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%e present concise and easily programed expressions for the six-gluon hard-scattering subprocess
expected to dominate four-jet production at high energies. The improved spinor inner-product tech-
nique is employed.

I. INTRODUCTION

As high-energy accelerators attain ever larger center-
of-mass energies, hard-scattering processes that produce
multiple high-transverse-momentum jets become increas-
ingly important. At the Superconducting Super Collider
with ~s =40 TeV these multiple-jet processes become an
important source of background to new physics events.
Even at currently available center-of-mass energies they
provide an important new testing ground for perturbative
@CD. Calculations of 2~2 and 2-+3 subprocesses have
yielded short and convenient expressions for the cross sec-
tions. ' More recently 2~4 reactions are being calculat-
ed by several groups. The results for 6q and 4q2g pro-
cesses appear in Refs. 3 and 4 (hereafter GK). Results for
6g and 4g2q, which are the focus of this paper, have been
obtained in Refs. 5 and 6. Reference 5 employs a series of
supersymmetric Ward identities to reduce the 6g calcula-
tion to amplitudes involving the spin-0 and spin- —, super-
symmetric partners of the gluon. Reference 6 employs
the more direct approach expounded in GK and also
developed in Ref. 7 [a simplification of the CALKUL
(Ref. 2) techniques]. There the 4g2q amplitude is com-
puted directly and the 6g amplitude is obtained using su-
persyrnmetric %ard identities. In this paper we report the
results of a direct calculation of the 6g amplitude using
the techniques of Refs. 3 and 4. Our expressions are con-
cise and convenient for computer implementation. The
resulting subroutine is slightly more than 10 times faster
than the purely numerical program of Ref. 8.

II. PRELIMINARIES

We inention only a few of the crucial ingredients of the
calculational techniques of Refs. 3 and 4 as employed for
the direct 6g calculation. We define all momenta to be
outgoing:

kl+k2+k3+k4+kq+k6 ——0,
The results mill be expressed in terms of the massless spi-
nor inner products defined and discussed in Refs. 3 and 4:

&p —q I+&=&pq&=&p q+e —' &p+q e-' ', —
(2)

valid for po, qo ~0. The + in the inner-product symbols

denote the spinor helicities while p+, q+, and /pe are
light-cone variables given by

ip
p+ ——po+p„e '=(p„+ip, )/(p„'+p„')'" . (3)

Inner products involving negative-energy spinors can be
defined by analytic continuation according to (for
po qo&0)

&( —p)q & =(p( —q) & =t (pq)

&( —p)( —q) & = —&pq &,

&( —p)q &+= &p( —q) &+ =t &pq &+,

&( —p)( —q) &+ = —&pq &+ .

In this paper we adopt the notation

(4)

s,j —(k;kj), t;J =(k;ki)+,
d,j—kg kj sutu/2, —

where i and j run from 1 to 6.
The crucial ingredient in the GK technique as applied

to this problem is the form of the gluon polarization vec-
tor:

(6)

Clearly, by choosing each p; so as to maximize the num-
ber of zeros of the type &k;+ Ik;+&=&k;+ Ikj+&=0,
the expressions for the various Feynman diagrams wi11

take on their simplest form.

where k; is the momentum of the gluon with polarization
+ and p; is a reference momentum for gluon i to be
chosen for convenience. In the calculation of a given heli-
city amplitude the reference momentum of each gluon
may be chosen independently of that of the others. By
clever choices the calculation may be greatly simplified.
Computation of the relevant Feynman diagrams involves
Lorentz index contraction of the various e&'s and momen-
ta. Contractions between two e's may be simplified by us-

ing the Fierz techniques described in GK. Contractions
between an e and a momentum kt are simplified using

completeness,

(k;+
I
y„Ip;+)kI'=(k;+ Ikt+)(kt+ Ip;+) .
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III. HELICITY AMPLITUDES
FOR THE SIX-GLUON SUSPROCESS

In principle there are 64 independent helicity ampli-
tudes for the 6g calculation. Amplitudes with all or five
helicities equal vanish. This is easily verified if we
presume the first five gluons to have the same helicity in
both of the above cases, and take the momentum of the
sixth gluon as reference momentum for all five. Of the
remaining 50 helicity amplitudes we only need to calcu-
late 25. The others may be obtained by parity. These 25
may be divided into two types, labeled by N, the number
of negative-helicity gluons: 15 that have %=2 and 10
that have %=3.

