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The concept of a generalized Fermi frame is introduced with the aim of describing the relativistic
effects due to a third, distant body |,'such as the Sun) upon the motion of an Earth satellite. This ex-

tends Fermi's construction of a local inertial frame to the case in which there are local gravitating
masses. This is done in the slow-motion, weak-field approximation by splitting the metric into an
external part and a local part; Fermi's construction of local inertial coordinates defined with respect
to the external metric is then used to transform the complete metric. The results show that the main
relativistic effects on an Earth satellite are due to the nonlinear correction in the Earth's own

Schwarzschild field. There are much smaller relativistic corrections in the tidal field of the Sun, and
an Earth-Sun interaction term. The spatial axes of the local frame also undergo geodetic precession.
Particular care must be taken with respect to the definition of the time coordinate in the generalized
Fermi frame in order that the unit of time be consistent with readings of reasonable physical clocks
on Earth's surface. Also discussed more rigorously is the generalized Fermi frame for a system of
two bodies revolving in circular orbits around a common barycenter.

I. INTRODUCTION

In Newtonian Inechanics the motion of a test body
under the influence of a nearby mass m and a distant
mass M is most aptly described by means of coordinates
relative to ttt; then the force exerted by M is a tidal force,
corresponding to a potential energy quadratic in the rela-
tive coordinates. One could say, this is the Newtonian
version of the principle of equivalence: dynamical effects
(forces) due to the distant body manifest themselves only
by virtue of the test body's displacement relative to m,
and tend to zero as the distance from m tends to zero.

In general relativity (GR) a precise formalism is avail-
able to describe the relative motion of two test bodies
(equation of geodesic deviation'); there tidal forces appear
in a much more general way through the curvature tensor.
The principle of equivalence is quantitatively described by
means of the construction of a Fermi frame of reference '

using local inertial coordinates in the neighborhood of one
test body. In local inertial coordinates the time variable
x =s is the proper time on a freely falling clock on this
body and x' (i =1,2, 3) are spatial coordinates invariantly
defined. As is well known, the metric in this Fernu frame
differs from the Minkowskian form only by terms which
to leading order are quadratic in the spatial coordinates
x'. One could say, in this frame the metric is "as Min-
kowskian as possible" and there are no gravitational
forces acting on the test body at the Fermi frame's origin.
That is, in local inertial coordinates the Christoffel sym-
bols of the second kind vanish at the frame's origin.

While the relativistic treatment is much more general
than the Newtonian treatment, the latter has the impor-
tant advantage of being applicable also to the case in
wllich thc ccIltral body has a fililltc IIlass aIld ploduccs a

finite gravitational field. Because of the nonlinear charac-
ter of Einstein's field equations, the gravitational fields
due to local and distant bodies cannot be separated and
the rigorous construction of a Fermi frame, in which the
distant bodies act only through their tidal forces, is an un-
solved problem.

In Newtonian celestial mechanics it would be rather
inappropriate to describe local motion in a frame of refer-
ence where the center of gravity of the whole system is at
rest Relat. ive coordinates, referred to the center of gravi-
ty of the local system (or to the center of Earth if in the
model under consideration the only local body is Earth)
should be used. Much simpler equations are obtained in
this way and their physical consequences are easy to inter-
pret. In the analysis of relativistic effects on Earth-
orbiting satellites this has been done only in a partially
satisfactory way. The starting point is the appropriate
generalization of the Newtonian X-body equations to GR
using the slow-motion, weak-field (SMWF) approxima-
tion; the approximate equations of motion exhibit post-
Newtonian corrections to the forces acting on each body
in the barycentrie frame of reference. These corrections
have been incorporated in numerical orbit computations,
currently used to analyze not only planetary motion, but
also the dynamics of natural and artificial Earth satel-
lites. This approach has two drawbacks. First, the coor-
dinates L& used in the SMWF approximation are not
uniquely defined because of the gauge invariance of GR,
and they do not have a precise physical meaning. As a
consequence, comparison with observations cannot be
done at the level of the field equations, but must be done
using appropriate, invariantly defined observables.
Second, the equations of motion themselves are very com-
plicated. For example, relativistic corrections to the ac-
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celeration of a test body in the fields of both local and dis-

tant masses have several dozen different types of terms.
In this paper we address the following question: can

one define, within the SMWF approximation, a general-

ized Fermi frame even when local massive bodies are
present? A case of particular interest is that in which the
local massive body is Earth, and the distant bodies are the
Sun and the other planets. Since the transformation to a
local Fermi frame essentially reduces the effects of distant
bodies to their tidal forces (nonlinear as well as linear),
this Fermi frame must be deflned using an appropriately
chosen "external" metric, with respect to which one of the
*local bodies moves along a geodesic. One then applies the
coordinate transformation so obtained to the whole
metric, obtaining a transformed metric in which the local
gravitational forces are referred to the origin of the local
coordinates and the distant bodies appear only through
the curvature tensor of the external metric.

The appropriate way to choose the external metric is in-
dicated by results of Einstein, Infeld, and Hoffman, Ed-
dington and Clark, ' and Bertotti" (see also Misner,
Thorne, and Wheeler' ). When only one local body is
present, the essential result is that its motion is a geodesic
for a "renormalized" or external metric, obtained from
the complete metric by dropping all the divergent or un-
defined terms (in particular, the infinite self-
interactions). It is this renormalized metric which must
be used to construct the Fermi frame. It is a remarkable
result, that the transformation constructed using this re-
normalized metric reduces the complete metric to a form
in which the primary effect of the external bodies appears
in forces which are like tidal forces. Numerous cancella-
tions occur, so that to lowest-order forces of all other
types are reduced to zero. One thus obtains a solution of
the field equations in which the effect of external bodies is
felt only through tidal terms. Local sources produce both
linear and nonlinear contributions in the masses, as one
would expect.

The general problem of matching a local solution of the
field equation. .g., a Schwarzschild field —to a global
solution has been dealt with by means of two different ex-
pansions' ' with respect to two suitable small parame-
ters, similar to the boundary-layer theory of fluid dynam-
ics. This method has found its most important applica-
tions in the theory of gravitational radiation and the
motion of compact bodies. ' Our primary aim here is
more limited and practical; it is the construction of the
Fermi frame in the presence of nearby masses, in the
SM%'F approximation. A more general, rigorous con-
struction of a Fermi frame would be very useful and in-

teresting.
Another purpose of the present work is to give a de-

tailed justification of the results of Ashby and Bertotti
(AB). There the final SMWF metric in the local frame
was constructed heuristically, exploiting its assumed prop-
erties and solving the field equations for the nonlinear
part of the interaction between Earth and the Sun. The
detailed construction of the local coordinates given herein
and the analysis of the transformation of the metric in
such a complicated model problem as this is, however,
essential for the full understanding of the problem.

