
PHYSICAL REVIE%' D VOLUME 34, NUMBER 8 15 OCTOBER 1986

Simple model for the inflationary expansion of the early Universe

Gene F. Mazenko
The James Franck Institute and Department ofPhysics, The Uniuersity of Chicago, Chicago, Illinois 60637

(Received 6 May 1986)

The evolution of the early Universe is studied under the following assumptions. (1) The large-
scale structure of the Universe is homogeneous and isotropic and governed by the Robertson-%alker
metric in flat space with a spatial scale factor a(t). (ii) Matter can be described by a quantum-

mechanical S-vector model with a single- or double-well potential. (iii) The system is initially in
thermal equilibrium at some high temperature T relative to the Planck temperature. Quantitative

progress is possible in the large-N limit where the phase structure of the S-vector model is known

exactly. The evolution of the system is characterized by three time regimes. For the earliest times
the main effect of gravity is to rapidly decrease the kinetic energy of the system, while the potential

energy and the local "order"-parameter Auctuation S(t) change very little. Thus the system is

driven far from equilibrium. There is rapid growth of a (t) during this period. One enters the inter-
mediate time period after a (t} is sufficiently large that the spectrum of the order-parameter correla-
tion function "freezes" due to red-shifting. By this time the energy density e is dominated by the
potential energy and one enters a de Sitter phase where, approximately, the pressure P = —e and
a(t) is growing exponentially. In this regime the Hubble constant and S(t) are decaying exponen-
tially with precisely the same slow rate. The amount of inflation depends most strongly on the ini-
tial temperature [Ina =(T/Tr)i] where Te is the Planck temperature. In the final stage the system
crosses over to behavior in agreement with the standard model. Except for the "critical" case where
the quadratic part of the potential vanishes, the system appears to be "matter" dominated:
a (t) = t and the system grows the ordered state associated with a spontaneously broken symmetry
if the quadratic part of the potential is negative. In the critical case the system appears to be radia-
tion dominated and a(t) =t'

I. INTRODUCTION

The evolution of matter driven by gravity after the big
bang raises intriguing but demanding questions. Assum-
ing that the large-scale properties of the Universe are
homogeneous and isotropic, ' the structure of Einstein's
equation becomes relatively simple. If, in addition, one
ignores spatial fluctuations in the stress-energy tensor and
assumes local equilibrium, one can postulate various equa-
tions of state which serve to close the set of equations
governing the evolution of the early Universe. Assuming
a "matter-" or "radiation"-dominated universe, one is led
to a version of the "standard model. " In a very impor-
tant paper, Guth pointed out that if one weakens the as-
sumption of local equilibrium and allows for the possibili-
ty of a phase transition and associated metastability as the
effective temperature is lowered, one could be led to an in-
flationary regime [exponential growth of the Robertson-
Walker (RW} scale factor] which helps to explain several
puzzles associated with the standard model. While there
were certain problems with the inflationary scenario
developed by Guth, it opened up a new way of thinking
about these problems. Efforts to improve upon Guth's
work have led to the so-called "new" inflationary
scenario. These works, however, were built upon several
untested hypothesis: the ignoring of spatial fluctuation at
early times, the metastable nature of the dynamics and the
establishment of local equilibrium. These assumptions

were questioned by Mazenko, Unruh, and %aid. The
new inflationary scenario also leads to energy density per-
turbations much larger than is compatible with known

constraints inferred from galaxy formation.
It has subsequently been realized by several groups

that it is unnecessary to argue about "scenarios" if one

goes back to the initial-value problem coupling matter to
Einstein's equation. In principle this direct approach will

answer questions concerning the role of fluctuations, es-

tablishment of equilibrium, nature of the spontaneous
symmetry breaking, etc. Thus one can test the assump-
tions made in the standard model and in the inflationary
scenarios. This type of approach is complicated by the
necessity of treating a field theory in a strongly nonequili-
brium situation. Thus, while one would like to treat the
case of gauge field theories, such as SU(5), coupled to
gravity, this is, at present, not within our capabilities. A
more modest but still constructive first step is to argue, as
suggested by several authors, that the important coupling
is between gravity and the Higgs field which is, in turn,
coupled to the gauge fie1ds and as a first approximation
one can average over the gauge fields and treat an effec-
tive Hamiltonian for the Higgs field. The point of view

developed here is that one wants to study the simplest
field theory which is robust enough to include the possi-
bility of a phase transition and symmetry breaking. The
large-5 limit of the J-vector model satisfies these condi-
tions. The model can be solved exactly in thermal equili-
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brium and has a nontrivial phase structure. This model,
when coupled to gravity, leads to a dynamical system
which is tractable enough to be treated numerically and,
in certain 1irnits, analytically.

The model developed here was discussed earlier in a
somewhat simplified form; In the analysis here the sys-
tem is quantized, while the earlier work was carried out
using a classical cutoff chosen to simulate the associated
quantum-mechanical problem. It was suggested there
that this procedure was probably adequate for estimating
the most important features of the problem. It is shown

here that this is indeed true and the explicit role of quan-
tum effects will be pointed out. The method of quantiza-
tion used here is the simplest and most direct procedure
which ignores the existence of horizons.

The assumption will be made throughout this paper
that the system is initially in thermal equilibrium. This is
not a necessary assumption within the context of the
model, nor is it the physically most satisfying assumption.
It does seem, however, to be a logical starting point. If
the initial temperature is very high relative to any other
energy scale, then the equilibrium state, in the sense of the
most random state, is not unreasonable. Assumptions of
local equilibrium with an initial temperature comparable
to some ordering temperature, and the associated long-
range ordering, does not make good physical sense, al-
though it can be treated within the context of the model.
From a formal point of view the assumption of initial
equilibrium allows one to avoid some technically difficult
questions associated with treating initial states not gen-
erated by a Lagrangian. ' Nonetheless it is interesting and
important to consider other possible initial states. Indeed
the "ball rolling down the hill" scenario advocated by a
number of authors does not result in our model except in
the case where the system is prepared in a nonequilibrium
initial state where the level of order-parameter fluctua-
tions are constrained to be much less than in the associat-
ed thermal state. As yet there is not apparent motivation
for such constraints.

The main results of this paper are in accord with those
of Ref. 8. The analysis in Ref. 8 was based primarily on
the numerical solution of the dynamical equations of
motion satisfied by the various correlation functions
entering the theory. In the present work most of the con-
clusions are supported by analytical calculations as well as
numerical analysis. The dynamical evolution of the sys-
tem, assumed to be initially in thermal equilibrium at
some very high temperature T, can be divided into three
distinct regimes. The dynamics of the earliest time re-

gime are dominated by the existence of two distinct and
quite different characteristic times. One characteristic
time rg governs the rate of decay of the kinetic energy and
is inversely proportional to the initially quite large Hubble
"constant" H(t). The second time scale r~ governs the
rate of decay of "order-parameter" or matter fluctuations
and is very large relative to wg. r~/7s -(T/Tp) where Tp
is the Planck temperature. Thus in the earliest time re-
girne the main effect of gravity is to rapidly decrease the
kinetic energy of the system, while the potential energy
and the local order-parameter fluctuation, S(t), change
very little. During this point the energy density e(t)

changes from being dominated by kinetic energy to being
primarily potential energy Thus while the Hubble con-
stant drops rapidly during this regime, it is still sufficient-
ly large to drive a very rapid increase in the RW scale fac-
tor a (r).

