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The x%% form factor for the Skyrme model is calculated using a semiclassical technique based

on collective variables. The form-factor mass is found to be 582 MeV, which is in substantial

disagreement with form factors obtained from one-boson-exchange-potential studies of XW
scattering.

The Skyrme model' was proposed 25 years ago as a
phenomenology of hadronic physics. The model is highly
unusual in that it contains no fundamental fermion de-
grees of freedom. Instead, the model relies on meson fields
in the form of a nonlinear a model with additional higher-
order derivative couplings. Baryons are interpreted as soli-
tons with the topological winding number acting as the
baryon number. Theoretical advances in the intervening
years have renewed interest in the Skyrme model. These
advances include 't Hooft's demonstration2 that in the
large-N limit, @CD is equivalent to a theory of interacting
mesons with a quartic coupling that scales as 1/N and
Witten's observation that the properties of baryons and
mesons scale with 1V as though baryons were solitons. '
More recently, Witten has shown that for more than two
flavors, a Wess-Zumino term must be added to the non-
linear tr model in order to reproduce the anomalies of
QCD, and that this term induces an anomalous baryon
current which is precisely the winding-number current
identified by Skyrme. 4

In the past several years there have been many studies
of phenomenological aspects of the Skyrme model. Static

l

properties of nucleons have been calculated and reason-
able agreement with experiment has been found (i.e., er-
rors of about 30%). In order to calculate the static proper-
ties of physical states, the hedgehog classical solutions
must be projected onto states of good angular momentum
and isospin. A semiclassical projection scheme based on
collective coordinates has been developed in Ref. 5. In-
spired by this success in describing the static properties of
nucleons, there have been a number of attempts to calcu-
late dynamic properties of baryons. These include rela-
tively inconclusive studies of the N1V interaction9 as well as
a reasonably successful description of the baryon reso-
nances to about 3 GeV. '0 In addition, the electromagnetic
form factors of nucleons have been calculated using a
semiclassical approach. "

In this note, the ttNN form factor will be studied using a
similar semiclassical approach. It is found that the form
factor is much softer than estimates of the form factor ob-
tained from one-boson-exchange-potential (OBEP) studies
of NN scattering.

The Lagrangian for the Skyrme model with massive
pion s 18

tr(a„U8"U)+ trf[(a U)Ut, (a„U)Ut] l+ ' ' tr(U —2),F 1 m, F
16 328' 8

where U is an SU(2) matrix, F, is the pion decay constant,
e is a dimensionless coupling constant, and rn, is the pion
mass. Following Ref. 7, F„will be taken to be 108 MeV
(substantially smaller than the experimental value of 186
MeV) and e 4.84. These values have been chosen to
reproduce correctly the masses for the nucleon and A.
The matrix U represents the pion and tr fields,
U 2(a+i s p)/F, . Stat.ic solutions to the Euler-
Lagrange equations associated with (1) can be found using
the hedgehog ansatz, Uo exp[if (r )r ~l, which correlates
isospin with spatial direction. The variational equation for
the profile function f is

[2sc(1/p +4s /p 4f' /p ) —2f'/p+ p—sl
1+Ss

where the derivatives are given in terms of the dimension-

t

less length variable p eF,r, p is the dimensionless pion
mass m JeF„and s and c are sin(f) and cos(f). The
boundary conditions which yield a winding number (i.e.,
baryon number) of unity are f(0) tr and f(~) 0.

Of course, degenerate solutions can be obtained from Uo
by translations and by rotations in either space or isospace,
U(r) AUD(r —R)At. The simplest method for introduc-
ing collective degrees of freedom into the problem is to let
A and R be time dependent. " Thus, the ansatz

(3)

is substituted into the Lagrangian and R and A are treated
as dynamical variab1es. Expressions for the momentum,
spin, and isospin in terms of the collective variables can
be obtained from the Noether currents: P MR,
s; - intr(r;A~A), —and IJ ktr(rJAAt), where the soli-
ton mass M and moment of inertia X, are known function-
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als of the profile functions f(r). The collective wave
functions with good quantum numbers for P, s2 I', s3,
and I3 are

~
I -s,m„mt, P) -(2z) 3t'exp(iP R)

