
those obtained from a Lagrangian of dimension
(length) . In four dimensions, there are anly four in-
dependent geometrical Lagrangians of dimension
(length) which remain finite in the massless limit.
These are W=m, m R,R, and R2R', and they define
the conserved tensors m g,b, m (Rab —2gabR) and the
following weil-known ones:
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(1)H —1/2 d4x 1/2R 25
ab =g

=2R ,b . 2g—,b CjR —2R (R,b —,' R—g,b }, (3.9}

where ui(x) and W,b[ab] are given, respectively, in (2.12)
and (3.8}. Thus, the evaluation of (T,b)„„only involves
the computation of W,b[w].

(2)~ —1/2 5 d4X g '"Rab=g
~ ~b xg gb

g

=R ~b .C}R—~b+ 3 g,b(R,gR'" CIR—)

—2R' R,~s . (3.10)

Thus, the (T,b)„„canbe written as

Sn ( T,b(x) )„„=~,b [w] —W,b [u]in@,'+2u(g, b

+am 4g.,+pm '(R.b ,' Rg—.b—)

+y (1)H +g(2)H (3.11)

We shall now study the fiat-space limits of the renor-
malized quantities ((It )„„and (T,b)„„. This allows us
to specify the value of certain coefficients. We assume
that the vacuum state tends to the Minkowskian vacuum
and thus that the limit of wo is a constant.

In the flat-space limit, we have the relation

m4
Sn (T,'(x))„„= (1+16a)—m ((I) ) . (3.12)

Requiring that both ((I) )„„and ( T,b )„„vanish in the
fiat-space limit gives the value of ((4 and the value of a,
which is a= ——,', . In the massless case this procedure
does not determine the value of )(4 .

As the three tensors (R,b
—,'g,bR), '"H,—b, and ' 'H, b

occur in the infinite renormalization of (T,b ), we may
choose to cancel their coefficients in (3.11) by finite renor-
malization. This argument is supported by the analysis of
the conformally invariant case. In that case, only ' 'H, b
and ' 'H, b occur in O,b. As their traces are both propor-
tional to CIR, the CIR coefficient in the trace anomaly is
arbitrary. This agrees with the cohomological study of
the conformal anomaly which shows that cCIR is a
Becchi-Rouet-Stora (BRS) exact form' and hence CIR is
not a true anomaly. The traceless combination,
'"H,b

—3'2'H, b, is proportional to W,b[u] and its coeffi-
cient can be absorbed in lap . The crucial assumption is
that we might identify the two renormalization masses ap-
pearing in (3.1) and (3.11).

The final expression for the renormalized stress tensor

IV. STRESS TENSORS IN DE SITTER SPACE

+sinh2aGo" ( —z(x,x') ), (4.1)

where a is a real parameter, Go" (z) the anticommutator
function in the "Euclidean" vacuum or Bunch-Davies
vacuum, and where z(x,x') is a de Sitter-invariant quanti-
ty which can be expressed in terms of cr(x,x'), for x and
x' spacelike separated:

Ao.
z(x, x') =cos (x,x')

6
(4 2)

where 8 is the constant scalar curvature of de Sitter
space: The Euclidean anticommutator function is

1

(1) R 4 3 3 1+z
G() (z)= F —, +v, —, —v', 2;

96m cos(nv) ' ' ' ' '
2

(4.3)

where + is the hypergo2metric function and where
v = —,—12(g+m /R). In the massless minimally cou-
pled case, m =0 and (=0, Go"(z), and therefore G'"(z),
has an infrared divergence. Allen' has proven that in
this case there is no de Sitter-invariant vacuum state al-
though a de Sitter-invariant G'" function exists. Howev-
er, he has found a one-real-parameter family of vacuum
states invariant under E(3), a maximal subgroup of O(1,4)
which leaves invariant the spatially flat hypersurfaces
t =const of de Sitter space. Here t is the time coordinate
in a coordinate systetn that only covers half of the de
Sitter manifold, such that the metric on de Sitter space is

In this section we shall apply the previous result to de
Sitter space and calculate the expectation values of the
stress tensor in de Sitter-invariant states and in E(3)-
invariant states. ' I.et us first recall a few results about
quantum field theory in de Sitter space. "'2 In de Sitter
space, there is generally a one-real-parameter family of
vacua invariant under the full disconnected de Sitter
group O(1,4). The anticommutator functions in these
states can be written as

G"'(x,x') =cosh2aGO" (z(x,x'))

Sm ( T,b(x) )„„=W,b[w] —W,b[u]ln(u

m4
+2U]gab — gab ~16

(3.13)

ds2= [—dt2+(dx) ] .
Rt

(4.4)

The symmetric two-point functions in the E(3)-invariant
vacua can be written' as

G~ (t,x;t', x') = cosh2a —ln(1 —z) —ln2tt' +sinh2a —ln( —1 —z) —ln2tt'
1 1

48m 1 —z 1+2 (4.5)

The expectation value of the stress tensor in the Euclidean vacuum can easily be calculated. The anticommutator
function Go"(z) given in (3.3) has the Hadamard development and therefore the formalism displayed in the previous sec-
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tions can be applied. Go"(z) is invariant under the de Sitter group; hence we have (T~)„„=—,'g~(T, ')„„.But in de
Sitter space we can write, using (3.8) and (3.13),

8+(T,')„„=2U,— +3(g——,)Clw —m Iw+ —,
'

