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By using the expression given by Halliwell and Hawking, we discuss consistency of the constraint
equations of the superspace-quantized gravity coupled to the minimal massive scalar field, in the
lowest nontrivial order in the cosmological perturbation. %'e show that the consistency imposes

highly nontrivial conditions on the behavior of the physical state (the wave function of the Universe)

at a (the cosmic scale factor) =0.

I. INTRODUCTION II. COSMOLOGICAL PERTURBATIONS
AND CONSTRAINTS

Quantum gravity in the path-integral form is well

known but its rigorous canonical form at the operator lev-

el has not been established yet. ' A main difficulty lies in
the fact that one class of constraints which come from
general covariance is quadratic in canonical momenta and
that consistency of the constraints is intricately related to
the operator-ordering problem and to possible existence of
counterterms.

Recently Halliwell and Hawking presented explicit ex-
pressions of the constraints to the lowest nontrivial order
of the perturbations in the inhomogeneous parts of the
metric and a matter field (the minimal massive scalar),
while treating the homogeneous and isotropic parts exact-
ly. In this order, at least, we do not need to introduce
gauge-fixing and ghost fields. We can apply the super-
space quantization formalism of Wheeler and DeWitt in
its original form. However, various problems due to the
quadraticity of the constraints in canonical momenta al-

ready appear in this order and the consistency require-
ment imposes highly nontrivial constraints on the theory.
The purpose of this paper is to discuss how the boundary
conditions for the physical state and the operator ordering
of the constraint equations are restricted from the con-
sistency of the theory.

In the next section we recapitulate the result of Ref. 2
and present the momentum constraints and the energy
constraints (the Wheeler-DeWitt equations) of the
superspace-quantized canonical gravity. In Sec. III we ex-
plicitly solve the momentum constraints and define a quo-
tient space, i.e., original superspace/spatial diffeomor-
phism. The Wheeler-DeWitt equations can be rewritten
in this quotient space. In Sec. IV we show that the
Wheeler-DeWitt equations, which consist of an infinite
number of second-order differential equations, can be im-
posed on the physical state '0 consistently only when the
latter satisfies certain boundary conditions. There are two
classes of the solutions. One is the "singularity-free"
solution in which 4 vanishes when the cosmic scale factor
does. The other includes the one proposed by Hartle and
Hawking.

First we decompose the metric and the minimal mas-
sive scalar field 4 into the homogeneous isotropic parts
and the inhomogeneous and anisotropic perturbations.
We follow the notation used in Ref. 2. The three-metric
is written as

Q" are the scalar harmonics, PJ, SJ, and 6;J are the ten-
sor harmonics of the scalar type, the vector type, and the
tensor type, respectively. The harmonics are specified by
three indices but we suppress two of them for simplicity.
The coefficients a„—d„depend on the time t The sca.lar
field is expanded as

P(t)+g f„(t)Q" .
1

21T

P is a homogeneous part and f„describes perturbations.
The canonical variables are a, P, a„—d„, and f„. Their
conjugate momenta are denoted as m, m~, etc.

The canonical theory of classical gravity is described by
four sets of constraints which come from the four degrees
of general coordinate transformation. We symbolically
write them as

Hj (xE)=0,
H'(xj)=0 (i =1—3), (2.1b)

each of which is defined at every spatial point xj. H
generates the general coordinate transformation in the
spatial directions and is linear in canonical momenta. But
Hj, which generates the one in the time direction, is
quadratic in them. The Hamiltonian vanishes under Eqs.
(2.1) and therefore the constraints are everything in the

htl e (Qti +e/J )

where Q,J is the metric on the unit S', e Q,J is the
homogeneous isotropic part which we treat exactly, e;J is a
perturbation which we expand in harmonics

e~ =g(W6a„,' Il) Q"+—v6b„P~J+~2c„S~J+2d„GJ) .
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canonical theory (besides classical equations of motion of
matter fields if any). Throughout this paper we assume

the elosedness of the spatial section and ignore possible

surface effects.
In the superspace formulation of quantum gravity, we

interpret Eqs. (2.1) as the constraints on the physical state
'p (Hl 4=0, etc.). It is convenient to decompose the con-

straints by the harmonics. In the order given in Ref. 2 we

can write them as

III. SUPERSPACES M AND M/Diff3

In the superspace representation 4' is a function on the
space, say M, which is an infinite-dimensional space of
the three-metric h,z and the scalar field 4. M is redun-
dant because four of the six components of Ii;J. are un-

physical. Among the four unphysical components, three
can be eliminated by the constraints of Eqs. (2.2c) and
(2.2d) which express the invarianee of ql under spatial dif-
feomorphism Diff&. Explicitly we have