~
I -s,m„mt),

where
~
I s, m„mt) are functions of 8 and are given ex-

plicitly in Ref. 5.
Although this semiclassical collective formalism was

used in Ref. 11 to calculate electromagnetic form factors
up to Q of several GeV2, it should be noted that the
method breaks down for momenta of order of the nucleon
mass. There are several ways to understand this. The sim-

plest is to note that the collective Hamiltonian obtained by
making a Legendre transformation of the collective La-
grangian is 0 M+P /2M+s /2X, which is clearly non-
relativistic. The nonrelativistic nature of the formalism
can be understood in terms of the ansatz for the collective
variables. The collective-coordinate method works only if
the ansatz describes solutions to the full Euler-Lagrange
equations. While Uo(r —R) is a solution for stationary R,
Uo(r —R(t )) is generally not. The form of the collective
Hamiltonian guarantees that the self-consistent solutions
for R(t ) are Ro+Vt, where V is time independent. If the
Lagrangian had been Galilean invariant, Uo(r —Ro —Vt )
would clearly have been a solution to the full equations of
motion. However, the Lagrangian is Lorentz invariant
and therefore, Uo(r —Ro —Vt) is only a solution to first
order in V. The restriction to nonrelativistic momenta
should not be surprising in view of the semiclassical nature
of the collective coordinate procedure. Recall that in this
semiclassical treatment 1/N plays the role of the coupling
constant and the nucleon mass scales like N. Thus, for
fixed momentum, the semiclassical or large-N limit im-
plies that the nucleon mass is much larger than the
momentum and the nonrelativistic regime is appropriate.

The ttNN coupling constant and form factor can be ob-
I

tained by study of the source for the pion field j, which is
defined by the equation of motion for the pion,
(&+m )p=j. The strategy for calculating xNN cou-
plings for the Skyrme model is to compare the pion field in
a nucleon state of an "old-fashioned" Lagrangian with
fundamental pion and nucleon degrees of freedom with the
pion field in a nucleon state in the Skyrme model. The
old-fashioned Lagrangian is

2 t)p4'8 0+ 2m 0 +tg tvtv(Y'rT5Ã)'0' .

The matrix element of the third component of the pion-
source current evaluated between two proton spin-up
states, one with momentum P and the other with momen-
tum P', can be easily obtained with this Lagrangian. It is
convenient to work in the Breit frame (P' —P), since in
this frame the energy transfer is zero, and thus, the invari-
ant four-momentum transfer is given simply by the three-
momentum transfer. Because the present treatment of the
Skyrme model is nonrelativistic, it is sufficient to consider
the nonrelativistic reduction of the matrix element of the
source. In the Breit frame, it is given by

(p f;P'~j '(r)
~ p f;I') -ig,jv~q3/2M(2x)'exp(iq r), (5)

where q P —P', and M is the mass of the nucleon.
In the Skyrme model the third component of the pion

field is given by

y'(r) - — tr[r, ~U.(r —R)~'] .

p (r), evaluated between the collective wave functions for
spin-up protons with momenta of P and P' in the Breit
frame, yields

F, fO

exp(iq r) d R exp( i q R) sin—[f(R )]R3 .
6(2tr)'

The matrix element for the pion source is obtained by left

multiplying this expression with the operator (&+m, ),

F, A

(pf;P'~ (&+m„)p (r) ~pf;P)
'

exp(iq r) d R(q +m )exp( —iq R)sin[f(R)]R3,
6(2~)'

where q is the magnitude of the three-momentum transfer. The pion source can be reexpressed as
A

(pf;P'~j (r) (p f;P) (2z) exp(iq r —iqot)& d Rexp( —iq R)J(R)R3

where

J (r )r3 ( —'7 +m ) sin(f )r3 [—cos(f )f"+sin(f )f' ——cos(f )f'+ —sin(f )+m sin(f )]r3 .2 2 2 2

r r

tir r2J(r)J, (qr),g~mx
q 4

~here j~ is a spherical Bessel function. From Lorentz in-

variance, g,~~ must only be a function of Q =q q —qo
which in the Breit frame is given by q .

The equation of motion for f, Eq. (2), can be used to re-
place f", which reduces J(r) to a functional of f and f'
only. The xN% coupling is obtained by comparing Eqs.
(5) and (7). With the aid of the Fourier-Bessel decompo-
sition one finds

The expression for g,~~ in Eq. (8) was derived for

Q & 0. However, by analytic continuation one can evalu-
ate g,N~ for Q & 0. It is convenient to express the pion-
nucleon coupling as a coupling constant at the pion pole,

Q
—m, times a form factor:

g.ww(Q') =g.ww(Q'- m.')f.wN (Q') . —

The value for g ~~(Q = —m, ) obtained from numerical
evaluation of Eq. (8) is 11.9. The form factor f,~~ is plot-
ted in Fig. l.

It should be noted that the value for g ~~ at the pion
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FIG. 1. The xNN form factor. The solid line is the form fac-
tor for the Skyrme model calculated using the collective coordi-
nate method. The dot-dashed line is the form factor used in Ref.
13 to fit NN scattering using an OBEP potential.

g,~N(Q —m„) 8zcMF J6, (10)

which is the expression used in Ref. 7 to find g~N~.
Another special value of momentum transfer is Q 0.