[m +(g——,
' )R]Ilnp (4.6)

where

2

2ui ——— +m (g——)R + —(g——) R
l m P l l 1

2 2 2160

Knowing the expression of the Van-Vleck determinant in de Sitter space, ' '

3/2 " 1/2
i

—3
Ru

Sin

(4.7)

and using (4.3) and the properties of hypergeometric functions' it is straightforward to obtain

m +(g——,
'

)R
wo ——— +

36 2
g( —,

' +v)+ g( —', —v)+ ln —p(1)—1((2) (4.8)

Thus, absorbing g(1), f(2), and 24 into the renormalization mass p. , we obtain

(P (x)), = +[m +(g——,')R] P( —', +v)+g( —,
' —v)+in

18 p

( T,b(x))„„=— m [m +(g —,
' )R—][/( —', +v)+g( —,

' —v)+In(R/}u )]

(4.9)

—(g——,
'

)m R —
,', rn R———,

'
(g——,

' )zR z+ (4.10)

The arbitrary value of p, can be removed by requiring that (P ), and (T,b) „vanish in the flat-space limit. Use of
the limit

g( —,'+v)+P( —,—v)+in(R/p )=in(12m /p )+0(R)

gives the value Ii =12m . The expression (4.10) becomes exactly the Bunch-Davies one. '

For a&0, G "(x,x'), jven in (4.1), does not possess the Hadamard development. But, the two-point symmetric func-
tion Go" (z)+tanh2aGO' ( —z)=F(z} does. It is therefore possible to apply the previous method to this function. But,
before computing the value of the stress tensor, it should be noted that the singular part of (T~) is proportional to
cosh2a. In other words, the reference two-point function which occurs in the definition (3.2) must be a dependent. That
is to say, the renormalization becomes state dependent. After all, one can use the fact that E(z) has the Hadamard
development to formally define ( T,b ) in the

~
a) vacuum as cosh2a times the renormalized stress tensor associated to

F(z) [define by Eq. (3.13)]. Thus, taking into account this prefactor, cosh2a, we obtain the expectation value ( T,& )(a)
using (3.13) with p =12m:

(T,b), (a)= —g,s m [m +(g —,)R] P( —,—+v)+P( —, —v)+in(R/12m )+ tanh2a
eosmv

2 2—m (g—-)R — —-(g—-) R +2 1 ~ ~ 1 1 2 2

&8
' '

2&6O
(4.11)

Now let us consider the a=O, E(3)-invariant vacuum.
The 6'" function

G'"(t,x;t', x') = —ln(1 —z) —ln(2tt')
48&

has the Hadamard development. %e can show, using
(3.3) with m =0 and /=0 that the ln(2tt') term does not
contribute towards the vacuum expectation value of the
stress tensor. Therefore ( T,b )„„is invariant under the de

, T)„b„( ( E);a3= }=0R g,&,
119

1382
(4.12}

it should be noted that it is not the finite limit
(m ~0, g'~0) of the value of the Bunch-Davies stress

Sitter group, we can write ( T,b )„„=—,
' ( T,')g, b and com-

pute it by using (4.6) with m =0 and /=0. (Note that
the arbitrariness in in@ vanishes. ) Here we have
io =—(R/6)ln(t)+const which satisfies Clm= —R /24
and therefore
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tensor (4.10). This is not too surprising because the
Bunch-Davies two-point function (4.3) is ill defined in the
massless minimally coupled case.

We can also calculate the vacuum expectation value of
the stress tensor for ct&0, E(3)-invariant vacua. One easi-

ly finds

119cosh2ct+90sinh2ct
R 2

13824M
(4.13)

V. CONCLUSION

In conclusion, following the method developed in the
conformally invariant case by Wald, Brown, and Ottewill,
we have presented the Hadamard definition of the stress
tensor for a massive scalar field. The properties of the
Hadamard development allo~ed us to systematically take
into account the infinite counterterm necessary in the def-
inition of (T,b)„„. By looking at the fiat-space limit of
both ((b )„„and (T,b)„„,we have shown that some of
the ambiguities in the definition of (T,b)„,„can be re-
moved. Furthermore, the state dependence of ( T,b )„„is
explicitly detailed using this definition. This property
could be helpful, for instance, to study the influence of
the vacuum state in the back-reaction problem. We have
illustrated the power of this method by evaluating the re-
normalized stress tensors in de Sitter space for various
vacuum states. It would now be interesting to apply this
approach to black holes with the possibility to use an

We are grateful to Bruce Allen, Norma Sanchez, and
Jean Thierry-Mieg for numerous stimulating discussions
and encouragements.

APPENDIX

In this appendix we give a few relations and notations
used in the derivation of the equations in the text

;c;d 3/2cr ,b ——g,.b —TR„bdo' cr +'O(o ),
a'"=1+—'R o"o'b+O(o'")
5'~ .,= —6R~cr"+O(cr),

(A 1)

(A2)

(A3)

Clh'~ =—+ 3C + o"cr' +O(o ~ ), (A4)
R RR,b

b

where

1 d
Cub 4 gab cd )20 (Cc(ab)dR + Cc(ab)d

and

Cg )IIO (CIR R+dR +R+b4dR ) (A6)

asymptotic development near the horizon. The results
thus obtained could be compared to those found by
Candelas and Howard' and Frolov and Sanchez, using
Page's approximation.¹teadded. After this work was completed, we became
aware of a related paper by Brown and Ottewill.
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