The bulk of our work is developed in Secs. II—IV,
where the full metric in the local frame is constructed.
The problem of selection of a physical time coordinate,
actually used in experiments, is discussed in Sec. V. Sec-
tion VI completes the proof of the results presented in AB
(Ref. 4) and Sec. VII develops in detail a particular model
of the Solar System involving two bodies in circular orbits
around a common barycenter.

Notation. In this paper we use capital letters (e.g., X")
to denote coordinates or other quantities expressed in

barycentric coordinates. Small letters (e.g., x") are used
for local Fermi coordinates. Greek indices run from 0 to
3; latin indices from 1 to 3. The signature of the metric
tensor, and other sign conventions used to defined the
Ricci tensor R„„and the Christoffel symbols of the
second kind are as in %eber. This treatment is given en-
tirely within the framework of GR, a special case of the
parametrized-post-Newtonian (PPN) metric for which all
PPN parameters are zero except for y =P= l. It is possi-
ble to extend the construction discussed here to include
relativity parameters y, P, g, , and gz (Ref. 17), but to do
so a substantial separate work is required.

II. THE GENERALIZED FERMI FRAME

Fermi coordinates x"=(x,x") are constructed geome-
trically as follows. Referring to Fig. 1, X (s) specifies a
world line 6, which is a solution of the geodesic equations
of motion of the mass Mz in the external metric.
A~~+ ——dX&/ds is the tangent vector to the geodesic. Given
a point P (X")near 6, a spacelike geodesic S is construct-
ed which passes through P and intersects 6 orthogonally
at the point Po. Let the unit tangent vector to S at Po
pointing in the direction of P be denoted by T", and let
the proper distance along S from Po to P be denoted by r.
Then the coordinate time x is defined to be the proper
time elapsed on a standard clock falling along 6 from
some chosen reference point 0. If we introduce three ad-
ditional mutually orthonormal vectors A~~;~(s), which are
obtained by parallel transport from the reference point 0
to Po, then the spatial coordinates in the local Fermi
frame are defined by

x ' =rT„A~(;)(Pp ) . (1)

The direction cosines of T" at Po are a'=T A~;~(PO),
measured with respect to the spatial axes A~~;~(PO). If
theie were no mass ME falling along at the origin of the
local frame, then the realization of the definition of x
given above would be obvious. In the present work, how-
ever, in which the mass ME is placed at the origin, the po-
tential singularity so introduced creates difficulty in de-
fining a coordinate time in this way; later on we shall han-
dle this by defining a coordinate time scale s' appropriate
for a clock a small distance away from the apparent
singularity. Such a scale change will not change the local-
ly inertial character of the Fermi coordinates.

We next must specify the approximation scheme used
in these calculations. The gravitational bodies are divided
into two groups: an external group with characteristic
mass M at typical distance R (mainly the Sun) and a local
body or group of bodies with characteristic mass m &&M



(mainly Earth). The local metric will be computed in a

region, near the local bodies, of size r &&R. In the case of
interest, the parameters m/r and M/R are small and of
the same order of Inagnitude as the square of a typical

velocity. Here we use symbols M, m to denote masses

measured in terms of their Schwarzschild radii so m/r is

dimensionless; also velocities are measured in units of c so

V is dimensionless. Our small expansion parameter is

thus V, and

0(m/r)=0(M/R)=0(VI) .

Besides this small quantity, an expansion in r/R will be

used to an order which will be specified later.
In the SM%F approx161atlon, as ls discussed by Ed-

dington and Clark' and used by AB (Ref. 4), the metric
tensor components 600 must be determined to an accura-
cy of 0(V ); Go; and 6;J are needed to accuracies of
0(V ) and 0(V }, respectively. We shall treat all the
masses as point masses, labeled by Latin indices A, 8, or
E (for Earth). The position of the 3th mass M at coordi-
nate time X will be denoted by Xz(X }=X„.The field
point or observation point is denoted by X=(X',X,X ).
Then the point-mass form of the Eddington-Clark
metric' before modification is

Mg
600 ———1+2g

M~[(X—X~) A~]
Ix—xg

I

'2

IX—Xq I

Mg Vg M„MII
I Ix~ —XaI

M~[(x—X~) ~~l'
Ix—xg I

IX—Xqf' " " ~ IX—Xgf

where V„and A„are the velocity and acceleration of the 2th mass, and a prime on a summation symbol means that

undefined terms —or terms which are indefinitely large —are to be omitted. In the following discussion we shall make

use of the abbreviation R&II —
I
X„—Xs I, which is a function of X because both Xz and XII depend on X . We in-

troduce the "renormalized" or external part of the metric by defining, for example, the negative of the potential in the

neighborhood of the mass Mz due to external sources:

MqU"= g
a~E & ~~E

The modified metric tensor component 600' is then written as —1+Hoo', where

Mg Mg

M„[(X—Xq ) Ag ] Mg [(X—Xg ) Vg ]
x—x I'

(4)

(e)60'; ———4 g
a~a IX—X~

I

'

G,~J' ——5,J(1+2U"') .

(6)

We shall also use the abbreviation Rz ——
I
X—Xz I

for
the distance between the field point X=(X',X,X ) and
the source point, the position of mass M„. (See note add-
ed in proof. )

'The above metric is determined to within gauge
transformations of the following type:

I"~X"+P, (8)

whclc p 1s 0( V ) and g 1s 0( V ); this assigI1IIlcIlt of tllc
orders of magnitude of the gauge functions is necessary in
order that the form of the Newtonian potential in the
metric be unchanged.

We may now construct the transformation to local Fer-

In the fourth term of the above expression, the sum over
8 includes the term 8 =E The remain. ing components of
the modified metric tensor are

I

mi coordinates as follows: when P and Po (see Fig. 1) are
close together, x' will be small compared to 8 and one
may obtain the following expression for the coordinates
X& of P in terms of a Taylor expansion about the point
Po.

X~(P) =X~(P, )+A~ q' ,' rgyP. )A,;,A'„—p—'xJ

——,
' r&~,(P, )A...Ai,',AI;~'x~x "+0(x') .

The coefficients of x' in this expression are evaluated at
Po and are therefore functions of s (or xo) only. The
coefficient of the third term in Eq. (9) is obtained froin
the equation of the spacelike geodesic S. The coefficient
of the fourth term is obtained from the derivative of this
equation:

dA dA dA
+ a 0

d X dX~+21" (P ) =0.
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(e) (I)
'gPV+ A PV +A PV o

~())I}
FIG. 1, Diagram showing how local inertial coordinates are

constructed. 6 is the base geodesic, a freely falling timelikc or-
bit. The spacelike geodesic S from the observation point P to 6
intersects 6 orthogonally at point Po. The spatial direction of S
at Po 18 characterized by direction cos1ncs Ex . If P' 1s thc proper
distance from Po to P, then P{x")={s,a'r, a2r, a'r).