Hip++( Hl2+ Hl2+ Hl2) (2.2a) a
Bun

a„+4 2
b„3f„—4=0,8 n 4 — 8 8

n —1

(2.2c')

(2.2e)
+4(n 2 4)c„—

cn a
(2.2d')

The solution of the above is

The suffixes 0—2 denote the order of the quantities in the
perturbations. Equation (2.2a) is the homogeneous part of
0j O'=O. H&0 is its leading part

Hlo = n+n—y
'e'+e— (2.3)

(Throughout this paper we drop a factor e in front of
Hl and H'. ) Hl2, Hl2, and Hl2 are terms of second
order in the scalar perturbations (a„, b„,f„,m, , nb, and

mf ), the vector perturbations (c„,m, ), and the tensor per-

turbations (dn, m~ }, respectively. Equation (2.2b) is the

inhomogeneous part of Hl and, in lowest order, depends

only on the scalar perturbations besides a and P. H"
i

and H"
i are the scalar and vector parts of H' and, in

lowest order, depend only on the scalar perturbations and
the vector perturbations, respectively, besides a and P.

q (a&&t»~n &bn «cn &dn «fn ) =q (a«P&dn «f„,s„),
where

n —4a —=a+ —,
' g a„2—2 g b„'—2 g (n ' —4)c„

n —1

s„:—a„+b„.
This means that the theory should be redefined in the
quotient space M/Diffs which is parametrized by a, p,
dn« fn«and sn'

The first test of the consistency of the theory is whether
we can rewrite the rest of the constraints Eqs. (2.2a) and
(2.2b) in this quotient space. After some algebra we find
that this is in fact possible and the result is

Hlp(a, p)+QHl2+g n; —6 f„m, op+sf (n ——1)f„m + 2 f„np3 2
n~ —1 (n 1)(n +5—) 2 2

n —4 " n —4 n —4

6s„mf m~+ , (—n 4)—s„n— —,
'

(n ——31)s„2m~

n —4
+m e~ f„+(n —1)f„$2+6s„f„g -s„$2 %=—0, (3.1}

mf n~ n; mn+m e fn—P+—[(n —4)nn —(n +5)m~ —(n —4)m e {t& ] 4=0. (3.2)

Here we use the original symbols a and P to express a and
{t& for simplicity.

The vector perturbations totally disappeared from Eq.
(3.1). This is due to the relation

"Hl2+ [c„parts of Hip(a, f)—Hip(a, p)]

=8(n —4)c„Hip(a, p)+ H"
i
"H"

i . (3.3)

The right-hand side vanishes in the present order of per-
turbations when it is multiplied from the right by 4 in
Eq. (2.2d}. However note that we had to use a specific

I

operator ordering in Hl2 to get Eq. (3.3); i.e., c„g
Pl

Hl2 should be (cn~, +m, cn )mn/2. Otherwise we would

g««erm proportional to An with a divergent coefficient
(because of g„),which should be subtracted by a counter-
term. The counterterm is of higher order in iii' and there-
fore can be added to Hlo as a quantum correction. Alter-
natively we can regard it as a correction due to ambiguity
in the operator ordering:

(3.4)
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where k is an arbitrary constant. Elimination of one of
the three scalar degrees of freedom is done through a
similar procedure.

IV. BOUNDARY CONDITIONS

In this section we study the consistency of Eqs. (3.1)

and (3.2). Both are quadratic in momenta and a main dif-

ficulty for constructing a consistent canonical quantum

gravity lies in this point. First we rewrite Eq. (3.2) as

Here we introduced a new operator P which is defined by
the relation

&f(a) =f—(ao),

for an arbitrary function f on the superspace.
We discuss the consistency through the following steps.
Step I. Eliminate m, from Eq. (3.1) by using (4.1) and

expand the result in power of s„as

(4.4)

where

A„=ir~irf +m e f„Q,(0) 2 6a

~'„"=—,'[(ii' —4)ir, '(n'+5)n. &' —(n' —4)m'e P'] .

In the superspace representation m is i'/—da and so

we identify rr~
' with the integration

A

'f(a) =—J d—a'f(a'), (4.2)
No

where ao is a constant which we specify later from the
consistency requirement. Note that this definition implies
that m~

' is only a right inverse. %e have n.~~~ '=1 but

H"'e(s„=o)=0 .