In fact, it is sufficient to calculate analytically only one
helicity amplitude for each of the above types. We analyt-
ically compute the helicity amplitudes specified by the
helicity assignments + + —+ + — for N= 2 and
+++———for &=3, respectively. The momenta are
assigned in the order k, —k6. The remaining amplitudes
of each type may be obtained by permutation of the mo-
menta keeping the helicities fixed. Only those permuta-
tions that are independent, given Bose symmetry, need be
considered. %e denote these momentum permutations by
Iz, n = 1—15, for %=2, and by I&, n = 1—10, for %=3,
respectively. The permutations are given in Table I,
where the momentum labels appear in the rows and each
row is labeled by the permutation number n Thus .IN is a
six-component vector for each N and n. The amplitude
square for the cases %=2 and %=3 can be written there-
fore as

+ max
N

M~' ——g M~(Ig ),
n=1

where n2'" ——15 and n3'" ——10. It turns out that the
remaining 25 helicity amplitudes, related by parity to
those we explicitly compute, may be simply included by
doubling the above results. Thus the total matrix element
squared for the six-gluon subprocess, summed over helici-

C1nss I L lass t t

FIG. 1. The diagrams of topology class I and class II.

ties, is given by

M6g
——2(M2" +M'i" ) .

We focus now on the computation of the standard
momentum configuration cases for %=2 and %=3, I&'
and Ii', respectively, see the top entries in Table I. For
%=2 the simplest expression is obtained by referring e~
to k6, and e6 to k&. For %=3 we refer ei i to k6 and
e4 6 to kq. There are 220 Feynman diagrams for each
helicity case. Of these 90 are of the ladder topology,
called I, and 15 are of the Mercedes type, called II, see
Fig. 1. The remaining 115 diagrams contain four-gluon
couplings. All these diagrams may be trivially incorporat-
ed by summing over all "contracted" versions of diagram
types I and II. For diagrams I we may contract either one
internal propagator or two noncontiguous internal propa-
gators; for II we may contract only one internal propaga-
tor. These contractions are performed on the
momentum-space structure of a given diagram keeping
the color structure unchanged. The contraction operation
is defined in Fig. 2. Most of these contractions give zero,
and the nonzero results are extremely simple. Only helici-
ty case %=3 yields nonzero contractions. The contrac-
tion technique automatically includes appropriate color
factors.

We shall now discuss the evaluation of the
momentum-space structure of the various diagrams.
Color structure will be incorporated later. %ithin each

TABLE I. Independent momentum permutations: I~ and I3 for ++—++—and +++———
helicity cases, respectively. Column labels indicate helicity assignments for given momentum.
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1

1

1

1

1

1

1

I2 —— 1

1

1

2
2
2
2
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+
2
2
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2
2
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3
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+
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5

5

5
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6
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6
6
6

6
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6
6
5
5

5
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3
6
5

3
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+
1

1

1

1

I3—— 1

1

1

1

1

1

2

3
2

3
2
3
2

3
6
6
6

5
4

6

2
2
3
2
2
3
2
3
2

5

3
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4
3
4
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5

3

6
5

5

5
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6
6
6
6
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diagram type class I and II, there are a limited number of
topologies that actually need to be computed. The num-
ber depends on the helirity case ¹ For %=2 only gluons
3 and 6 have negative hehcity and, in addition, are used as
polarization reference momenta. Thus the topologies are
specified by the distinct locations of gluons 3 and 6. For
%=2 class I has seven distinct topologies and class II has
only two. These are labeled by a topology number

m2 ——l —9. Each topology must be evaluated for the vari-
ous independent permutations of the remaining gluons
l —4. Thus, for example, topology mq ——l corresponds to
jq ——3 and j6 ——6 for diagram type I in Fig. l, and is
evaluated for 12 independent orderings of l —4 for the in-
dices J i —J4. Topology Pl 2 =8 corresponds to Jg