The last term in Eq. (10) is negligible as the terms in the
Taylor expansion need be calculated only to 0( V')
whereas the Christoffel symbols are all 0( V ) or smaller
and d X"/dA is 0(V ). In Eq. (9), the coefficients are
computed using the renormalized external metric, Eqs.
(5)—0).

Upon separating the coordinate transformations into
time and space parts, it is easy to see that the coefficients
in the X transformation are of odd order in V and the
coefficients in the X transformation are of even order in
V. In applying the tensor transformation law to a metric
tensor to obtain the metric in the local Fermi frame, the
component to be computed to highest accuracy [to
0(V )] is

EXP ax' ax' aX' ax&
gpp Gpp

~ p +2Gpl
~ p ~ p+GlJ~ p ~ p

The leading term in Gpp is —1; therefore, X must be
computed to 0(V ) in order to find BX /Bx to 0(V ).
X need be computed only to 0(V ), however, as the
leading contribution to BX'/Bxp will be of 0( V) and the
next higher contributions to this will give gpp to the re-
quired order.

We note also that the basis vectors A~ ~
are mutually

orthonormal with respect to the external metric defined
above:

p, v (e)
(cx)~(p)G p.v

—'Pep

where g~p ——diag( —1,1,1,1) is the Minkowski metric.

III. THE EXTERNAL METRIC
IN THE FERMI FRAME

The coordinate transformation discussed in the preced-
ing section is constructed in detail in the Appendix; here
we apply it to the computation of the complete metric in
the Fermi frame:

Note that the renormalized external metric is not a solu-
tion of the field equations. Nevertheless, since Earth' s
world line is a geodesic of the given external metric it is
entirely appropriate to define and construct a Fermi frame
in the usual way based on this world line. The construc-
tion is invariant and does not depend upon the particular
gauge used. The difference between the full metric and
the external metric defines the local metric perturbations:

(I) (e)
HPV GPV GPV ~ (14)

'~ax& ax" '

a relatively easy task, except for the term h pII which has
to be evaluated to 0( V ). Later we shall discuss one ad-
ditional step, that of changing the time scale to one which
represents more realistically the physical time scale used
on Earth, but which affects only the time-time component
of the metric. The splitting (14) requires particular care
for the terms of 0( V ) in Gpp, because nonlinear interac-
tions between local and external sources contribute to
these terms.

Consider the case of a single local body of mass MF at
XE(X ) and a number of other distant pointlike bodies
with trajectories Xz(X ). The external part of Gpp is
given by Eq. (5). Even in this external metric the mass
M@ enters in two ways. First, it reduces the effective
mass of each of the external bodies, which can be written
as

1 g'M g /R err ME /—R„E—
8

[which includes the term in Eq. (5) involving a double
summation]; second, in the last few terms of Eq. (5), the
mass ME will affect the determination of the accelera-

The local metric is still undetermined to within gauge
transformations of the appropriate order; the gauge func-
tions P vary with local spatial and temporal scales.
Equation (11) then naturally splits into two parts. The
contribution to g„„coming from the external metric

(e~ G(e) r)X BXa P
(15)gpv= ap

&

differs from the Minkowski metric ri„, by terms of order
(x )2. The absence of linear terms in x" is an expression
of the principle of equivalence and results from a large
number of cancellations; this has been checked in detail in
the SMWF approximation for the present case. However,
since it is a consequence of the rigorous theorem by Fer-
mi, it is not necessary to demonstrate these details here.
Similarly, the part of g„'„' which is quadratic in the curva-
ture tensor can be found in the literature. i' This com-
pletes the first step in the calculation.

In the second step we compute the (small) local pertur-
bations,
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tions, velocities, and positions of each of the external
bodies.

Only the time-time component of the local metric is at
all difficult to calculate. It is

~ ) =R Prs(~)A(o)(~)A~ )(&)At )(A, )A(„,(A, )

2U(l) 4U(I) p(e)

Ms(X —XE) AE

RE

ME[(X—Xg ).VE]

U(I)=M@/i X—Xa i
=ME/Rg

is the negative of the gravitational potential of Bu'th and
V~, AE are Earth's velocity and acceleration with X the
independent time variable.

Synge' has developed a systematic approximation
scheme for computation of the external contributions
from 6„"„',in terms of the expansion parameter xr where
((.
. is a typical value of the curvature tensor. The metric is

expressed in terms of integrals along the space geodesic S
from Po to P. If A, is a dimensionless parameter varying
from zero at Po to unity at P, then in Fermi coordinates
the equations of the geodesic S are

j=x'X= XrT„A~(,)(PO) .

Using this notation, Synge has shown that, for example,
1

g00 =—1 —2X X 1 — f0~0~ S~

+O(~2r ),

(21)

are the intrinsic components of the curvature tensor com-
puted on S at g'=x'A, . The orthonormal tetrad A~„)(A)
used here is obtained from the tetrad defined on 6, by
parallel transport along S from Po. The components of
the two sets of vectors A~„)(iL) and A~&)(P ) however
differ at most by integrals involving the Christoffel sym-
bols along S. Such integrals, of order V r/R, would con-
tribute terms of order V (r/R) V (r/R) which we neglect
in this calculation as we are only carrying terms quadratic
in r in the metric.

Furthermore in performing the integrals indicated in
Eq. (20), there are simplifications. In the first-order
Newtonian part of the tensor arising from U", one must
be careful to perform the integral to the required accura-
cy. But in the contributions to the curvature tensor which
are of 0 ( V /R ), the curvature tensor may be taken to be
a constant, equal to the value it has at Po where A, =O.
The change along S would produce contributions to the
metric of order V (r/R) to g&„which we neglect.

The lowest-order contribution to ro o„ is easily seen to
be —U'"„. Therefore, let us define

r r«)
"0m on U, mn +5rom on ~

where all contributions to 5ro o„are O(V4/R2).
contribution to Eq. (20) from the first-order part of Eq.
(21) may easily be performed by integrating by parts:

1 () d2U(e) (
2x x"I d&(1 —&)U'"„(s,lx')=2 dA(1 —A)

dU(e)=2 U"(s,x') —U"(s,O)—

=2[U e)(s,x') —U e)($,0)—xmU(e)($, 0)] . (23)

—~I'Onus& (24)

«) 2 m
g(ji 3 ~ONll1f

(e) ~ 1 m n
ggj Ugg 3 ~imjn+

Only when P and I'0 are very near to each other does this
reduce to the ordinary expression x x "U"„'(s,0). This
generalization of the classical tidal potential is an interest-

lllg I'eslllt ill itself.
The remaining contributions can now be expressed

directly in terms of curvature tensor components: '.3, 19

g'" = —1+2[U"(s,x') —U"(s,O) —x U'"(s,O)]

When P is sufficiently close to Po that it is necessary to
retain only quadratic terms, Eq. (24) becomes

g00 = —&+U"'„X X"—5r0 0„X X". (27)