Then %(s„&0)is calculated from Eq. (4.1) as

(4.5)

+(s„)=g T exp —I ds„'

xn, '(A'„'+s„'A'„") 4(0) .

depend only on a, p, f„,and their conjugate mo-(0)—(2)

menta. See the Appendix for their explicit forms.
Step II. Suppose that 4' at s„=O is given by

m 'm. =1 P(&1) . — (4.3) Step III. This is consistent with Eq. (4.4) if and only if

—ir 'w' ' H' ' e(0}=(H"'+g' H' ')qi(0) (4.6)

7r '5 „"',H'—0' + n 'P'„' ',H„'—" 'P(0)=(2H„'"+gH' ')+(0)a n ~ n n n 7 (4.7}

where g„and g„' are arbitrary constants. Equations (4.6)
and (4.7) come from the consistency of the terms linear in

sn and the ones quadratic m sw, respective&y
A main issue is step III, but we need some caution in

step I. The term m, in Eq. (3.1) cannot be replaced sim-

ply with the square of the right-hand side of Eq. (4.1) be-
cause [n;,s„]&0. Instead we have

The summation of the last term in n gives rise to diver-
gence in H' ' because 5 „"' is independent of n except for
numerical coefficients. Subtraction of this term is analo-
gous to the one in the previous section. Here we use the
formula

1 =e m. e" ~~ '+I'. fikm~

where k is an arbitrary constant. This implies that we can
get counterterms by adjusting the operator ordering of
Hzo. [For example, replace nN in Hio with

where Z is a divergent constant. ]
Now the remaining problem is the two relations Eqs.

(4.6) and (4.7). After some tedious algebra we can show
that the two relations would be correct to the order R, if
we ignore P in Eq. (4.3). This is nothing but the con-
sistency of the classical theory. Higher-order corrections
[O(iri') terms] cause no trouble to Eqs. (4.6) and (4.7) be-

cause we are allowed to add such terms to 0„'"and H„' '

as quantum corrections. Therefore the only problem is
the effects of P, whose contributions can be even O(fi ').
[Note that I' is an O(i}l ) operator. ] We should eliminate
them by imposing boundary conditions on %(s„=0) at
O,'= EXO.

Below we show what kind of contributions we get in
some detail. First consider the commutator

—i 1
7T~ 'TTQ'TIf p 1T~ — llp&f P IT~

n

whtc»»n [~ 'A„' ',H' '] of Eq. (4.6}. The right-hand
side is O(i' ') and therefore should vanish. This implies
that

(1 Z}n~ +Ze ~n—ge n~ 'sr~ =sr~ Zikkm~— ~&~f Pm 4=0. (4.9}
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[Here and below we understand that 4' stands for
4'(s„=O).] [n 'W'„',H' ] also gives rise to

CX 'IfqIff, 84 ~ If~sf n '8~+0(AI ) .
fR

If~ If~,e = [n ~,e ]— P1T~e + 8 Pn'~2 4a

=—[If~,e ]——e Pm~+ —e Pn ~
40

4'+4ie P,

which is in [n 'P'„",H' ']. This gives

P~%=e 'PC=0.
Now we list all the constraints which come from a se-

quence of such calculations. From [n 'P'„',H'0'] we

get

n ynJIf~+ =n'pnf '0 =n'e'f„n'~%

=Pf„If~+=gf„4=0 (4.10)

at a=ao. Additional constraints from [n 'P'„',H„'"]
are

~~'% =~~'~.% =0 (4.11)

at a =ao. Additional ones from [n~ 'P'„'",H„' '] are

We need n. n = 1 to get Eq. (4.7) but in reality

m -'~ '= l -P-m~-'Pm

Therefore we get

~&~f P% =0

in addition to Eq. (4.9). Other important constraints
come from

—Ift aI " a +a %(a)=0,8 I)

BQ BQ
(4.13)

lowing constraints.
(A) ao ———oo. Ip(a =—ao ) does not vanish identically.
(B) Boundary conditions at a =—ao:

f„lP=np+=0 .

(C) Additional conditions at a = —ao:

If~+=(m'~ %=)m'~ '@=0 .

(n 4 comes from [na 'P'„'",H' '] if we have a term fin
in Hio as a quantum correction. $ee Eq. (3.4).)