The second time regime is entered (i) after there has
been sufficient red-shifting [a (t) is large enough] that the
momentum distributions of the various correlation func-
tions "freeze" and (ii) the energy density is dominated by
the potential energy. These effects. occur at about the
same time and define the crossover region between regime
one and two. While the crossover region must be treated
numerically, once in regime two the analysis can be car-
ried out analytically if the initial temperature is large rela-
tive to the critical temperature. In that case one finds
that the Hubble constant is proportional to S(t), and both
are decaying exponentially with a rate proportional to
v U/T were U is the quartic coupling in the potential.
This regime is a de Sitter phase in the following sense.
For progressively larger values of T one obtains longer
periods over which the potential dominates kinetic energy
and the pressure P = —e, to a good approximation. One
has therefore, to the same approximation, as shown below,
exponential growth of a (t). Since, however, H(t) is slow-

ly decaying exponentially, one does not quite have ex-
ponential growth of the scale factor. One does, however,
obtain the same qualitative result —a regime where the
scale factor can change many e foldings over a short
period of time. One finds that the number of e foldings is
proportional to (T/Tp) —a new result. The behavior
described above is essentially independent of the choice of
parameters of the potential with the following reserva-
tions: If the coefficient of the quadratic term in the po-
tential is positive and the quadratic coefficient is small or
zero then H (r) is proportional to S(t). In this case the
kinetic energy is constant during this phase of the evolu-

tion, while for the case discussed above, the kinetic energy
is proportional to S(t). In both cases one obtains P = —e
and considerable infiation.

At some point the order-parameter fluctuations drop to
a level where the potential and kinetic energy are again
comparable —the system begins to come to local equilibri-
um. This part of the evolution depends on the choice of
the potential. If the potential has a double-well structure
then the system will have undergone a first-order phase
transition and the initial continuous symmetry of the
problem will be broken —the system will have grown
domains of the new ordered phase. The characteristic size
of the domains goes as a (t) and the value of the order pa-
rameter within each domain takes on the value associated
with long-range order: ((t ) = —r/u where r is the nega-
tive quadratic coefficient in the potential and u is the pos-
itive quartic coefficient. In this longest-time regime one
can again solve the model analytically. If r is not equal to
zero, the long-tine dynamics corresponds to a matter-
dominated standard modd: a(t)=t and P=O (actual-
ly I' oscillates sinusoidally with time and it is the time
average which is zero). For the "critical" case, r=O, one
is led to a radiation-dominated long-time regime where
a (t) =t'~ and P/e= —,. In all cases the energy spectrum
is governed by essentially a Planck distribution.
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II. MODEL STUDIED

A. General development

The basic model studied is Einstein*s equation"

G,g ——8~6T,I, (2.1)

which couples the metric tensor g,~ to the stress-energy

tensor T,b, which depends on matter fields p;. On the
left-hand side of (2.1},

where the Hubble "constant" is defined by

H (t) = a (t)/a (t),
~,b =5,b[2(a '+aa )5„3—(a/a)5, ],
R =6a/a +6H2,

Goo ——30

6;;= 12aa —a

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

G,y =~gb —
2 ~gab

is the Einstein tensor, R,~ is the Ricci tensor, and

(2.2)
and the off-diagonal components of G,b vanish. The
stress-energy tensor in this case can be set in the general
orm

R =g'R, g (2.3) (T,b)=5,b(e5, +Pa 5„), (2.16)

T~b =VggiVbf; —ig~ [bV,Q;V'P;+2V(P)], (2.4)

where the index i labels the N components of the matter
field P;, and V, indicates the covariant derivative. V(P}
is a potential function specified below.

The equation of motion govermng the fields is given by
the conservation law

One obtains immediately that

V'V, gi ——BV($)/BP; .

(2.5)

(2.6)

The invariant d'Alembertian can be evaluated in the form

a'~, a~,
VgV gab 7l Pg ~j

ax4axb ax' '

where

Ia gbcla

(2.7)

(2.8)

and I b, is the affine connection.
This set of equations, supplemented with initial condi-

tions and a quantization prescription, form a closed set.
However, they are completely intractable. Progress can be
made if one assumes that one is interested in the largest-
scale properties of the Universe and that the initial condi-
tions can be specified in terms of some average distribu-
tion for the fields P;. With this assumption one can re-
place the stress-energy tensor T,„with its average ( T,b )
in Einstein s equation (2.1). If the initial probability dis-
tribution is homogeneous and isotropic, so also will ( T,b )
be homogeneous and isotropic. It then follows, using
standard arguments, that the metric tensor can be ex-
pressed in the Robertson-Walker form (for flat space)'

g,b
——5,b[ —5,0+a (t}5„], (2.9)

is the curvature scalar. On the right-hand side of (2.1), G

is the gravitational constant and the stress-energy density

tensor T,b assumed to be of the form

where e is the average energy density and P is the pres-
sure. Einstein's equation immediately reduces to the set

3H =Sage,
—2gg —g ~ —8~GPg2

(2.17)

(2.18)

It is straightforward to show that (2.18), using (2.17), can
be recast in the form

e'= —3(a /a)(@+ P) (2.19)

or

—(ea )= P a- —d
dt dt

(2.20)

which is in the form of the first law of thermodynamics.
This last equation is redundant as long as the conservation
law (2.5) is satisfied.

The matter field ((}; evolves according to the equation of
motion given by (2.6), with the invariant d Alembertian
given for the RW metric by

V'V, P;= —P;+a ~V P; 3HP; . — (2.21)

One can imagine setting the solution of the equation of
motion for ((}; as a function of time back into T,b which is
then averaged over the initial distribution. The resulting
(T,b) is then inserted into Einstein s equation (2.17) to
determine H(t). This is a highly nonlinear process since
a (t) and H(t) enter into the field equation (2.6) for P;.

In principle one could go around this loop one more
time by allowing for fiuctuations in the metric tensor
away from the RW form. This would lead to correction
terms for the Ricci tensor as well as generating new terms
in the equation of motion for the matter fields. Such a
development seems possible, but takes one well beyond the
current understanding of the problem even in the case of
the R% metric.

Given the expression for the stress-energy tensor (2.4)
and suppressing the index i which is summed over, one
easily finds that the energy density and pressure are given
by

I'=3H(t)5, O, (2.10)

where 0 indicates the timelike index, i is one of the three
spacelike indices, and a (t) is the RW scale factor. In this
metric it is easy to work out the various quantities enter-
ing equations (2.1}—(2.8):

= ( T ) = —,
' ((y)')+ —,

' '((Vy)')+ ( V(y) ) (2.22)

(2.23)
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(2.24)

and the sum of the energy density and pressure is given in

terms of the average gradient and kinetic energies

P+~= &(Vy)'&+&(j)'& .
30

(2.25)

iv

V(P)= rN+u g P; (x)
4uN i=1

(2.26)

where u is assumed positive and r may be positive or neg-

ative. For r negative this is the double-well potential
which has served as the prototypical example for demon-

With these definitions it is easy to show that the "first
law" (2.20) is satis6ed by e, P, and a.

The development thus far is valid for a general N-

component self-interacting field theory. Assume that the
potential term is of the form'i

38$—— r+. —$ y. ~ y.-2 2 Q

j=l
(2.27)

Thus far the matter field P; has been treated classically.
It is not very difficult to quantize the thtxiry (within the
RW metric). Define the second quantized "Hamiltonian"
operator

strating spontaneous symmetry breaking in a wide variety
of circumstances. By allowing the number of components
of the field N to be variable one is able to treat a wide
variety of models with "order parameters" with different
topological structures. Within the context of critical phe-
nomena, ' field theories with different values of N fall
into different universality classes. N= 1 corresponds to
the Ising-type universality class, 5=2 the x-y universali-
ty class, and N= 3 the Heisenberg universality class.

Given this potential, the equation of motion satisfied by
the field is given by

N
~~t)= fd'x X -~i'(x)+,' [&y,(x))' +a(t)V(y),

1 2a(t) 2Q (t)
(2.28)

[9;(x,t),Pi(x', t)]= —i%5; 5(x—x') .