IU. THE COMPLETE METRIC IN THE LOCAL FRAME

An advantage of the splitting (14) is that in the tensor
transformation, Eq. (16), the coordinate transformations
are not naxied to high accuracy. Equation (16) for
p =v=O reads, explicitly,

T

0 2
BX (I) BX BX (I) BX BXJ

00 00
~ 0 Ol

~ 0 O IJ ~ 0 ~ 0

(28)
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Noting that
~

X—Xs(x )
~

'= —[1+U,+ —,'As. r+ —,
'

U, „x x"
T

(I) 4MEVE
Ho ~ =— = —4ME VE/RE,

[X—Xs f

+ ,'(V—F.r) /r'] . (37)

(I) 2ME
H,J 5,J 5,q2ME/RF,

E
(30)

axP ~, M~p~

Bx g Rxg
(31)

it is easy to see that the transformation coefficient
Bxp/Bxp is needed to 0 ( V } in the first term of Eq. (28),
while in all the other terms only the leading contributions
to Bx'/Bx are needed. These transformation coefficients
are computed in the Appendix, and to the required order
are

Collecting these results and substituting them into Eq.
(28), many cancellations occur. The incorporation of both
the synchronization correction, Eq. (33), and the Lorentz
contraction correction, included in Eq. (32), play a crucial
role in ensuring these simplifications. All velocity-
dependent terms cancel. Also, interaction terms of the
type U, ME/r and U, ;x'(Ms/r) disappear; the latter
terms are associated with acceleration of the local source
and arise from retardation. There are two contributions
of the type U, x x "(MF/r) which add up with a net
coefficient of ——,. The results are

where

pg =(XE—Xg )xJ5,J/REg

and X is given by Eq. (A7). Then

Bx V,
Bx'

V,
Bx'

(32)

(I) 2ME
hpp=

2ME 5 ME
U, „x x".

T 3 T

A similar calculation shows that

(i) (I) 2ME
hp; ——0, h;~ = 5,J.

T

(38)

(39)

Also, the functions H&„' must be expressed in terms of
the new coordinates. This must be done with great care in

the lowest-order contribution, the Newtonian part of H~,
it will be done in detail here for the distance function

RE ——
~

X—Xs(x )
~
. In this expression, the independent

variables are X and X, arguments of the position of the
source, Xz(X ). We need to evaluate it in terms of the
Fermi coordinates x& by means of the coordinate
transformations, Eq. (9). These transformations are
evaluated in detail in the Appendix, and to the order re-

quired here are

X =f Kdx +VE r=X (Pp)+VE r, (33)

X"=XE[x(Pp)]+x"(1—U, —A .r——,
'

U, „x x")

+ —,VE(Vs.r)+Q J5j~x + ', r As —. (34)

Eq«tlon (33) dmcnb the different synchronization of
events in the two different frames; in Eq. (34) the term
—,
' VE(V@.r) is a manifestation of the Lorentz contraction.

The term —U,x" in Eq. (34} corresponds to an isotropic
rescaling of length due to the external potential.

The difference X —X@(X ) can be written as

x' XFk(xp) =x" X—8k[xp(I'p)) VE—k(VF.
.r)—

=x"(1—U, —AE.r —
6 U, „x x")

——,
'

Vs(VE r)+0"J5j~x + ,
' r AE, (3—5}

and, therefore, to 0( V~),

[X—XE(x')l'=r'(1 —2U, —AE.r——,
'

U, „x x")

—(VE.r)

These results may now be combined with the external con-
tributions, Eqs. (24)—(27), to yield the following expres-
sions for the full metric tensor in the Fermi frame:

gpp
———1+2[ U"'(s,x ') —U"(s,O) xU—"'(s,O) ]

2M, 2M, 2
—5rptn p~x x +

T 2

5 ME
+e,mn+

T

m n
goi 3 Tomin&

(40)

(41}

m n
3 Timjn&

E
g;, —5J 1+ (42)

T

Equations (40)—(42), in particular the expression for
gpp, accomplish our main aim, to show that in the gen-
eralized Fermi frame the external bodies affect the local
metric only in two ways: first through generalized tidal
forces of order Mr /R, with relativistic corrections, and
through a nonlinear interaction proportional to the prod-
uct of the local Newtonian potential, M, /r and the
Newtonian tidal potential, U, „x x "/2. The external
potential term has disappeared due to rescaling of lengths
and times; also the gradients of the external potential have
disappeared as a result of the transformation to the freely
falling system. The gravitational field of Earth, which in
this frame is at rest, is described by the Schwarzschild
solution in the appropriate approximation.

Such conclusions are very plausible on physical
grounds; on such grounds in AB we wrote the local metric
in the form of Eqs. (40}—(42), except for the nonlinear in-
teraction term [the last term in Eq. (38}]which was com-
puted by solving the. field equations to the required order.
There it was assumed that the only external body was the
Sun, so the nonlinear interaction term took the form

10 Mz M 3(R.r) —r
T g 2@2

(43)
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where R is a unit vector, in barycentric coordinates, from
the Sun to Earth (see Fig. 2). Damour has kindly pointed
out to the authors that this interaction term may also be
obtained from the results of Manasse' who constructed
normal Fermi coordinates on a test body falling radially
inward toward the source of a Schwarzschild field.

In order to have a model which is as realistic as possi-
ble, it is desirable to introduce one further transformation:
a change in coordinate time scale. Consider an equipoten-
tial surface at mean sea level (the geoid) on the rotating
Earth, and let us choose a standard clock at rest on this
surface, having time s', as a reference. Then relabel the
surfaces s =const with the label s'. This entails the coor-
dinate transformation (s,x')~(s'(s), x"=x') and gen-

erates
'2

ds
g oo =goo . —=goo(1+ ~»

ds

The local potential U' ' is therefore of the form

U'"= [1—Jz(a&/r) Pz(cos8)+ . . ], (48)

6=2U'"+re r sin 8+ (r/R) Pz(cosa),M
(49)

where a is the angle between the radius vector to the clock
and the direction of the Sun. The last term in Eq. (49) is
due to the solar tidal potential; this is a small correction
of order 10 ' and can be neglected. Equation (49) has to
be evaluated on an equipotential surface, taking into ac-
count also the centrifugal potential:

U'"+ —,'~v r sin 8—:Uo=const (50)

where Jz -10 is the quadrupole moment coefficient of
Earth, a~ is Earth's equatorial radius, and I'2 is the
Legendre polynomial of degree 2 (Ref. 21). Such angular
functions are evaluated in a frame rotating with the angu-
lar velocity cu.

