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The metric for a Schwarzschild black hole with a cosmic string passing through it is discussed.

The thermodynamics of such an object is considered, and it is shown that S =
4 A, where S is the

entropy and A is the horizon area. It is noted that the Schwarzschild mass parameter M, which is
the gravitational mass of the system, is no longer identical to its energy. A solution representing a
pair of black holes held apart by strings is discussed. It is nearly identical to a static, axially sym-

metric solution given long ago by Bach and Acyl. It is shown how these solutions, which were

formerly a mathematical curiosity, may be given a more physical interpretation in terms of cosmic
strings.

It has been recognized that certain gauge theories allow
the possibility of topological defects, such as strings, and
that these defects represent objects which might have been
created in the very early Universe. ' Cosmic strings are
strands of matter which could be created in a cosmologi-
cal phase transition. In this paper we shall be concerned
with strings in the presence of black holes. The gravita-
tional field of a straight string in flat spacetime has the
rather pecuhar property that the Newtonian potential van-
ishes, yet there are nontrivial gravitational effects. The
space outside of a string is locally fiat but has the topolo-

gy of a cone. Thus a test particle is neither attracted to
nor repelled by a string; yet the conical nature of the space
outside of a string produces observable effects such as
light deflection. The metric outside the string can be
written in cylindrical coordinates as

ds = dt +dp +dz—+b p de)

where 0 ((t» & 2sr. Equivalently, one may let P'=b(t) with
0(P'&2srb Let (M b. e the mass per unit length of the
string. If ~(M

~
&&1, then

b=l —4p. (2)

A cosmic string possesses a positive energy density so
((t &0 and b &1. The fact that the region outside of the
string is a conical space described by Eq. (1) is true for all
(Lt, although the relation between b and p, may be modified
if ((4 is of order unity. Let S be a two-dimensional surface
that intersects the string and ' 'g,j be the metric in this
surface. The four-dimensional Riemann tensor ' 'R,jt is
nonzero inside the string but vanishes outside it. The
Gauss-Bonnet theorem leads to the relation

/ (2) tk (2) j ((4)g ((2) )1/2d 2jikl

where the integration is over the surface S. Particular
models for the interiors of strings have been discussed by
several authors.

The unusual gravitational field of a string is due to neg-
ative pressure. The equation of state of the matter in the
interior of the string is

Pi = —PE~ P2=P3=0 ~ (4)

where pE is the energy density, p~ is the pressure along
the axis of the string, and p2 and ps are the pressures per-
pendicular to this axis, averaged over a cross section. The
source for the Newtonian potential in linearized gravity
theory is pE+p, +p2+p&, the vanishing of this source for
strings explains the absence of Newtonian gravitational ef-
fects Thi.s conclusion applies only to straight strings. A
curved infinite string or a closed loop does have a nonzero
gravitational potential.

We now wish to consider examples of curved space-
times containing strings. An example is a Schwarzschild
black hole with a straight string passing through it. The
metric for such an object can be written as

ds = — 1 — dt+ 1—2M 2 2M
T r

dr

+r2(d8 +b sm 8dg )

where 0((I)&2sr. This is a black hole of mass M with a
string extending along the 8=0 and 8=m axes. By going
to a locally inertial frame near the string, one may
transform the metric into a form equivalent to Eq. (1),
where the gravitational field is locally transformed away
but the conical singularity on the axis remains. The
metric (5) is locally identical to the Schwarzschild metric,
so as in flat spacetime the motions of test particles are lo-
cally unchanged by the presence of the string. A black
hole with strings emanating from it could be formed in a
phase transition. One possible type of string consists of a
flux tube of a confined gauge field. Above the transition
temperature a black hole containing a nonzero magnetic
charge will possess a spherica11y symmetric Coulomb-type
field. If this system were then cooled below the transition
temperature, the field would become confined and strings
emanating from the black hole would be formed. Gauss's
theorem requires the total flux carried by the strings to
equal the net flux across the black hole's horizon before
the transition. Fields such as the electromagnetic and
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Yang-Mills fields that are associated with a Gauss's law
do not violate the dictum that "black holes have no hair. "
Nonetheless a black hole may have "hairs" in the form of
strings.

The same trick which was used in writing Eq. (5) could
be employed to construct an infinite family of spaces con-
taining strings. One needs only a spacetime vnth a sym-
metry axis. If one then cuts a wedge out of this space,
which is done by requiring the azimuthal angle around
the axis to run over a range other than 0 to 2m, one has a
space with a string along this axis.

We now turn to the consideration of the problem of two
black holes held in equilibrium by strings. The appropri-
ate solution of Einstein's equations is closely related to
one given many years ago by Bach and Acyl. The latter
solution may be interpreted as representing a pair of black
holes held in static equilibrium by a "strut" extending be-
tween the 11ack holes. This strut is a conical singularity
on the symmetry axis which is identical to a string of neg-
ative energy density.