4 then generates the equations of motion

P; =(i/R)[A, P;]
=2;/a(t)

and

fr; =(i/fi)[A, %;]

(2.29)

(2.30)

=a(t) a (t)V P; —r+ —g PJ2 P; . (2.31)

Choosing the factor a(t) such that

a—=3H

where p; is now an operator and P; is the canonically con-
jugate momentum density. p and rt satisfy the equal-time
canonical commutation relations

N

3Hz;+a —(t)V P; —r+ —$ PJ.
2 Q

j=l
(2.36)

This set of equations is identical in form to those studied
in Ref. 8. Note also that the energy component of the
fiuctuating stress-energy tensor can be set in the form

e(x, t)=TOO ——,'n; + —,'a —(Vp;)+I'(p) . (2.37)

One must now begin to deal with the questions of cut-
offs and renormalization. This takes one immediately
into the questions of initial and boundary conditions.
These questions are difficult to sort out and can lead to
enormous technical complications. Consider first a well-

posed set of assumptions, and then one can consider how
these might be generalized and extended. Assume that the
system is initially in equilibrium with a probability distri-
bution (density matrix) of the Boltzmann form

or
P [y] e

—~41 (2.38)

a( t) =a'(t), (2.32)

&A (t)&=fa'd'x&TOO& .

Introducing the auxiliary quantity

m;(x, t)=P;(x, t)/a (t),
the equations of motion can be set into the form

(2.33)

(2.34)

and eliminating %.; between (2.30) and (2.31), one regains
(2.27). It is then easy to see, with the expression for the
stress-energy tensor given by (2.4), evaluated in the RW
metric, that

where P is the inverse temperature characterizing the ini-
tial state. All of the averages & & discussed above are as-
sumed to be over P[P] From a te.chnical point of view
this is a very convenient choice since the initial state is
constructed in terms of the same Hamiltonian (and La-
grangian) that drives the subsequent dynamics. Techni-
cally speaking the advantage here is that the construction
of perturbation theory in powers of the nonlinear coupling
u can be carried out simultaneously for the initial state
and the subsequent dynamical evolution; in particular the
graphical structure of the equilibrium theory will be iden-
tical to the dynamical analysis. Treatment of more gen-
eral initial conditions is clearly possible, but one must be
very careful. Even in the much less complicated cases of
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dynamic evolution from a general initial state in the ab-

sence of gravity, one finds a number of technical difficul-
ties not found in standard field theory. ' In particular one
is forced to treat many-body interactions generated by ar-

bitrary initial conditions which are not found in the case
discussed above; This point is worthy of further study.

If one is restricted to an initial state which is thermal,
then one mechanism for renormalizing the system is im-

mediately apparent. It is well known that the equilibrium

properties of the system governed by P can be regular-
ized by normal ordering. As is spelled out in more detail

below, this leads one to a Planck distribution in the nonin-

teracting case (u=0, r&0). It is clear (at least in the
large-N limit), if one regulates the initial conditions and
then follows the subsequent dynamic evolution generated

by the equations of motion, that one generates no new

singularities. The normal ordering is assumed only for
the initial thermal state. Except for the reservation point-
ed out below, this so:ms a natural solution to the regulari-
zation problem and this prescription will be followed in
all of the work below.

The reservation referred to above many be a serious
one. Thus far boundary conditions have been ignored.
There may be very important constraints put on the
theory which are associated with the existence of horizons
and fundamental constraints on the degrees of freedom
"participating" in the theory. Such constraints will not be
enforced here, but this may not be the most physical ap-
proach.

The problem of interest is now well posed and one can
proceed to develop the appropriate perturbation theory ex-

pansion. In general this requires introducing Green's
functions of the type'

G J(xt, x't') = (~[/;(x, t)PJ(x', t')) ), (2.39}

where v indicates a properly chosen time-ordering opera-
tor, and the other required Green's functions involve the
fields n; This gener. al development is formally well un-
derstood, but, because of the lack of time translational in-
variance, technically very involved. Fortunately, for the
case of interest here, this general development is not need-
ed.

B. The large-N limit

For reasons which will become clear below, the analysis
can be restricted to the study of equal-time correlation
functions of the form

C~(x, x', t}= (P;(x, t){(}J(x',t) ),
DJ(x,x', t}=(m;(x, t)PJ(x', t) ),
D J(x,x', t) = (P;(x,t)ni(x', t) ),
G J(x,x', t) = (n;(x, thrJ(x', t) ) .

(2.40}

(2.41)

(2.42)

(2.43)

A key point to realize is that the energy density can be
"almost" expressed in terms of these objects. The average
of (2.37) can be written in the form

e(t)= —,
' g G;;(x,x, t)

+ —,
' g [tt V'C;;(x,x', t)]

~ „„+(V(P)) (2.44)

and from (2.26)

p2
( V(P)) = + r—g C;;(x,x, t)

4u 2

N

+ g g (y, 2(x, t)y, '(x, t))
i =1j=l

(2.45)

3H =8~6m/X, (2.46}

and it is only the term of O(u) in (2.45) which cannot be
expressed in terms of the two-point correlation functions.

Without approximations or developing perturbation
theory in u one can go no further. As mentioned above it
will not be necessary to develop the full perturbation
theory. The reason is that the analysis will be restricted to
the large-N limit. This type of approximation has played
an important role in "cracking" a number of technically
difficult problems. Examples in condensed matter physics
abound and are growing: See the work of Wilson, 's Ma, '

and Abe' for critical phenomena, Oppermann and
Wegner' in the theory of localization, Coleman in the
theory of the Kondo problem, and Mazenko and Zannet-
ti2' in the theory of growth kinetics. They key points are
the following. (i) Problems are, in many cases, solvable in
this limit (gauge field theories22 is an exception). (ii) The
resulting theory shows a nontrivial phase structure —a
phase transition with spontaneous symmetry breaking,
Nambu-Goldstone modes, etc. (iii) Corrections to the lead-
ing b havior cm b syst~atically work% out. 222' A
main deficiency of the model is that the defect structure
which may be important (vortices, etc.) are lost in the
analysis. It will be assumed in the rest of this work that
the limiting theory is sensible.

In taking the large-N limit one inust organize things
properly if the limit is to be well behaved. This organiza-
tion has already been carried out in the way the potential
V(P) has bsen defined. The assumption there is that ( V)

is of O(N) if the bare quartic coefficient (u/N) is of
O(N '). This factor of I/N was included explicitly in
defining the quartic coupling. If the theory is to be sensi-
bly defined in the large-N limit, one must make the same
type of assumption concerning the other coupling in the
problem G. The point is that the energy density will be of
O(N) for large N and, just as in the case of the quartic
term, one wants to take the large-N limit in such a way
that the energy per internal component is fixed. This can
be organized in the following way. Suppose that the
physical system of interest has Np components and a
gravitational coupling G. One then has the combination
Ge(Np) entering Einstein's equation. This can be rewrit-
ten in the form G(Np/Np}e(Np). One can then general-
ize this model to the case of X components through the
choice G (Np/N)e(N). Thus one has an effective gravita-
tional constant which goes as 1/N for large N and the
limit X~ 00 is well posed. Oae can then rewrite
Einstein's equation in the form



34

where G =GNO is assumed to be independent of N in the
large-X limit.

Before proceeding one needs a bit of further develop-
ment. If P[/] and ~P] are isotropic and the system is
symmetric with respect to the internal space labeled by
the index i, then one has the result

I,
'p ',

I

I, b',
I

Cij (x,x', t) =5JC (x,x', t),

C( x,x', t) = (P;(x,t)P;(x', t) )

(2.47)

(2.48)

FIG. 1. Feynman graphs contributing to the self-energy. The
graph labeled (a) is of 0(1) and gives the leading contribution as
N ~ ap. Graphs of the type labeled (b) are of 0 (1/N) and give
the first-order correction.

is independent of the particular value of i unless the inter-
nal symmetry is broken (more about this below). Similar-
ly since one has translational invariance,

C(x,x', t}=C(x—x', t) .