We then get from Eqs. (47) and (27)

I
8 Oi 80i =SOI' 1+

2
so that

6=2UO . (51)
The correction factor b, is, as we shall see, of 0 ( V ); then
the vector component gv; is effectively unchanged. Let

v =cvp s1118 (45)

gun(1+6, )+go;v" +g Jv'v'1= —1 . (46)

In the determination of the correction factor b, we shall
neglect terms of 0( V ); hence Eq. (46) simplifies to

b =hvo+(v') =hen+co r sin 8. (47)

Strictly speaking we should use here the metric of a rotat-
ing body, e.g., Kerr's solution; but in our linear approxi-
mation the net result is that the local potential is corrected
by including quadrupole and higher multipole corrections.

FIG. 2. Computation of curvature tensor using symmetry ar-

guments. X, F,Z are isotropic rectangular coordinates. k is a
unit vector in the XFplane pointing along the line of sight from
the Sun to a point on the base geodesic. V is the coordinate
velocity.

be the proper velocity of the clock with respect to s', 8 is
the colatitude and r0 the angular velocity of rotation. The
demand that s' be the time coordinate x' means

The correction factor b is constant and equal to
2Uo 1.5~10

We now discuss the International Astronomical Union's
definition of barycentric dynamical time (BDT). We
have so far two physical times: the coordinate time Xv,
measured by a standard clock at rest at infinity, and the
proper time s', measured by a standard clock at rest on
the rotating geoid. To obtain the ratio of their rates to
0 ( V ), let us write the line element ds' of the geoid clock
in the barycentric frame of reference. In this frame, to
the required order, the velocity of this clock is the sum of
the velocity VE of Earth, and the velocity v' of the clock
with respect to Earth's center [Eq. (45)]. Using also the
value of b, [Eq. (51)] and neglecting tidal corrections we

get

=1+U + —Vg + —6+Vs v'. (52)

We see that the main contributions to this ratio are
comprised mainly of the sum of a constant part, a part
which varies with the period of nearly a day, and a part
with the period of a year (because of the eccentricity of
Earth's orbit). BDT is obtained from s' by suppressing,
with a long-time average, these periodic terms:

dx'
=1+(U,+ V~'/2+6, /2+VE v') . (53)

dXBDT

This new time X~DT differs from the asymptotic time X
only by a constant rate difference, which to a good ap-
proximation is given by

& U, +V, '/2+~/2&=1. 55~10- . (54)

This gives, in seconds of the asymptotic clock, the dura-
tion of a BDT second. Since in cosmic physics distances
are measured by means of transit times with a value of
light speed fixed by convention, the unit of length is not
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independent. This difference must be kept in mind when
a physical quantity, such as GME/c, can be measured
both in the local frame through its effect on satellites, or
in the barycentric frame through solar-system dynamics.
In the first case it will be measured in SI meters, the SI
standard of length being in free fall. In the second case
the BDT meter is used and in such units GME has a
slightly smaller numerical value. This situation has been
discussed by Hellings.

Rpayat = ( 2M /R )( 1 —3M /R )Revere

= ( M—/R )( 1 —3M/R )

Rzq, z.q, ——( —M sin 8/R)(1 —3M/R},

RIiepe =(M/R)( 1+M/R )

Rg~gy ——(M siil 8/R)(1+M/R),
Re~@= —2MR slil 8(1+M/R) .

(58)

UI. CURVATURE TENSOR CONTRIBUTIONS
FOR A T%0-BODY SYSTEM

(55}

the nonvanishing components of the curvature tensor are

R ritzy =2M /R, R pere = —(M /R )( 1 —2M /R ),
Ra ea e= (M /R )/( 1 —2M /R ),
Rr@rq, = —(M sin 8/R)(1 —2M/R),

Rii@ii@,——(M sini8/R)/(1 —2M/R),

R~e@———2MR sin 8 .

(56)

It is first necessary to transform these to isotropic coordi-
nates, in which a new radial coordinate R ' is defined by

R = R'(1 +M/2R')~= R' +M+0(Mi/R') . (57)

Keeping only terms which are linear and quadratic in M,
and dropping primes, we have

To complete the evaluation of Eqs. (40}—(42) for a sim-
plified solar-system model, we compute the curvature ten-
sor at the instantaneous position of Earth. This will be
done assuming only one external body —the Sun—is
present. In this section the mass of Earth is treated as
sufficiently small that the Sun may be assumed to remain
at rest at the origin. In terms of the usual Schwarzschild
metric, with independent variables X =T, R, 8, and 4,

dR—ds = —(1 2M/R)—(dX ) + +R dQ
1 —2M/R

Referring to Fig. 2, let X, Y,Z be rectangular (isotropic)
Cartesian coordinates, and consider the point whose coor-
dinates are (R,O, O). At this point, in terms of these iso-
tropic coordinates the values of the curvature tensor spe-
c1ahze to

R rxr» —(2M /R )( 1 —3M /R )

R z rrr =R rzrz = ( —M /R )( 1 —3M /R ),
R»r»r=R»z»z =(M/R )(1+M/R),

(&9)

R i»r» =a +P= ( 2M /R )( 1 —3M /R ) ~

R r rr r =a = ( —M /R )( 1 —3M /R )
(61)

These equations can be solved for a and P and hence

Rz;zz must read

Rnrj ——( —M/R ){1—3M/R)5J

+(3M/R )(1 3M/R)R(R& —. (62)
The only other nonzero components of the curvature ten-
sor in the XFplane are R;J~. Using the known symmetry
properties of the curvature tensor and the fact that the

only available vector is R, it can be seen that the only pos-
sible form for R;J~ is

Rrzrz ——( —2M/R )(1+M/R) .
The curvature tensor at an arbitrary point in the XY plane
can then be obtained by the following symmetry argu-

ments. If R=(X, Y,O)/R is a unit vector pointing from
the origin {where the Sun is located) to the point (X,Y,O)
on Earth's world line, then Rz;z~ can only have the form

Rrrzq =a5ij+PR Rq (60)

where a and P are scalar quantities. At the particular
value R=(1,0,0), we have

R'~~ (M/R )(1+M/R)[y(5 p5jq 5@5q')+5(5qR~Rq 5'JpR Rq+5,qR'Rp 5qR'&Rp)]' (63)

(64)

Upon comparing with Eq. (S9), we find y= —2, 5=3, and thus

(M/R )(1+M/R)[2(5 p5jq 5Jp5 q) 3(5pRJRq 5jpR kq+5jqR Rq 5 qR~Rq)]

We now transform to local inertial coordinates, with the transformation coefficients along 6 given by Eq. (9):

where y and 5 are scalars. At the pont (R,O, O), the curvature tensor components from Eq. (63) specialize to the values

R»r»y =(M/R )( I +M/R)(P+ 5), R yzyz =(M/R )( 1 +M/R )7'

(66)

We need to evaluate the quadrupole sums in Eq. (21). We shall drop the subscript E on VE in the remainder of this sec-
tion. Upon introducing the abbreviations
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Va ——V.R, pji ——r R, iv ——r.V/V,

we find, after some calculation,

(67)