=3 and

j6——6 for diagram type II; only three independent permu-
tations of gluons l—4 are possible. By including all in-
dependent permutations of l —4 among ji—j4 for each of
the nine topologies we generate the complete set of 105
Feynman diagrams for this helicity case. The full list of
ji—j6 assignments and topology types, rn2, appears in
Table II, according to diagram number I = 1—105.

~g 9 -g. gik jl il jk

i,j,k, l = Lorentz indices
p=4-momentum

FIG. 2. The momentum-space contraction rule used to in-

clude four-gluon couplings.

TABLE II. Momentum labels j&—j~ and topology types m3 and m2 as a function of the diagram
number /.

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

125436
124536
152436
154236
142536
145236
251436
254136
241536
24S136
541236
542136
254361
542361
245361
541362
145362
154362
142365
124365
241365
125364
251364
152364
125634

152634
254631
542631
245631
541632
145632
154632
142635
124635

01
01
02
03
02
03
02
03
02
03
04
04
07
08
07
08
07
07
06
05
06
05
06
06
09

10
11
12

12
11
11
10
09

36
37
38
39
40
41

43

45
46
47
48

50
51
52
53
54
5S
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

241635
126354
156324
146325
S46312
246315
256314
162354
261354
165324
S61324
164325
46132S
265314
562314
264315
462315
564312
465312
126534
126435
1S6234
1S6432
146235
146532

256431
24613S
246531
546132
546231
612543
612453
615243
615423

m3

10
27
29
29
28
29
29
16
16
15
14
15
14
15
14
15
14
13
13
17
17
18
19
18
19
18
19
18
19

20
24
24
26
25

3

4

4
5
5
5

5
5
5

5.
5
5
5
5

6
6
6
6
6
6
6

6
6
6
6

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105

Ji —Je

614253
614523
621543
621453
625143
625413
624153
624513
651243
651423
652143
652413
654123
654213
641253
641523
642153
642513
645123
645213
125436
152436
142536
615423
625413
612453
652413
612543
642513
621453
651423
621543
641523
651243
641253

m3

26
2S
24
24
26
2S
26
25
23
22
23
22
21
21
23
22
23
22
21
21
30
31
31
32
32
35
34
35
34
35

35
34
33
33



J. F. GUNION AND J. KALINO%'SKI 34

A similar procedure applies to helicity case %=3. It is
most economical to use the symmetric referencing stated
earlier. Topologies are then specified both by the (in-

dependent) locations of the referenced gluons 3 and 6 and
by the (independent) arrangements of the remaining two
positive and two negative helicities, relative thereto,
among the locations j&—j6 in Fig. 1. In all eve obtain 29
topologies from diagram type I and six topologies from
type II, labeled by m3 ——1—35. Again each is evaluated
for a number of different orderings of the remaining fs
The complete list of j,—j6 assignments and topology
types, m3, appears as a function of diagram number
1=1—105 in Table II.

In fact the expressions for the various different topolo-

gy types for a given N are not all independent, and some
are even zero. For %=2 there are only six independent
nonzero type-I topologies, and only one for type II. For
%=3 there are 18 independent nonzero type-I topologies,
and four of type II.

We now state the results (up to a certain overall factor,
to be specified later) for the amplitudes associated with
each of the /=1 —105 diagrams for cases %=2 and

TABLE III. Auxiliary function calls for
A2(/, m2, i&, i2, i3, i4, i5, i6) as a function of the topology type, m2.
%e use shorthand notation iI =1,i2 =—2, . . . , i6 =6.

g, (/, m'„. . . )

0
C2(u, 1,2, 3,4, 5,6}
Ap(/ —15} for 1&27, otherwise A2(l —3)
C4(u, 1,2, 3,4, 5, 6)
C5(u, 1,2, 3,4, 5,6)
C6(v, 1,2, 3,4, 5,6}
C7(u, 1,2, 3,4, 5,6)
0
C9(u, 1,2, 3,4, 5,6)