It will be convenient to define

(2.49)

S(t)=C(x,x, t)

in terms of Fourier transforms

C(q, t)= fd xe'q'* *'C(x x', t—) (2.51)

S(t)=f,C(q, t) .d q

(2m )' (2.52)

Defining the analogous transforms of D, D, and G, it is
convenient to express the kinetic energy (to within a fac-
tor of —,

'
) as

analysis of the graphical structure of the perturbation
theory expansion in powers of u. Each vertex introduces
a factor of 1/N, while each closed loop generates a factor
of N due to the internal summation. Thus, the self-energy
graph in Fig. 1(a} is of O(1), while those in Fig. 1(b) are
all of O(1/N). One can develop an algebraic approach
to obtain a systematic expansion in powers of 1/N. At
O(1) the basic point is that correlation functions factorize
into products of two-point correlation functions. A key
result for the purposes here is that

g g ($,2(x, t)PJ (x', t)) =N C(x,x, t)C(x', x', t)
i=1j=1

(2.55)

plus corrections of higher order in I/¹ One then has
from (2.44) that

G(t)=f,G(q, t)
(2m )

and, the gradient energy as

dK(t) =f & q C(q, t)
(2m)

(2.53) lim e(t)/N = —,
' G(t)+ —,'K(t)+v(t),

N~ tN

U(t)= lim (V(P))/N= [r+uS(t)]i.
N~co 4u

(2.56)

(2.57)

=[V V'C(x, x', t)] I „,. (2.54)

The nature of the large-N limit can be understood by an

One then wants to determine G(t), K(t), and S(t) us-
ing the "equations of motion" for C(q, t) and G(q, t).
For general N one has, using (2.35) and (2.36), that

CJ(x,x', t) =DJ(x,x', t)+DJ(x,x', t),
0

D&(x,x, t) =—3H(t)D~(x, x', t)+(a zVz —r)C~J(x, x', t)—(&/N) g (pk2(x, t)p;(x, t)pj(x', t))+G J(x,x,t),
k~1

DJ(x,x', t) = 3H(t}Ds (x,x', t)+(a —V' —r)C~(x, x', t) —(u/N) g (P;(x,t)Pk (x, t)PJ(x', t) )+Gs (x,x, t),
k=1

(2.58)

(2.59)

(2.60)

G J(x,x', t) = —6H(t)G J(x,x', t)+(a V' —r)DJ(x, x', t)+(a V —r)D J(x,x', t)
N—(u/N) g (Pk (x,t)P;(x', t)m~(x', t}) (u/N) g—(m;(x, t}Pi, (x', t)PJ(x', t)} .

k=1 k=1
(2.61)

Again in the large-S limit the higher-order correlation
functions can be factorized to obtain after Fourier
transformation, the equations of motion:

C(q, t) =D(q, t)+D(q, t),
D(q, t)= —3H(t)D(q, t) I (q, t)C(q, t)+G(q, —t), (2.64)

G(q, t) = 6H(t)G(q, t) 1—(tq)[ (Dtq}+(D—tq)], (2.65)

D(q, t) = 3H (t)D (q, t) I (q, t—)C (q, t)+ 6 (q, t—), (2.63)
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I (q, t) =r +uS(t)+q'/a, (2.66)

and the facts that the system is isotropic and that the

correlation functions depend only on the magnitude of q
have bete used. These equations together with Einstein's

equation (2.46) and the appropriate initial conditions form

a closed-coupled set. The first step in analyzing these

equations is to look at the set of initial conditions result-

ing from the assumption of equilibrium.

a(q) = ic—o(q)a (q) (3.11)

satisfy the commutation relations

[a (q), a (q')] =5(q —q') .

The equations of motion for a and a, which follow from
(3.4}and (3.5) are

III. EQUILIBRIUM PROPERTIES a (q) = +i co(q)a t(q) (3.12)

In order to specify the initial conditions and also to
gain some feeling for the model, it is useful to work out
the various equilibrium properties. The development
from a more formal point of view is given by Dolan and
Jackiw. The analysis given here will be a bit more
schematic, but also more direct. The basic point is that in

equilibrium the effective equations of motion in the
large-N limit can be written in the simplified form

(3.1)

and can, of course, be integrated immediately.
The theory in equilibrium is regulated in the standard

way: normal order products of a and af and drop con-
stant terms which are temperature independent and which
would lead to infinities in various physical quantities. For
example, for the correlation function (4(q)$(q') ), one has

(y(q)y(q')) =—
2~1/2(q)~ 1/2(qi )

X([a (q) —a(q)][at(q') —a(q')])

jr; = (r +—uS —V )P;, (3.2)

where S is the equilibrium limit of the quantity S(t) in-

troduced above,

(3.3)

which is independent of time due to the time-translational
invariance of the equilibrium ensemble. The equation of
motion for ir can then be written, after Fourier transfor-
mation, in the form

(a (q)a(q')+a(q)at(q'))
2 1/2 q)~1/2(

,/2, /2 (a t(q')a (q) ), (3.13)
2 1/2(q)~1/2( ~

)

and the vacuum term was dropped. Similarly one finds
that

& (q) (q')&= —,'irico'"(q) '"(q')

X([a (q)a(q')+a (q')a(q)]) (3.14)

and

ctp;(q, t) =mr;(q, t) (3.4} and

(ir(q)P(q') ) = (P(q)ir(q') ) =0 . (3.15)

ir;(q, t) = co (q)P;(—q, t), (3.5}

m.(q) =i fico(q)

2

where, with the assumed imtial condition a(0)= 1,
co (q) =r+uS+q2 is just the equilibrium limit of I (q, t}
defined by (2.66). With these results it is straightforward
to work out the equilibrium quantities in the system. At
this stage it will not lead to confusion if the index i on the
operators is supressed. Introduce the creation and annihi-
lation operators at(q) and a (q) via

' 1/2

[a t(q) —a (q)] (3.6)

Tre P a t(q)a (q') =Tra (P,q)e ~ a (q'), (3.17)

one can use (3.16) and the cyclic invariance of the trace to
obtain

Using the equations of motion (3.11) and (3.12), one easily
finds (with time —i Pfi)

at(q, P)=e ~ a (q)e~

e
—Phrs(q)a t(q) (3.16)

If one then considers

and
1/2

[a'(q)+a (q)] (3.7}

(3.18)

where n (q) is just the Planck distribution

Tre ~a (q)a(q')=e ~''t'Tre ~ a(q')at(q) .

Using the commutation relations for a and a and re-

grouping terms, one is led to the familiar result

& a (q)a (q') & =rt (q)&(q+q'), (3.19)

1

Mco(q)

1

Ziico(q)

[ i ir(q) +co(q)P—(q)],
f /2

[in(q)+co(q)P(q)] . .

(3.8)

(3.9)

1
rl (q)

e ~ —1

The correlation functions of interest are given by

(P(q)P(q') ) =C(q)8(q+q'),

(3.20)

(3.21)



(3.22)

and

C(q) = n(q),
ei(q)

G(q) =fur(q)n (q),

D(q) =D(q) =0 .

(3.23)

(3.24)

(3.25)

l2 So

These equations appear to be simply those for a harmonic
oscillator with frequency ai(q). Things are not quite so
simple. Sincet02(q)=r+uS+q and

d'qS= I n(q),
(2Ir)' to(q)

(3.26) FIG. 2. Equilibrium value of So for rl ——0 plotted vs U.

S must be determined self-consistently. Once S is known
then the correlation functions C(q) and G(q) are deter-
mined and the thermodynamic quantities like the energy
density and pressure can be determined using

e/& = f— , [G (q)+q'C(q)]+ (r +uS)' (3.27)
(2Ir) 4u

result for small U:

So(0, U) = 1

12

while for large U,

U/3
(3.35)

So(0, U) =(In U/U) [1+0(1/lnU)] (3.36)

P /N =f —G (q) — C(q) — (r +uS)' .dq 1 q
(2~)1 2 6 4u

and So(O, U) falls off very slowly with increasing U. For
sufficiently low temperatures R » USO and

(3.28)
1/2

Se(R, U)= I e
(2tr)

(3.37)

So ——Ap S,
U =flu,

R=APr,
and the dimensionless momentum

(3.29)

(3.30)

(3.31)

(3.32)

Focus, for the moment, on the determination of S as a
function of temperature.

Introducing the dimensionless variables
Thus for a given U, Se starts at high temperatures at
So(O, U) & —,', and falls off to zero as the temperature is
lowered. A not very dramatic behavior.

(ii) r=0. This is the case of a massless bare theory and
a fiat potential. In this case So ——So(0, U) which was dis-
cussed above and shown in Fig. 2.