&0~0„= i ( —5 „+3R~R„) 1 — + V + V ( —25~„+3k k„)+3(5 „Viti+ V V„)

——, Va(k V„+V R„)+3(R R;Q'"+R„R,Q' ) (68)

Equation (21) may now be used to evaluate gled'. The result is

goo' ———1+ 1 — +V (3pjt r)—+V ( 2r +—3pji +3ry )
g3 8

9V—VRp„~i, +3V„'r' 6Z—, Q' x j5 (69)

The quantities p„and rv used above differ from the quantities p and r to be used in Sec. V because the reference direc-
tions of the XFZ coordinate system do not undergo geodetic precession. This is the source of the term involving Q'j in

Eq. (69), above.
In a similar manner, the remaining components of the external contributions to the metric tensor in the local frame are

obtained by performing the sums in Eqs. (25) and (26). The results are

go'; ———,[V;(r —2pa )+x;(Vjtpa —V~i, )+R;(2vp„ri, 3v„r —)],(.) 2~ z 2

T

gj" 5j ——1 — (2r —3pa ) + ~
[2x;xj+3r k;Rj —3pa(xiRj+R;xj)] .

3R 3R

(70)

(71)

The local contributions and Earth-Sun interaction terms
are as given in Eqs. (38) and (39). The metric tensor we
have obtained may thus be expressed in the following final

g'oo=go'o+ — — — ——— (3pa —&»2m 2m 5 m M
r r 3 r R

{e}
gO&=goI' ~

{g} 2'
gij gij +5ij r

(73)

This completes the formal proof of the metric expression
already given in AB (Ref. 4).

Effect of other nearby bodies The trea. tment given
above has regarded Earth as a point Inass and has ignored
the effects of the planets. These may be taken into ac-
count to a first approximation by replacing the solar tidal
potential by the sum of the tidal potentials due to all such
bodies. Since these effects are small, it is only necessary
to work in a classical approximation to correct the tidal
part of ji iso for such effects.

VII. SPECIAL CASE—TYCHO BODIES
IN CIRCULAR ORBITS

As a special case of the Fermi frame construction we
consider a model two-body system consisting of masses m
and M (the Sun) revolving around a common barycenter
in circular orbits. This model problem admits of a solu-
tion for the components of the vierbein which is valid for
all times, thus it is not necessary to expand the expres-

t

sions for the vierbein into symmetric and antisymmetric
parts, the latter representing rotation. The discussion is
therefore not limited to a number of orbital revolutions
not larger than 1/( VE), as in the previous sections; more-
over, the ratio m/M is here kept arbitrary. The material
of this section may thus be useful in other contexts.

The first step in the calculation is to obtain a solution
of the geodesic equations of motion, in barycentric coordi-
nates, for the world line G of the center of the freely fall-
ing body m, the origin of local inertial coordinates. The
equations to be solved are

d X" dX dXj'
+ ~pd ——0,pP (75)

XE—— (cosQX, sinQXO, O),
MR

where we use the symbol MT for the total mass,
MT ——M+m, and where the Sun-Earth line has been as-

where the Christoffel symbols of the second kind are com-
p«ed neglecting Earth's self-interaction terms which
would be infinite for a point Earth. As discussed previ-
ously, such infinite terms are omitted in the construction
of the coordinate transformations.

An approximate solution to these equations is obtained
by assuming the Sun and Earth travel in circles around a
mutual center of mass. It is found that, correct to 0 ( V ),
the barycenter is at the location which would have been
expected classically. Thus if R is the distance between the
masses, the position of mass m in the orbital plane
(X',X ), is given by
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dX'
=const=—K,

ds

where

(78)

This result may be obtained conveniently from Eq. (A7),
or from the solutions given in Eqs. (76) and (77) above
and the expression for ds2 in terms of the metric tensor in
barycentric coordinates, Eqs. (2) and (3), in which the sum
over A has only one term, corresponding to M„=M for
the Sun.

The second step is the construction of the vierbein,
which is carried by parallel transport along the geodesic
G. The equations to be solved are

sumed to lie along the X' axis at the initial instant. The
coordinate angular rotation frequency Q obtained by solv-

irlg Eq. (75) is

Q =Mr (1—3M/R 2m—IR r—n /RMr)IR . (77)

Equation (77) expresses Kepler's third law of motion in
the coordinate system used here.

One further result is needed, which is the expression for
X (s), the elapsed coordinate time in terms of the elapsed
proper time s on a standard clock falling along the world
line G. We find, to O(V ),

dA(i) p ~ dX+I ~~@A(() ——0 .
ds ds

(80)

=K [I,—(R QMIMz )sinQX, (RQM IMz )cosQX, O].

(81)
At x0=0 the other three vectors point radially outward
along the Sun-Earth line, normally to the Sun-Earth line
in the orbital plane, and normally to the orbital plane,
respectively. It is convenient to express these solutions in
terms of the proper time s given by Eqs. (78) and (79), to
be used as the time coordinate x in the local inertial
frame. If we then write nx =QX at Po, we have

n =Q K =Mr(1 3rnlR)I—R

Defining

ki=Mz(1 3M&IR—3Mm IR—Mr),

(82)

(83)

the solutions for the other three members of the vierbein
can be obtained for arbitrary x and written in component
form as follows:

The vectors of the vierbein are basis vectors at the origin
of the local inertial frame. The vector A~(0), chosen to be
tangent to the base geodesic 6, is

X
A(o) =

ds

A~~&)(x )= — (1+7M/2R+4mjR Mm/2RM —)ri sknxC (consxcoskx +Cisinnx sinkx
T

Cisinnx coskx C2c—osnx sinkx, 0

A~(2)(x )= (1+7M/2R +4m/R —Mm/2RMr)coskx, —C2sinnx coskx +C,cosnx sinkx
Mz.

C2cosnx coskx +Ci sinnx sinkx, O (85)

A(s)(x }=(O,O, O, C( ), (86)

2m(n k}jn =3mM(—1+m/Mz. )/R

=19)&10 arcsec/yr (88}

for axes centered at Earth.
The coefficients Ci and C2 differ from unity because

of a rescaling of coordinate distances in the barycentric
reference frame which is necessary in order that x" mea-

where the constants Ci and C2 are given by

C, =1—M/R, C2=1 M/2R —Mrn/2—RMr . (87)

These vectors satisfy the orthogonality and normalization
conditions given by Eq. (12).

The vectors of the vierbein undergo slow geodetic pre-
cession with respect to fixed dire:tions in the barycentric
reference frame, at a rate determined by the difference be-
tvveen k and n:

sure proper lengths. C2 differs from C) because of the
Lorentz contraction of lengths oriented parallel to the
direction of the orbital velocity of the mass m.