The most general static„axially symmetric vacuum
solution can be written in the form

fl«I+f I~ Ir(1 -I+1 I)+ 11~1~

where f and y are functions of p and z. Iff=e~, then P
must be a solution of the flat-space Laplace equation,
'tI1$=0; and y is a solution of

By By
'

By
'

Bp Br Bz

By 2 Bg Bp (7)
Bz Bp Bz

The Schwarzschild solution is obtained by taking P to be
the potential of a finite rod. Similarly, solutions contain-
ing multiple black holes arise if It is the potential pro-
duced by several finite rods all lying along the symmetry
axis. A two black-hole solution is obtained if we let

and z &z4 are the portions of this axis which extend from
infinity to the black hole of mass m and from infinity to
that of mass m', respectively. The constant E determines
the location and nature of the conical singularities on the
z axis. If we let

m+1
m +?rl +1 (14)

then we obtain the solution for a pair of black holes held
apart by cosmic strings extending to infinity in opposite
directions. The region between the black holes,
zi &z &zl, is free of conical singularities, but for z pz,
and z & z4 there is a singularity with

1(m +m'+1)
(m +1)(m'+1)

Here b &1, so this singularity could be produced by a
physical string with positive energy density. If we let
d ««m, m', then

p=-'(1 b)=-mm'

(21)

This is just the tension required to hold a pair of bodies of
masses m and m' at a separation of 21 in the Newtonian
liroit.

For general values of E, there are conical singularities
representing strings or struts on all segments of the z axis.
For z «z& and z «z4,

E=EBw ——
m +d

then the Bach-%eyl solution results. Here the intervals
z &z, and z &z4 are free of conical singularities, but the
interval z2 «z «z3 contains a conical singularity with pa-
rameter b defined in Eq. (1) given by

(m +1)(m'+1)
1(m +m'+1)

Here b ~ 1 so this is a pair of black holes held apart by a
strut, or a string of negative energy density. If we let

r~+r2 —2m

r &+r2+2m
r3+r4 —2m'

r3+r4+2m
b=b) ———

E(m'+1)
and for zl (z (zz,

2$ g2 (ri+rz) —4m (r&+r4) 4m'—
4r&r2 4r3r4

m +1
IC {m +m'+1)

(m'+1)rl +(m +m'+d)ri Ir4-
(m +1)rp + rig ??lrl

r; =p +(z —z;), i =1, . . . , 4.
Tlm constants z; satisfy the conditions

z $ z2 —2m ~ z2 —z3 —2d~ Z3 —z4 (11)

This solution represents a pair of black holes of masses?
m»d m separated by a (z-coordinate) distance 21. "rhe

zl (z (zl ls tile poftloll of tile symmetry axis
which lies between the black holes. The intervals z «z~

If b, &1 and bz &1, there are strings on both sides of
each black hole, with the difference in string tensions be-

ing that required to produce equilibrium. Solutions con-
taining black holes held apart by strings are more physical
than those containing struts in that one can imagine a
physical process which generates such a solution. Howev-
er, ail of these solutions can be expected to be unstable to
small perturbations. Because the tension in a string is
constant, this system is unstable against perturbations
which tend to cause the black holes either to fall together
or fly apart.

Let us now consider the limiting cases of these solutions
in which only one black hole appears. Set m'=0 in the
metric of Eq. (6) and let
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(19) A =16m bM (24)

Define new coordinates r and 8 given by

r =k [ —,
' (ri+r2)+m]

and

Because A depends upon b, it is not immediately obvious
that the entropy is simply related to the horizon area, as it
is for ordinary black holes. The Hawking temperature of
a black hole with a string is unchanged and is given by the
usual relation

cos(9= (25)

Then the metric becomes

ds = — 1 — dt+ 1—2M 2 2M
r r

+r (d8 +k sin 8dg ), (22)

This may be seen by rewriting Hawking s original deriva-
tion of black-hole radiance for the present case. The
mode functions for a quantum field propagating on the
Schwarzschild background are of the form

Rt(r)Pt~(cos8)e' ~,

where M =km. This is just the metric Eq. (5) for a black
hole of mass M with a string of b =k ' passing through
it. If K is given by either Eq. (12) or Eq. (14), then k = 1.
As expected, the limiting case of either of these solutions
is simply a black hole without a string.