(iii) r&0. In this case one has a double-well potential
as shown in Fig. 3. Fix U and r, and consider the effect
of lowering the temperature from high temperatures
where

~
R

~
&&1. For infinite temperature one again has

inside the integral in (3.26), one obtains the equation for
~o

Se ——So(0, U) & —,', (3.38)

S = d x 1 1

(2Ir) fl e"—1
(3.33)

0 =x +8+USo . (3.34)

One sees from inspection that So is a function of the two
independent parameters E. and U. Note that temperature
enters only through the parameter R.

There are three basic cases of interest.
(i) r & 0. If r is positive then one has a single-well po-

tential and the behavior of So(R, U) as a function of R
and U is rather bland. For fixed r and u one can look at
the variation of So with temperature (R=r/T ). For
sufficiently high temperatures one has that So——So(0, U).
The numerical solution of the resulting equation for So as
a fllIlctloll of U ls glveI1 ill Fig. 2. One llas the analytic

0
l

'lu

FIG. 3. Schematic of the potential V(P) vs P.
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and c(x) is the remaining fluctuating part of the correla-
tion function given by

c (x)=(1/x)(e —1) (3.47)

In the limit of small x, c(x) develops the characteristic
Nambu-Goldstone mode associated with the breaking of a
continuous symmetry:

c(x)=1/x (3.48)

Note that the quantity Sp is still the integral of C(x), but
now, because of the "Bragg peak" contribution, one has

Sp ——M +—„=—R/U . (3.49)

I.O0.8

As T decreases and
f
R

f

increases, one finds that
So(R, U) increases relative to So(O, U) (see Fig. 4). How-
ever, consider the inequality

(1/Q)(e —1) ' & (1/x)(e"—1) (3.39)

0 0.2 0.4 0.6
R/Rc

FIG. 4. Equilibrium values of various scaled quantities for
U=1 plotted vs R/R, (R, =——,2 ). Labeled 1 is 12SO, 2 is

30Go/m, 3 is 30eo/n, 4 is 30Ko/e, 5 is 576uo, and 6 is P/e.

Given the behavior for S for the various regions, one can
work out the behavior of the thermodynamic quantities e,
P, K, G, and U. In terms of the dimensionless variables
introduced earlier all of the quantities e, P, E, G, and u

can be written in the scaled form

e=P fi Nep(R, U) . (3.50)

ep ——Go ——ICp ——n /30,

P =ep/3,

(3.51)

(3.52}

For high temperatures
f
R

f
«1, the various thermo-

dynamic quantities are functions of U. For very small U
one finds directly that

S,(R, U) & —,', . (3.40)

For fixed U, as
f
R

f
increases, there will be some finite

value of
f
R

f
where

So(R„U)=—,', . (3.41)

At this temperature the system undergoes a phase transi-
tion. The condition determining R, is

which holds for R + USp & 0. If R + USp & 0, the system
is thermodynamically unstable for sufficiently small x.
Integrating (3.39) over x, one is led to the constraint for
thermodynamic stability:

[1+0((U)' ')],
576

while for large U

Go —— [1+0(1/lnU)],
U

Ko —— [1+0(1/lnU)],ln U
U

Uo =Go/4

eo=3Go/4

Po eo/3 . ——

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

R, + USo(R„U)=0 (3.42)

or

R, +U/12=0 .

The transition temperature is then given by
1/2

12A'fr
f

B c

(3.43)

(3.44)

(3.45)

where M is the dimensionless spontaneous magnetization
given by

M =(R, —R)/U (3.46)

using the original variables.
For lower temperatures ( T & T, ) one has spontaneous

symmetry breaking. The correlation function C(q) is
given then, using the scaled momentum x =Pfiq, in the
dimensionless form

C(x)=M (2m) 5(x)+c(x),

C(x)=1/0 =(x +R+USp) (3.59}

which is of the Ornstein-Zernike form. As R ~R„
So~ », and USO~ —R, . The "susceptibility" is given

by C(0) and very near T, goes as
2

C(0)= U
4m.(R —R, )

(3.60)

For temperatures below T, one has the simple results that
the thermodynamic quantities are independent of U and
given by the R =0 and U=O results quoted above. In Fig
4 the various reduced quantities are plotted versus R( &0)
for fixed U= l. One sees that they vary rather little from
their ideal values. The main temperature dependence of
the thermodynamic quantities is through the explicit fac-
tors of T shown in (3.50).

The properties of this system near its critical point are
easy to work out. For long wavelengths x ~&1 and R
near R„Q is small and the order-parameter correlation
function can be written ( T & T, )
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which gives the critical index y=2. Sitting right at T,
one obtains

obtained by replacing the right-hand sides of the equa-
tions by their initial equilibrium values. This then gives
one a measure of the initial instability in the system.
From Eqs. (4.4)—(4.6) one immediately obtains

for small x, which gives the critical index il =0. Finally
the correlation length, (, can be easily identified from the
Ornstein-Zernike form to be

(R —II, ) (3.62)

for T & T„and the critical index v= 1.

IV. ANALYTICAL TREATMENT OF THE
TIME EVOLUTION

TQ p Qbj~ )~~x gggch)1+g fjpaA nay nba asm ~gnnruar4
~g

and

c(x,0)=0,
d(x, 0)= —0'(x)c (x)+g (x)

=[ II(—x)+0{x)]n(x)=0,
g (x,0)= —6H (0)g (x),

H(0)={girT e /3)'~i,
4 ~ 4 e4 ~ ~ ~ ~e n 4 ia a s era 1hA A @%%%~ 1IL~%10h4 h4%64+AS 7 P4 h4% hi 4'% f

(4.9)

(4.10)

(4.11)

(4.12)

At %2&%% 0 0%

to look at the nonequilibrium evolution of the system
away from the assumed initial equilibrium. The first
thing to note is that D(q, t)=D(q, t) since they obey the
same differential equation and the same initial condition.

Just as in the case of the equilibrium behavior it is con-
venient to go over to a set of dimensionless variables. Just
as distances were measured in units of irip(q =x/iilp), so
also will all times be measured in units of irip(r =r/Ap)
(Ref. 27}. Temperatures will be measured in units of the
Planck temperature Tz ——(G/A)'; where G is related to
the gravitational constant by 6=GAD, so T=p 'Tp.
One can also introduce the dimensionless correlation func-
tions

the last section. One sees immediately that the kinetic en-

ergy, g(x, r)„responds rapidly to gravity, but c(x,r) and
d {x,r) do not immediately respond. One must go to the
second derivative to obtain the initial response of d and to
the third derivative to obtain the initial response of c:

(4.13)d(x, 0)= —6H (0)g (x)

(4.14)c (x,0)= —12H(0)g(x) .

This immcxiiately tells one that the kinetic and potential
energies are going to respond quite differently to the in-

stability. One can define the time scales associated with
this early time behavior:g (x,r) =PG (q, r),

c (x,r) =C (q, t)/pfi

d (x,r) =D (q, t)/fi .

(4.1)

(4.2} (4.15)

(4.3) governs the initial response of the kinetic energy, and

c(x,r) =2d (x,r),
d {x,r) = 3H (r)d (x,r) I 0(x—, r)c (x,r)+g (x,—r),
g(x, r) = 6H(r)g (q, r) 10(x,—r)2d (x,r), —

where

I 0(x,r)=R + U$0(r)+x /a

(4.4)

(4.5)

(4.6)

(4.7)

The equations of motion can then be put into the dimen-
sionless form

i(x) =12H {0)g{x)/c (x) =12H(0)Q (x) (4.16)

governs the initial response of the order parameter and the
potential energy. If one looks at the time evolution for
the longest length scales (x=0), then the ratio

(4.17)

gives an estimate of the relative response of the kinetic
and potential energies. Again there are three eases.