In the third step of the calculation, construction of the
transformations to locally inertial coordinates, it is neces-
sary to solve the equations for the geodesic S by means of
the Taylor expansion, Eq. (9). Cubic terms in x" are
necessary in order to compute the transformation coeffi'-
cients correctly including quadratic terms; quartic terms
are needed for any application involving the field equa-
tions. The Taylor expansion coefficients in Eq. (9) above
are needed to O(V ) for )M=O, but only to O(Vi) for
p = 1,2, 3. The resulting coordinate transfolmations are
most compactly expressed in terms of the quantities

p=x coskx +x slnkx (89)
v.= —x 'sinkx'+x'coskx' . (90)
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These linear combinations of the Fermi coordinates corre-
spond to Cartesian components of the proper distance
along S from the origin to the observation point. The dis-
tance p is measured along a line radially outward from the
Sun, and ~ is Ineasured normal to this line in the orbital

l

plane of Earth. The quantity k rather than n enters into
these definitions because of geodetic precession of the
vierbein.

The resulting coordinate transformations are as follows
up to quartic order:

X =«+ (1+7M/2R +4m/R Mm—/2RMT)r — p~(1+m/Mz )
0 0 RAM RAM

MT R

+ 3 r[(1+m/Mz }(3p r}+—mr /2MT)+ pr[3r —5p +(2r —5p )m/M&],3R ~Z4

X = cosnx +C~p cosnx —C2T'slnnx + [(2p r)co—snx —2p7 sinnx ]
EM 0 0 o M 2 2 o o

MT 28

+ — [x'(r 6p —)+3r pcosnx )+ [r (r Sp )—cosnx 2x'p—(2r —5p )],8Z4

X = sinnx +C~psinnx +C2rcosnx + [(2p r)si—nnx +2pwcosnx ]

[x (r 6p )+3—r psinnx ]+ [r (r —5p )sinnx —2x p(2r —5 )], (93)

X =C&x +Mpx /R +Mx (r 6p —)/6R +M[ xp(2r— Sp ))/—4R (94)

Having obtained coordinate transformations by the above
prescription, gauge freedom allows one to apply them to
the computation of the metric tensor in the new coordi-
nate system without reference to the construction pro-
cedure. The metric so obtained by the standard tensor
transformation law, such as Eq. (11),must then be proper-
ly interpreted according to the conventions of GR.

It is now a straightforward but tedious calculation to
obtain the transformation coefficients BX /Bx" and carry
out the summations required to evaluate g„„. In perform-
ing this calculation, it is also necessary to express the
metric coefficients G p in terms of the new coordinates
x" and to expand the resulting functions in powers of the
small parameters M/R, m/r, r/R.

In the following equations we list the resulting com-
ponents of the metric tensor, using transformation coeffi-
cients derived from Eqs. (91)—(94). Terms of O(V ),
O(V ), O(V r /R ), and O(V r /R ) are retained in

goo:

2m 2m 2Mr 2Mr
goo= —l+ — + ~2—

r E.

g» —— , RQ[ —(x ) cosnx +(x )p],
2M 3 2 0 1

g03= 3 RQ[(x )w]
2M
R

g» —1+ + [(x2)~+(x3)2(1—3sin nx )]
2m M

3R

Mp
2Z4

[(x ) +(x ) (1—Ssin nx )],

g&z —— [—x'x +3(x ) cosnx sinnx ]
3R

+ [x 'x —5(x 3)2cosnx sinnx 0],Mp
2Z4

g22=1+ + [(x') +(x ) (1—3cos nxo)]
r

Mp
2Z4

[(x') +(x ) (1—5cos nx )],
2 Mx'x Mx pcosnxg]3=
3

M+ (5x p cosnx —4x'x p),2Z4

(97)

(99)

(100)

(101)

(102}

where Pz and P3 are Legendre polynomials, ' of degrees 2
and 3, which are functions of p/r. Higher-order Newtoni-
an solar tides are also present and should be included, as
was done in Sec. III. The leading contributions to go; and

g;, are given by

go)= RQ[(x ) sinnx —(x )p],
R

(96)

2 Mx x Mx psinnx
g23 3 R 3 R

M+ (5x p sinnx —4x~x p},2Z4

g33 ——1+ + (p —2r ) — (p —4r ) .2m M Mp
3A' 2Z4

(103)

Ii can be proved independently by substitution into the
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field equations, that Eqs. (95)—(104) provide approximate
solutions to the field equations in the Fermi frame.

VIII. SUMMARY AND CONCLUSIONS

In this paper we have studied the relationship between

barycentric coordinates and local inertial coordinates with

origin at the center of one of the bodies of interest for a
system of mass points, by explicitly constructing the coor-
dinate transformation required to change one's point of
view from one frame to the other. A very large number
of caneellations among relativistic effects occurs upon
transforming to the local frame. The results may be sum-

marized by saying that, in the local frame, the presence of
the local mass m whose center is at the origin may be
described adequately by the Schwarzschild solution in-

cluding a nonlinear term in the square of rn/r which

gives rise to precession of the perigee of satellite orbits.
The axes of the local frame undergo geodetic precession.
In addition to Newtonian tidal forces due to distant
masses, there are also much smaller relativistic tidal
corrections and nonlinear interaction terms in goo which
are of the form of products of Earth's gravitational poten-
tial and the tidal potential.

The best tracked artificial satellite is the Laser Geo-
dynamics Satellite (LAGEOS), whose orbit can be deter-
mined to within a few cm accuracy corresponding to a
perturbation 5H in the Hamiltonian of order 10 m/r.
At this level the only relevant relativistic correction to the
orbit is the secular advance of the perigee; its observability
is made difficult by the small eccentricity of LAGEOS,
but a long-term orbital integration should bring this secu-
lar perturbation out of the noise. The relativistic preces-
sion of the spatial axes of the local inertial frame of refer-
ence should also be observable, if directions determined by
LAGEOS are checked against distant sources by means of
very long baseline interferometry.

As explained in AB (Ref. 4), the other relativistic
corrections can be classed in thro: groups according to
their orders of magnitude dependence on the distance.
Nonlinear interactions (5H=Mmr!R ) and "magnetic"
terms due to the motion of the Sun [5H
=(Mr /R )(Mm/Rr)'~ ] do affect the lunar motion by a
few cm. Such perturbations will be difficult to observe
because they occur at the same frequencies as the ordinary
tidal perturbations. We hope to discuss these effects in a
future paper.

We did not consider in our work the effect of the moon
on the local Fermi frame. More generally, one would like
to have a theory of the motion of several local bodies. We
expect that in this case the central world line G may be
placed at the center of any one of the masses of interest.

We conclude by suggesting that it wouM be useful to
develop appropriate software for description of the
motion of Earth's satellites in a generalized Fermi frame
as discussed here, with relativistic corrections included.
Because of the invariant character of these coordinates
and the great simplicity of the relativistic corrections in
this formulation the physical interpretation of the results
of a numerical integration will be much easier.