Now consider the asymptotic form of the metric when
one black hole is removed to a very large, but not infinite,
distance. We restrict our attention to the case of the solu-
tion of Eq. (14), a pair of black holes held apart by strings
extending to infinity in opposite directions. Let
d »m, m', z and again introduce the coordinates defined
by Eqs. (20) and (21). The metric in the region z & z, =m
now takes the approximate form

ds = — 1 — (1+2gz)dt

+ (1—2gz)

' —1

dr'+rid 8

mm'

Ct

sin 8dg (23)

where g =rn'/(2d) and z =(r —m)cas8. In the region
z &zz ———m,

~
z

~
&&d, the metric is of the above form

except without the conical singularity factor of
(1—mrn'/d ) This is th. e metric in the region above the
black hole of mass m in the limit where the black hole of
mass m' is far away. This metric can be interpreted as
representing a black hole suspended by a string in an ap-
proximately uniform gravitational field. If 2gz «2m/r,
this is the Schwarzschild metric with a string of tension
p=mm'/(2d) on the positive z axis. If r »2m, it is the
metric for a weak uniform gravitational field for which
the Newtonian potential is 4=gz.

There is no static solution for a single black hole with a
single string (i.e., only along the z &0 axis) attached to it
in the absence of an external field. Such a black hole
must undergo uniform acceleration, being towed by the
string. The corresponding metric can be obtained from
Eq. (23) by a coordinate transformation.

The final issue which we wish to discuss is the thermo-
dynamics of a black hole with a string passing through it.
We can see from Eq. (5) that the horizon area of such a
black hole is

where Pt~ is an associated Legendre function. In the
presence of a string, the mode functions are still of the
above form, although I and m are no longer integers. The
temperature of the black-hole radiation is independent of
the form of the angular functions and of the l dependence
of Ri(r); it is determined only by the behavior of the radi-
al functions on the horizon and at infinity, which is / in-
dependent. Thus, one must obtain the same temperature
when a string is present as one does in the case when it is
absent. The reflection coefficients which describe the ef-
fect of scattering of the outgoing radiation by spacetime
curvature will, however, be modified.

The entropy is determined by the relation

E= J PT~„dX', (27)

where the surface integral can be taken over the horizon.
The metric for a black hole with slowly changing mass is
of the form of Eq. (5) with

M =M(t) =Mo+Mt, (28)

where Mo and M are constants. The Einstein tensor for
this metric is

(29)

where 6„' ' =0 is the Einstein tensor for the
Schwarzschild metric and 6„'"is of first order in M. The
Einstein equations, 6„„=8mT„,then lead to

dS=
T '

where E is the energy of the black hole as measured by an
observer at infinity. Without a string present, E=M.
However, with a string the space is no longer asymptoti-
cally Minkowskian and we cannot assume that energy and
mass at infinity are identical. Their relationship may be
found by the following argument. Let T„„bethe stress
tensor for some matter field propagating on the
Schwarzschild background; it could represent either
Hawking radiation or classical matter being thrown into
the black hole. Let P=(1,0,0,0) be the timelike Kilhng
vector for the Schwarzschild metric; then PT&„ is a co-
variantly conserved vector current and the rate of flow of
energy in or out of the black hole may be written as
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Using

I G,'„"r'sinededy .
Sm

0

2M
tr

pg
2

(31)

this yields

E=bM . (32)

Thus in the presence of a string, the energy at infinity E
and the Schwarzschild mass parameter M are not identi-
cal. To give another argument leading to Eq. (32), consid-
er a spherical shell of matter falling from rest at r~ ~
onto a black hole of mass M. If there is no string passing
through the black hole, then the energy of the shell at
r~ao is equal to its mass. A string can now be intro-
duced, as before, by changing the range of the azimuthal
angle from 0&(() &2' to 0&/&2mb. This does not
change the form of the solution and hence does not affect
the masses of the black hole and of the shell, but the ener-

gy of the in-falling matter is changed by a factor of b
(simply because of the change in the volume of the shell).
This leads immediately to Eq. (32).

If we now use dE =6 dM and Eq. (25) in Eq. (26), we
find that the entropy is given by

S =4mbM = ~A (33)

The relation between S and A is unaltered by the presence
of a string. The relation S = —,

'
A seems to be very general

and applies not only to black holes but also to situations
where a cosmological event horizon is present.

One might also raise the question of what happens
when a black hole and a string merge. Hawking's area
theorem' prevents the area of an event horizon from de-
creasing provided that T„„/+I"&0 for every null vector
l". This energy condition is marginally satisfied by cos-
mic strings. Because a black hole with a string has a
smaller area than a black hole of the same mass M
without a string, the mass must increase when a black
hole and string coalesce. As discussed above, there is no
Newtonian force between a straight string and a test mass
m. There is however a higher-order force which has been
calculated by Smith" to be

2

F= — (1 b) —P,16 p~
(34)

where p is the separation of the mass and the string. This
expression is valid if )a»m and
this force is attractive, there must be a repulsive interac-
tion at shorter distances which is such that the net work
required to bring a string and a black hole together is pos-
itive.
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