(i) JI &0. The basic physics is clear here in the limiting
ease U=O. Then
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' 1/2

H=T '
45

r, /rs ——(16~3@ T /5U)

(4.22)

(4.23)

Again, as one raises the temperature relative to Tp, one

finds an increasing separation of time scales governing the

kinetic and potential energies.
(iii) R &0. In the case of high temperatures this

reduces to case (ii). The new feature here is that the sys-

tem can support a phase transition. If the system were or-

ganized such that its initial state were in equilibrium with

a temperature near T, then

tin
Sm.

i3U
H(T=T, )=

while

~, /rs ——

'I 1/2
96m

5U(R —R, )
(4.25}

ott
The feature that the order-parameter time scale increases

as one approaches the transition is a very general physical
phenomena known as critical slowing down. 29

If the system is initially in an equilibrium state near or
below the transition, then there must have been time for
long-range correlations to develop —the system must an-

neal at that temperature for times which become increas-

ingly long as the associated temperature is lowered toward

T, . Given the conditions corresponding to the evolution

of the early Universe, it seems much more physical to as-

sume that T»T, . Indeed, if one chooses T &T„ then

I
)

I
)

t
)

I
I

I

(a)

,,/, ,=I48 r".(U}/[US.(U)]'"I'"

These expressions can be simplified in the small- U limit

to obtain

one must assume the symmetry in the problem is broken
from the start or (more reasonably) abandon the assump-
tion of initial equilibrium.

I (x,r) =R + US(r)+(x/a)' (4.26)

can be neglected. This assumes that the range of wave
numbers contributing significantly to the matter distribu-
tion is effectively cutoff at some wave number which is
not growing as rapidly with time as a(~}. It will be
shown below that the effective cutoff decreases somewhat
with time and one expects that one enters the regime
where x/a can be neglected relatively early. A numerical
study of this point will be given below.

Assuming that I (x,r) is independent of x, the equa-
tions of motion reduce to

c(x,v)=2d(x, v),

d(x, r) = 3H(r)d(x, ~)—Pr)c(x,T)+—g (x,T),

g(x,~) = —6H(~)g (x,~)—21"(r)d (x,r) .

(4.27)

(4.29)

Notice now that the coefficients of c, d, and g are all in-
dependent of x. One can then convert these equations
into equations for the moments 6(t) and S(r) which
enter into the energy density. Defining

B. Intermediate-time analysis

From the analysis above, one finds a rapid decrease in
6 for short times which carries with it a rapid decrease in
the energy density since initially, for sufficiently high
temperatures, and U of 0(1),@=6»U. After a relatively
short time one finds 6 «v and e=u. During this time
period H remains relatively large and a (t) increases very
rapidly, while S changes very little. A key assumption
leading to the important "intermediate-" time regime is
that the momentum dependence of the correlation func-
tions "freezes" after a relatively short time. In Sec. V it
will be shown that a good measure of this phenomena is
the ratio E(r)/S(r) =g (~) which gives the correlation
length g(r) characterizing c(x,r) One .finds that g(r) is
independent of time after some time r/ which is less than
4 in dimensionless units. This freezing phenomena arises
because the RW scale factor is becoming sufficiently large
that the wave-number dependence in

0 i I i I i I I

I
)

1
)

I

one immediately obtains

S=2D,

D= —3aD —rS+6,
6= —6HG —2I D .

(4.30)

(4.31)

(4.32)

(4.33)

0i i I i I i I I

0 0.2 0.4 0.6 0.8 1.0

R/Rc
FIG. 5. (a) The initial value of the Hubble constants for

U=1 vs 8/8, . (b) ~, /~g for U=l vs 8/8, .

p(x, r) =II}(r)II}(x„~*)/p(z'), (4.34)

~here the x dependence is frozen for ~& v.*.
Einstein's equation reduces in this limit to

The conclusion is that for sufficiently large a, the quanti-
ties c(x,7), d(x, r), g (x,~) are of the form
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H'(~) = T'[6(r)+1(r)'/2U] .
3

(4.35)

H=4+T 6 .

Setting this result back into the Einstein equation and de-
fi iliilg

Further progress is made if one recognizes that the time
derivative of this equation can, using the equation of
motion, but put in the simple form

(4.47)

which also ensures that the argument (e=u) is self-
consistent for large enough T .

To the degree that e=u during this time regime,
P = —e and one is in a de Sitter phase where H is a con-
stant [see (2.19)] and one has exponential growth of a (r).
This is only approximately true since ~I is large but noi
infinite. We have, instead, that

' 1/2

3
Soe

p-'=4mT2,

one obtains

p(H+3H )=I /2U .

(4.37)

(4.38)

where So is the value of S(r) at the beginning of this re-

gime (which will not be very different from its initial
value). The RW scale factor is easily determined in this
case to be given by

I (~)= US(~) . (4.40}

(One should keep in mind that for sufficiently long times
or small U this assumption breaks down. ) In this time re-

gime the energy density is essentially potential energy and
6 may be neglected in (4.35). Combining this result with
(4.40) one obtains

' 1/2

H(r)= U S(r) .
6p

Setttilg 'this back in'to (4.39) aild assumiiig that S/2US
and pH/US2 are ((1,one obtains

(4.41)

One can then eliminate D and 6 in (4.31)—(4.33}in terms
of H and S (or equivalently I ) to obtain

S= 3HS —2rs —2I H .—

The dynamical problem is then reduced to studying (4.38}
and (4.39).

Consider first the intermediate-time regime where S(r)
has not changed significantly from its initial value and the
initial temperature is sufficiently high that

a (~)/a (~') =exp[ —AT USO(e
' —e ')] . (4A8)

For times ~' ~ v &&~I, one obtains exponential growth

a(~)=a(~')e px[(2nUT /3)'~ So(t —r')] . (4.49)

It is instructive to simply assume that (4.48) can be ap-
plied over the entire time regime with the initial condition
a(0) =1 for ~' =0. One then obtains

a(r)=exp[ ~UT So—(e ' —1)] . (4.50)

This then allows an estimate of the amount of infiation
during this era,

m UT~SOa(ce)=e (4.51)

and the amount of infiation associated with this quasi —de
Sitter phase goes exponentially with T . It will be shown
in Sec. V that this relation ho1ds rather well when com-
pared to the numerical analysis.

The analysis above is valid for all r as long as U is not
too small or time too long. For r & 0 and U=O, for exam-

ple, the analysis is modified somewhat. In this case I =R
and in the regime where e= U, one obtains the relationship

0= —3( U/6p)'i SS —2US (4.42) H =4nriS/3 . (4.52)

1/2
2US/S =

3mT2
(4.43)

H= —R/3 (4.53)

Going through an analysis very similar to the case direct-
ly above, one is led to the results

This new time scale governing the intermediate time evo-
lution increases linearly with T for large T. Thus 5 and0 decay exponentia11y during this regime with a rate go-
ing to zero as 1/T for large T. The inequalities listed
above reduce in this case to

and, using (4.36),

6 =8/3p=ri/(12m T ) (4.54)

is a constant. If one assumes that H can be written in the
form

S/US = I/(3m T SU) ((1 (4.44)
H (r) =Hoe (4.55)

pH/US =2/(12m. T S) ((1 (4.45)

which are well satisfied for large fixed T until S becomes
sufficiently small. The argument is, therefore, self-
consistent. Since 6 is proportional to H [see (4.36)], one
finds that

valid for v/v i2 ((1, then
" 1/2

12+So
V12 ——300/8 =T (4.56)

Going through the saine analysis as for (4.51},one obtains
the amount of inflation

6 =US/(6~T ) (4.46)
(4nr So)a(oo )=e (4.57)
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which again goes as T in the exponent.

C. Analysis of long-time behavior

3p, + 0 ~ ~

8

P/e ——+1

3

(4.71)

(4.72)

S= 3HS 2R—S 2p—,H, —

p(H+3H )=RS .