The boundary conditions derived here are consistent
with those proposed in Ref. 4 (the "no boundary" condi-
tion), namely, n~%'=e n 4=0 at a= —oo though the
second one is missing here. Moreover
%(a= —00 j„)cc5(f„)is what was proposed in Ref. 2.
These are boundary conditions for the wave function at
s„=O. As for the s„dependence, Eq. (4.1} implies
n; 4=0 at a = —oo. This is inconsistent with the propo-

sal '@{a=—ao,s„)~5(s„) in Ref. 2. However, in the
semiclassical approach in which n and n~ are replaced
with the corresponding derivatives of the action (the e
numbers}, we get a gauge-invariant variable f„+Es„
(K—=n ~/If~), and Es„-+0 for a~ —00 even in the
present boundary conditions. Therefore the analysis in

Ref. 2 remains valid with minor modification.
Finally we point out that the value of %'(a= —ce) is

closely related to the operator ordering. First, consider a
simple minisuperspace model in which there is only one
physical degree of freedom a. Then the Wheeler-DeWitt
equation is

(If +8 )p(a) =0 .

However there is 0(A') ambiguity in the above which is
related to the operator-ordering problem. A possible form
which has frequently appeared in the literature (e.g., Ref.
4) is

0+—~+—~3+—0 (4.12} where a =e is the scale factor of the Universe. Its solu-
tion near a =0 is

at o,'=co.
If ao& —cc, Eq. (4.12) means that +=Be+=0 at

a=ao. However, a=ao (+oo) is a Cauchy surface for
the hyperbolic differential equation Ho+=0, and the

above relation implies that 4' vanishes identically. There-
fore ao should be —00.

Next we, divide the solutions of Eqs. (4.10)—(4.12) into

two classes according to whether %(a= —oo) vanishes

Identically of not. Wllcil lt docs, tllc ollly addltlolial fc-
quirernent is ~~4=0 at a = —00. But this is almost trivi-

al when lp(a= —00 ) does not diverge. In this class of the
solutions the wave function vanishes at the classically

singular point e =0. One may say that the singularity is
"avoided" quantum mechanically here.

Next we consider the second class in which %(a= —ao )

does not vanish identically. m~ 4=0 implies pip+0 due

to the uncertainty principle. Therefore we get f„4=0
from the last of Eq. (4.10} and also n~+=0 from the

second of Eq. (4.10). Combining the above we get the fol-

'@=a or a'

The situation becomes more complicated when there
are other degrees of freedom. Their back reaction gives
rise to a multiplicative factor which is singular at a =0
(Ref. 6). In order to get %(a= —oo) & ao such a factor
should be canceled by adjusting the operator ordering of
the type (4.13).

V. DISCUSSIONS

In this paper we discussed consistency of the superspace
quantization of gravity coupled to the minimal scalar
field in the lowest nontrivial order of the cosmological
perturbations. ~e showed that the consistency imposes
nontrivial constraints on the boundary conditions for the

physical state (the wave function of the Universe) at
a=e =0. In particular we got the two classes of the
solutions: {i) the "singularity-free" condition and (ii) a



modified version of the one in Refs. 2 and 4.
Obviously the present analysis should be extended to

higher order or hopefully to all order. ~e hope that such
anaj. ysis will give us a consistent quantum gravity in
which both the operator ordering and the boundary condi-
tions are fixed. The relation of our analysis to the previ-
ous studies of the closedness of the algebra of H' and Hi
should also be clarified.
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APPENDIX

~e present the explicit form of H'O', H„'", and H'2';n
Eq. (44) ~e assume that the contribution of the last
«rm of Eq. (4.8) is subtracted by a counterterm:

H"'= n'—+m. '+m'e~y' —e~
2 2 2 2 2

1+ —

2 nf —6 f„nf (n. ——I )f„n + 2
f„n.p

3 ~y 2 n —1 ~y z z i (n —1)(n +5)
n —4 m.~

" n —4 m~ n —4

+m e f„+(n 1)P f—„+ Png„mf

n 14''fry—f 2 3m e

~ -4 -. '
~ -4 -.2 n + 2

2 7T3 2

H„= 4nf —mp 22 —
2 nf —2

2 [(n 4)n —(n +—5)~p ] f„(1) n+5 ~y n —1

n' —4 m~2 " n' —4 IU +

mf +4/f„—
8

a

2 2

H„= , (n 4-)n —(n 7)n~—+——
2

2 z 2 2 1«+5)
n —4

m e ', + —,(n'+5)
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