Since the Lagrangian in Eq. (1) satisfies the PCAC (par-
tial conservation of axial-vector current) condition
8„A;" p;, the Goldberger-Treiman' relation between g~
and g ~N(g 0) should be satisfied. Thus, if the semi-
classical methods for calculating gz and g ~~ are con-
sistent, one will find

g ~pg (Q 0) 2ggM/F

The value of g& obtained using the semiclassical projection
method of Ref. 5 is 0.65, which implies a value of
g ~~(Q 0) of 11.3. Evaluation of Eq. (8) gives precise-

pole, obtained from integration of the pion source in Eq.
(8), agrees numerically with the value of g„~N calculated
in Ref. 7 via evaluation of the coefficient of the pion tail.
It is easy to show that the form of g,&N(Q —m, ) from
the pion source can be reexpressed in terms of the ampli-
tude of the pion tail. Consider Eq. (6) in the limit
Q2 m, —Then. , it is clear that the only contributions
to the matrix element of the pion source will be from the
part of the Fourier integral

fO

d Rexp( —iq R)sin[f(R)]R
which diverges with a pole of the form 1/(q2+m„2). For
large R, sin[f (r )] asymptotes to

g(r) c exp( —m~) r/(m„+I r/),

where c is the amplitude of the pion tail. Writing
sin[f(r)] as 4in[f(r)l —g(r)j+g(r), one sees that the
Fourier integral of the term in brackets is convergent and
hence does not contribute. In contrast, the Fourier in-
tegral of the g(r) term, which can be done analytically,
diverges with a 1/(q +m, ) pole; the residue is propor-
tional to the pion tail amplitude c. Using this expression
for the matrix element of the pion source for Q

—m, 2,

one finds

(g') -(A' —m.')/(A'+ g'), (12)

where A is the form-factor mass. The best fit to NN
scattering phase shifts was found for A 1530 MeV. It is
significant to note that although this determination of the
form-factor mass is not unambiguous, a significantly
smaller mass (A&1000 MeV) is exlcuded. In Fig. 1 the
parametrized form factor from Eq. (12) with A 1530
MeV is plotted along with the calculated form factor for
the Skyrmion. One sees that they are strikingly different;
the form factor determined from OBEP studies of scatter-
ing is significantly harder (i.e., it has a significantly larger
form-factor mass). One can quantify this by defining a
form-factor mass for the Skyrme-model AN form factor
according to

A +m„ &f.Ivy

8Q Q2 ~ —m~2
2

The form-factor mass for the Skyrme model is 582 MeV
which is far too light.

Of course the determination of the form factor from
studies of OBEP potentials may not be completely reliable.
It should be noted, however, that the conclusion that the
xNN form factor is very hard is supported by a study of
P-wave xN scattering by %ei and Banerjee. ' Using a
theory based on the Low expansion they found the P33
(i.e., DNA) form factor is quite hard; a form-factor mass
of greater than 10m was required to fit the data. The
xNN form factor could not be determined with this ap-
proach. The analysis in this paper for the xNX form fac-
tor can be repeated for the xNd, form factor. One finds

ly this value, which indicates that the semiclassical method
is consistent.

As noted above, one can analytically continue the ex-
pression in Eq. (8) to Q &0. However, at Q~& —9m 2,

the expression breaks down, giving a divergent result for
the form factor. Mathematically, this can be seen from
the asymptotic form for the pion source which for large r
can be shown to go as m exp( —3m~)/r Fo. r q &0,
the magnitude of the spherical Bessel function j ~(qr ) goes
like exp(~ q ( r)/I q ~

r for large r Th. us, one sees that for
q & —9m, the integrand in Eq. (8) diverges exponen-
tially with r. Physically, the nonanalytic behavior of
f,N~(Q2) at Q~ —9m, 2 is the branch cut associated
with the threshold for the emission of three pions.

It is clear that this semielassieal method for calculating
the xNN form factor has certain reasonable formal prop-
erties. It correctly associates g,N~ (Q 0) with the
Goldberger-Treiman result and g,~~(Q —m, ) with
the amplitude of the pion tail. Moreover, a branch cut for
three-pion emission is automatically predicted. The ques-
tion remains, however, as to how well the Skyrme model
reproduces the xNN form factor found in nature. Unfor-
tunately, this form factor is not directly measurable and
can only be extracted from the experimental data with the
aid of theoretical constructs. Analysis of NN scattering
using OBEP potentials is perhaps the most simple way of
getting at the xNN form factor. Holinde'3 studied such
scattering using a form factor parametrized by
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that f NN and f Iv ~ are the same if one neglects kinemati-
cal factors relating to the 1V-6 mass difference (which are
1/JV effects). Thus, the large z1Vh, form-factor mass
determined in Ref. 14 is seen to be consistent with the
OBEP results and inconsistent with the semiclassical re-
sults from the Skyrme model.
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