(4.59)

(4.60)

These equations can be solved by looking for solutions or-
dered by inverse powers of v. One obtains the asymptotic
solutions

S =(4p/3' v )(1—since~)[1+O(1A)],

H =( —',w)(1+come/aiw)[1+O(1/r)],

where the frequency is given by

(4.61)

(4.62)

(4.63)

Note that both S and H are non-negative as they must be.
From (4.62},one immediately obtains the "dust" result for
the RW scale factor

a (v)/~ (~') =(~/~')'~' . (4.64)

The various thermodynamic" quantities are given in the
long-time limit by

G (r) = (2p, /32)(1+ since~),

e=2p/3v

P/e= since~,

(4.66)

(4.67)

plus corrections of higher order in ~
(ii} r=0 In this case. the potential is very fiat and there

is no phase transition. Looking at the long-time limit, one
again finds solutions which are ordered by inverse powers
of~:

When S(w) has decayed to sufficiently small values one
comes out of this quasi —de Sitter phase into the final
longest-time regime. In this regime the kinetic and poten-
tial energies are again comparable and the system is at-
tempting to approach equilibrium. The three cases r ~ 0,
r=0, and r &0 will be taken separately.

(i) R &0. In this case there is no phase transition and
one expects the variable S to decay uneventfully to zero as
time evolves. It is convenient, therefore, to eliminate I in
favor of S to obtain the equation of motion; note that

V(x)= + for r &0,
rx' ux'

(4.58}
S=—3HS —AS —3US +6pH

For r &0, the role of the quartic terms proportional to U
are relatively unimportant for long enough times, since,
for example, R+US=R. It is therefore convenient to
focus on the case U=O. The relevant long-time equations
of motion become

+4'(cos2ct)7 2)—/3' T

H(r) =—', a+sin cur/3cod

(4.73)

(4.74)

from which it follows that

u (r)/~ (~') =(~/~')'~'

and

(4.75)

e(~) =(2p, /3r )( I+sin2co~/cot),

P /6 = —SlnC07

(4.76)

(4.77)

In summary, for long times, and for R different from
zero [with a suitable choice of V(0)], one obtains a
matter-dominated long-time behavior with a =t and
P=O (on average). For R=O one recovers the standard
model for a radiation-dominated universe with a=t'/
and P/e= —,.1

V. NUMERICAL ANALYSIS

Having established analytically the long-, intermediate-,
and short-time behaviors, one can proceed to connect
them via a numerical solution of the equations of motion.
The standard Runga-Kutta methodM was used to forward
step the equations of motion and the correlation functions
were then numerically integrated to obtain the quantities
S(t), E(t), and G(t) needed to determine e(t) at each
time step. Because of the varying and competing time
scales the integration time step had to be carefully chosen
and varied over the evolution of the system.

One has three dimensionless parameters to vary: r „U,
and T with R =ri/T . For r» Ot he qurati cc oupli ngU
does not effect the short- and long-time physics of the sit-
uation in any quahtative way. As shown in the last sec-
tion, U may play some role in governing the intermediate
dynamics. If U is not very small, then I'= US (as held
for the cases r, &0) and the analysis goes through as for
ri &0. Since the U=O case is qualitatively different, it
will be treated here. For the "critical case, where r&

——0,
one has a very flat single-well potential. One must main-

TABLE I. Parameters rl, U, and T characterizing the five
cases I—V. T, is given by {—12r1/U)'

U

(iii) r &0. In this case, where there is symmetry break-
ing, I goes to zero for long times and one looks for solu-
tions for I and H ordered in inverse powers of v. One
finds, after some algebra, that

I (v) =(8'/3)'i coh~/r

H(r)=( —,'~)I1 lnr/[6r(2')'—i +. . . ]I,
' 1/2

Up 1 lnv
1 (7.)= + 0 0 ~

2 T

a (~)/a (r') =(~/r')'~ [1+O(in~/r)], .

(4.68)

(4.69)
II
III
IV

1

0
—1
—1

—1

10
10
10
20
30

5/4, '3)' '
10/(3)'
15/(3)'"
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TABLE II. Equilibrium values of the scaled quantities defined by (2.53},{2.54}, {2.57}, (3.26)—{3.29),
and (3.50).

I
II
III
IV

0.9116
0.7926
0.8053
0.7957
0.7940

306O/m

0.9892
0.9822
0.9833
0.9825
0.9824

30EO/m

0.9869
0.9690
0.9717
0.9697
0.9693

0.2188
0.6282
0.4696
0.5863
0.6094

30eo/+

0.9892
0.9789
0.9800
0.9792
0.9790

I'/e

0.3326
0.3333
0.3339
0.3335
0.3334

tain u ~ 0, but the particular value does not seem crucial.
As in the equilibrium case, one expects the properties to
be a weak function of u except for very small u. With the
exception of the case of very small u, one expects the
choice U= 1 will generate the general qualitative behavior
of the system.

Finally, for the case r, &1, the system will order and,
for consistency, one must choose T )T, . Since
T, = 12r i /U, one must be careful in choosing U and r i.
For fixed r, and T there is a mimmum acceptable value
of U. Calculation for various choices of ri and U indi-
cate that the parameter governing the qualitative behavior
of the system is T. It is sensible, therefore, to focus on
the set of parameters r, = —1 and U=l and vary T.
While many different sets of parameters have been
analyzed, data for the five cases shown in Table I will be
given in detail In T.able II the equilibrium values of vari-
ous quantities corresponding to these states are given.
The states have approximately the same energy density
(and therefore H), kinetic energies, gradient energies (E),
and pressures. They have somewhat different values for S
and the potential energy.

Before looking in detail at some of the predictions con-
cerning the short-, intermediate-, and long-time behaviors,
data, ranging over the whole time range, will be presented.
Figures 6—8 show the evolution of lntt(r), So(~), and
P(v)/e(~) vs v. In all five cases there is some degree of
inflation. The "amount" of inflation will be further quan-
tified below. So(~) shows the expected qualitative
behavior of decaying slowly from its initially "large"

value. For r &0 one sees that there is ordering since So(~)
oscillates about the value —8 /U for long times. The plots
of P/e vs ~ are particularly instructive since they show
most clearly the three different time regimes. For early
times P/e drops very rapidly from its equilibrium value

to the highly nonequilibrium value —1. It stays in
this quasi —de Sitter phase for a time which depends
strongly on the initial temperature T. Finally, So(r) ap-
proaches the "bump" value So(rs)=Sb at the time rs
where So(r) hits its first minimum. For times T) 7s the
system will be entering its final oscillatory phase.

One can conclude that the qualitative picture discussed
in Sec. IV is obtained in the numerical analysis, and one
can move on to check the more detailed results. In Fig. 9
the short-time behavior of the energy density and kinetic
energy are presented. The separation of time scales dis-
cussed in Sec. IV is clearly seen since Go(r) changes many
orders of magnitude while So(r) remains near its initial
value. The first requirement of the intermediate-time re-

gime is that G «U. This is clearly satisfied in the cases
treated here for dimensionless times greater than 3 or 4.
The second requirement is that there be sufficient growth
of a(~) that the momentum distribution freezes, or that
the gradient energy contribution to e is negligible. As dis-
cussed above, the ratio E/S deflnes an inverse correlation
length squared [=g (~)] which characterizes the width
of the correlation function c(x,r). In equilibrium, as the
temperature is lowered from above T„g grows rather
rapidly. Plotting E/S versus time (see Fig. 10), one
indeed does see a rapid increase in g(~) for short times,

l75
O. I

l50 0.08—

l00
0.06

50

0
l00 l50 200 50 l00 200

FIG. 6. lna vs ~ for the five cases listed in Table I. FIG. 7. So vs ~ for the five cases listed in Table I.
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FIG. 10. K/S vs ~ for the five cases listed in Table I.

FIG. 8. Pje vs w for the five cases listed in Table I.

but for times on the order of 4, g(~) saturates. In all five
cases listed in Table I the freezing time is less than 5 and
the ratio K/S is subsequently fixed at values evident in
Fig. 10. Both requirements for entering the intermediate-
time regime are satisfied for ~~4. This is clearly seen in
Fig. 8 for P/e where this ratio falls to near —1 for i p 4.