Rote added in proof. It is interesting that the

Eddington-Clark form of the metric can be written in a
simple form by introducing a modified mass

M„' =Mq 1+3V~ /2 g—'Ms/Rgs

and a modified retarded potential

a'z„
U'=QMg/R„~ „,=Mg 1 ——R„

(BX )

The retarded value includes, of course, the velocity con-
traction factor familiar from electron theory. With these
definitions we can write

Goo ———1+2U' —2(U') +O(V ) .

The external part of Goo is then obtained by replacing U'

with
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APPENDIX

In this appendix we give the explicit construction of a
transformation of coordinates which can be interpreted as
the transformation to a local Fermi frame for an arbitrary
point-mass metric. The origin of this reference frame
falls along a base geodesic 6 which is the solution of the
geodesic equations of motion of a freely falling test parti-
cle in a suitably chosen "renormalized" external metric.
Specifically, this "external" metric contains all the terms
in the complete metric except those which would beqome
undefined or singular when the metric is evaluated at the
position of the local mass Mz, at whose center we wish to
construct the Fermi frame's origin. The modified metric
includes nonlinear interaction terms depending on Mz,
but which are well defined.

The external part of the metric is given in Eqs. (5)—(7).
The geodesic equations of motion of the mass Mz in this
metric can be written in the following form when X is
used as the independent variable:

d'Xk

(dX )
o 2 +I Oo+2I o; Vs + I;J V~ V$

—Vz( I so+ 2I o. Vz-) =0, (A 1)

where the Christoffel symbols are calculated using the
external metric. Only terms of O(V ) are retained. Us-
ing XE& ——XE—X&, this leads to the following equations
of motion:
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, MAXzA, , Mz, 3 (XEA.VA)'
1 4—U, + Vz —g' +2VA —4VE.VA ——

2
——,XEA AA~a~' a ~&~

, MA«EA Vz)(VE —VA), MA(XzA. VA)(VE —VA) 7+4
3

—3 +-
A ~E~' A ~E~' 2 A REA

(A2)

X"=Xz[X (Pp)]+A(;)x' —,
'

I'~p—A(()A(~J)x'x~ . (A5)

U U(e)
E

(A3)

is the negative of the gravitational potential due to exter-
nal sources, evaluated at the position of Mz on G. These
equations, and similar equations of motion for the other
bodies, have been derived by Moyer, ' Estabrook, Will, "
and others. They are needed here for calculation of Az. r
to 0(V ).

We may suppose that solutions to such equations of
motion have been found —e.g. , by numerical integration.
Then the positions, velocities, and accelerations will be
known as functions of coordinate time. These functions
determine the base geodesic 6, along which an orthonor-
mal tetrad of basis vectors A~(

) (a vierbein) is generated by
parallel transport. If we set K—:dX /ds on G, then to
quadratic order in the spatial coordinates x" of the Fermi
frame we have

X = j s+At;)x —
2 1 ~ph(;)A~( ~ )x xJ, A4

=K)I Vzlp CfL

8$
(A6)

and K is evaluated to 0( V ) on G:

The coordinate time xp in the local frame is taken to be
x =s, the proper time elapsed from some reference point,
along the base geedesic G of the external metric. Of
course if the mass Mz were actually present, such a prop-
er time would be impossible to realize. This indicates
that, as discussed in Sec. V, an additional time transfor-
mation will have to be applied in order to obtain a local
coordinate time which corresponds to physical reality.

We now proceed with the computation of the various
terms in the coordinate transformations, Eqs. (A4) and
(A5). A self-consistent calculation of the vierbein vectors
r~mrM that Ao(0) b calculat~ to 0(V4}, Ak(0) and Ap{k) to
0(V ), and A(J) to 0(V ). The vector A(0) is defined in
terms of the timehke four-velocity of the base geodesic G:

M V
K ~=ds /(dX ) =1—2U, +2(U, ) —4g'

~EA
, ME, MA(XEA AA)+2 ' ' +

REA z RAB A REA

MA(XEA VA) MAVE VA+ +S ' —VE 2U, Vz-
A REA A

Thus the member of the vierbein which is tangent to G is
expressed to the required order in terms of quantities
which may be assumed known.

The components A(k) may be obtained from the ortho-
gonality condition, Eq. (10), leading to

A(k) = —Gpk'
I G+(1+4U. ) VEA(k)5g (AS)

To complete this calculation we need AJ~k~. The equation
of parallel transport, using coordinate time as the in-
dependent variable, may be expressed as

J

dX' + I 00A(k)+ I o A('k) Vz+ I o A(k)+"'(A(k) Vz =0

dnjk
0

=&J()=—,(GI)~, k G()~' )k—+, (A)VE A—EV)), —

(A 1 1)

with Gp~j k evaluated at X=Xz on G. The computation
of the coordinate transformation equations may now be
performed, with the following results:

X = f Kds+Vz r(1+3U + —'Vz )+Gpkx"

+ V)Q x "6p,5 „+(Vz r)(AE*r)

, MA(VA. r)(XEA r) r', MAVA XEA+2 '
3

+-
REA' REA'

Each term in this equation must be calculated to 0(V ).
It is straightforward to verify that the equations may be
solved by setting

X =Rz+x"(1—U, —Az r ——,
'

U, „x x")

+ , Vz(VE r—)+0~~5,. x + ,'r2gzk . —

(A12)

AJ(k) ——g(1—U, )+ —,
'

V$ Vz+Q~",

wh«e OJ satisfies the differential equation

The coo«in««rans«rmations in Eqs. (A12) and (A13),
given to cubic ord« in i/R, permit the evaluation of
transformation coeff&cients &X"/Bx" to quadratic order in
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x". Then they would allow one to find by direct compu-
tation the metric g&„ to quadratic order. A consequence
of such computations is that one may verify in detail that
no terms linear in x will appear in the metric of the local
frame. Although we have verified this result, we shall not
give details here because, for the external contributions to
the metric, the disappearance of such terms is a conse-
quence of Fermi's theorem and is to be expected. In Sec.
III we showed how these coordinate transformations, ap-
plied to the local part of the metric, give the expected con-
tributions from local sources in the approximate
Schwarzschild form.

Although the coordinate transformation given in Eqs.

(A12) and (A13} was constructed in a manner which de-
pended on the external part of the metric under considera-
tion, in one sense this is irrelevant. As GR is a generally
covariant theory under arbitrary coordinate transforma-
tions, upon applying the given coordinate transformation
to a metric tensor which is a solution of the field equa-
tions, one must obtain another solution to the field equa-
tions. The new solution obtained in this may is particular-
ly simple to interpret as it is close to a local inertial frame
with a mass ME at the origin. A test particle placed near
the origin will be acted on by gravitational forces—both
linear and nonlinear —Cue to ME itself, but the effect of
distant bodies is to be found only in the tidal forces.
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