The intermediate-time regime is characterized for r (0
by exponential decay of S and H and a constant ratio
G/S. In Fig. 11 G/S is plotted versus r and the constant
region is evident. Clearly the r range over which G/S is
constant is growing with increasing T as predicted by
(4.43). The value of the ratio G/S is predicted by the
intermediate-time theory to be equal to U/(&rT ). The
agreement with the numerical results for cases II—V are
precise. This serves as a good check on both the analytic
results as well as the numerical procedure. One can also
check that So(r} is decaying exponentially in this range.
For case II a semilogarithmic plot of So(r) vs r in Fig. 12
shows an excellent fit to an exponential over the time
range shown. Results of the linear least-square fit shown
in the Fig. 12 (Ref. 31}give

ab ——a(~b) . (52)

In Table 111,wb, Sb, and lnab are given for the five cases in
Table I. From the theory in Sec. IV the amount of infia-
tion corresponding to the intermediate phase is given, for
r (0, by (4.51). For the cases of interest here U= 1 and
So(U=1)=0.0662 (Ref. 32), so

So(r) =0.0652exp( 0 04—644.r) .

The predictions from (4.43) for ri ' (2U/3—m)'~ /T give
for U= 1 and T=10 that ~z

' ——0.04607. The agreement
is extremely good. A similar check for case V leads to
equally good results and the validity of this intermediate-
time phase is confirmed numerically.

The intermediate behavior for r&0 and U=O is dif-
ferent from the case discussed above. In Fig. 13 Go(r) is
plotted versus r for case I. Clearly there is a constant re-

gion with GO=2. 65)&10 . From (4.54) one has the ana-
lytic result Go=r, l(12irT ). For ri ——1 and T=10 this
gives 6 =2.62 g 10 and there is excellent agreement.

The analytic treatment of the intermediate-time regime
gave a prediction for the "amount" of inflation. These
predictions are checked more quantitatively here. The
amount of infiation can be defined as the value of the RW
factor at the time of the first bounce:

1na ( oo ) =0.208T (5.3)

For T=10, which corresponds to case II, one obtains the
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FIG. 9. Go vs eo vs ~ for the five cases listed in Table I. FIG. 11. 6/S vs v for the five cases listed in Table I.



0- TABLE III. "Bounce" values of So{~}and lna {~}defined by
the time vb ~here So(v }hits its first minimum.

Case 1n ab

I
II
III
IV

172.1

175.0
53.6

168.5
304.5

9.8 X 10-'
3.2X 10-"
0.008 5

0.002 14
0.000 95

48.2
22.79
4.04

68.7
163.6

I

20 40
I

SO l00 VI. COMMENTS AND CONCLUSIONS

FIG. 12. Logarithmic plot of So vs r for r~ ——1, U=1, T=10
{case II).

estimate lna~ ——20.8 which is in good agreement with the
numerical result taken from Table III: 1nab ——22.79. For
the case r ~O, lnab is plotted versus T in Fig. 14 and the
flt to a straight line is essentially perfect and gives

lnag ———5.190+0.1877T (5.4)

and the agreement between the coefficients of T in (5.3)
and (5.4) must be considered good.

For r, ~0 and U=0, the predicted amount of inflation
given by (4.57) i»n+(~)=4irT ~0 F« "i=
T=10, go=(}.07&97 and lna(00)=95.467. The compar-
ison with inch ——48.2 given in Table III is not very good.
This discrepancy is presumably because the temperature is
not yet sufficiently high for the various intermediate-time
approximations to become valid.

After the first bounce the system crossed over to the
long-time oscillatory behavior. The numerical analysis
confirms the structure of the long-term asymptotic
analysis of Sec. IV.ii

The model studied here seems to be rather rich. One
finds that it can accommodate three rather different time
regimes and provides smooth mechanisms into and out of
inflationary eras. The model also provides some insight
into some general questions associated with the problem.
One of the more interesting such questions involves the
role of equilibrium concepts during the time evolution of
the system. Is it valid to assume that one has local equili-
brium and how should one view phase transitions within
this context'? This leads one to question the meaning of
"temperature" during the time regions where the system is
dynamically evolving. While it is intuitively appealing to
associate a decreasing temperature with the rapidly de-
creasing energy density in this system (and an effective
temperature can certainly be defined in this manner), one
should not confuse this quantity with temperature in the
strict sense since in the intermediate-time regime the sys-
tem is clearly not described by a stationary probability
distribution. More specifically there is no temperature
which will give the appropriate values of both potential
and kinetic energies during the intermediate or inflation-
ary regime. The inflationary regime is intrinsically a
nonequilibrium regime.

Assumptions of local equilibrium can easily mislead
one. An important case concerns the role of phase transi-
tions in the evolution of the early Universe. There has
been much discussion built around the notion that as the
Universe cools the temperature will drop into the vicinity
of a phase transition and it will then be crucial to deter-
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FIG. 13. Go vs v for rI ——1, U=O, and T=10 {case I}.
FIG. 14. lna~ vs T . Dots correspond to the numerica1 re-

sults. The straight line is a linear fit to the four points.
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mine whether this transition is first or second order since
this is presumably associated with whether there will be a
latent heat produced or not. The problem with this type
of thinking has been discussed in Ref. 5. Unless the rate
of cooling due to expansion is very slow relative to the
internal rate of equilibrium of the matter the system will
be very insensitive to any critical effects ffects due to
the existence of a second-order phase transition. The
point is that critical effects (which involve the existence of
a very large correlation length} occur over a vary narrow
temperature range. Outside of this range the correlation
length is typically small. In order to see critical effects,
therefore, one must set in this temperature range for a
time sufficiently long to grow a long correlation length.
-However, because of critical slowing down, as the correla-
tion length gets long the characteristic times to equilibrate
the system get longer and it takes progressively more time
to grow a longer correlation length. In a dynamic prob-
lem like inflation where the system is moving inexorably
toward low temperatures there is no reason why the sys-
tem would want to hang around the critical temperature.
Therefore one expects the system to act more like a
condensed-natter system where one quenches the tem-
perature from some high temperature to some low tem-
perature with the overall result of a finite change in the
order parameter associated with a first-order phase
transition —even though the quench may be directly
"through" the critical point. In this case there is symme-
try breaking but it is not in the temporal sense spontane-
ous. The new order is developed locally in the form of
domains. The transition is first order in that the change
in the magnitude of the amplitude of the local order pa-
rameter is not small. A competition between domains
leads to a growth of the average domain size which even-

tually grows arbitrarily large as time evolves. Thus, while
any symmetries present in the initial I.agrangian are glo-
bally preserved, an observer located in a domain of steadi-
ly increasing size wi11 conclude that the symmetry has
been broken. This qualitative picture is confirmed by the
detailed calculations discussed above.

It is interesting to try and characterize the inflationary
phase found here. Under the right conditions it appears
to be essentially an ideal de Sitter phase where P = —e
and one has pure exponential growth of the RW scale fac-
tor. It must be kept in mind that the ideal nature of this

state is tied to the notion of a very large initial tempera-
ture and the associated separation of time scales for the
kinetic and potential energies when the system starts to
evolve. For high, but finite initial temperatures, one has
only an approximate de Sitter phase and the local order-
parameter fluctuations and the Hubble constant decay ex-
ponentially with a rate given above. The picture given
here is not of a ball rolling down a hill starting from point
A in Fig. 3 and heading to point B. Rather it is of a par-
ticle with a large amount of potential energy at point C
which gradually rolls to the left to point 3. For reasons
pointed out in Sec. IV, this rolling can be very slow if one
starts at very high initial temperatures relative to the criti-
cal temperature and the Planck temperature.

The model studied here is clearly an oversimplification
of the real problem. How can one improve this model and
the calculation carried out here'7 The most obvious step is
to look at higher-order corrections in powers of 1!E.
This will be rather difficult but could produce some in-
teresting new qualitative features which may be impor-
tant. Presuxnably at the next order one will generate a dis-
sipative mechanism which will damp out the long-time
oscillations found in leading order in 1/N. It may, how-
ever, be more important to consider the damping effects
and energy transfer associated with the coupling of the
"order parameter" to other fields. There appears to be
several ways of doing this stopping short of a full treat-
ment of the full SU(5) field theory. Finally, there is the
interesting question associated with the regularization of
the theory, the role of horizons and the connection to the
scale-invariant density perturbations studied by a number
of authors. This question should probably be sorted out
first.
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