%=3. Their numerators are denoted Az(l, mz, i &,iz,
i3,i4,i5,iq) and their denominators Dz(l, ii,i2,i3 l4 l5 l6)
where I is the diagram number, mz is the associated to-
pology type read from Table II, and i, q specify a certain
momentum permutation, to be given in detail shortly.
The Az are given in Table III for %=2 and in Table IV

TABLE IV. Auxiliary function calls for A3(l, m3, i&, i2, i3, i4, i5, i6) as a function of the topology type,
m3. %'e use shorthand notation i& =—1,i2 —=2, ~ .~, i6 —=6.

l
m3

1

2
3
4
5

6

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

26
27
28
29
30
31
32
33

35

243{/, m 3, ~ ~ ~ )

0
0
0
0
85{v,1,2, 3,4, 5, 6)
86(v, 1,2, 3,4, 5,6)+86(U, 1,2, 3,4, 5,6)
—Bg(U, 2, 1,3,5,4, 6)—86(U, 2, 1,3,4, 5, 6)

8,(v 213 546)
A3(22) for 1=25, A3(20) for /=35
A 3{23) for 1=26, 33(24) for 1=27, A 3(19) for 1=34, A 3(2 1) for 1=36
W, (/ —15)
A 3(l —15)
813(u, 1,2, 3,4, 5,6)
8 )4(u, 1,2, 3,4, 5,6)+814{u, 1,2, 3,4, 5,6)
815(u, 1,2, 3,4, 5,6)+8~4(u, 1,2, 3„4,5,6)
8)6(u, 1,2, 3,4, 5, 6)
8I6(u, 6, 5,4, 3,2;1)
B)5(v,6, 5,4, 3,2, 1)+8)8(u, 1,2, 3,4, 5,6}
8)4(u, 6, 5,4, 3,2, 1)+8ls (u, 1,2, 3,4, 5,6)
B)3(u,6, 5,4, 3,2, 1)
821{u, 1,2, 3,4, 5,6}
822(U, 1,2, 3,4, 5,6)+822(u, 1,2, 3,4, 5,6)+822(u, 1,2, 3,4, 5,6}
Bq5(u, 6, 5,4, 3,2, 1)+82'(u, 1,2, 3,4, 5,6)—822(u, 1,2, 3,4, 5,6)
824(u, 1,2, 3,4, S,6)
8$$(u, 1,2, 3,4, 5,6)+8/2{v, 1,2, 3,4, 5,6)—822(U, 1,2, 3,4, 5,6)
826(u 1,2 3,4„5 6}+822(U,1,2, 3 4 5,6)+B22{u,1,2 3,4, 5, 6)
—8 I3{U, S,6,3,4, 2, 1)
A3(37)
A3{/ —3) for /~40, otherwise 8&9(U, 1,2, 3,4, 5,6)+8~9(U, 1,2, 3,4, 5,6}
0
0
832(u, 1,2, 3,4, 5,6)
833{u, 1,2, 3,4, 5,6}
834(u, 1,2, 3,4, 5,6 }

835(U, 1,2, 3,4, 5,6}
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TABLE V. (a) Subsidiary quantities 8, f, and g for helicity case %=2 (.b) Subsidiary quantities 8, f,
and g for helicity case %=3. Note that f and g are not required for %=2. Note also that here short-
hand notation is not employed. These subsidiary quantities are evaluated directly in terms of the $ and

t quantities defined in Eq. (5).

e 12 = —$26t12

e21 =$16t12
e 31 $13t16

e41 $16t14

e51 $16t15

e23 = —$36t23

e32 =$23t26
e42 =$26t24
es2 =$26t2s
e62 =$2s t23

e14= —$46t14

e24 = —$46t24

e34 ———$34t46

es3 ——$36t3s

e64 ———$

e]s = —
$56t ]s

e25 $56t25

e3s = —$3sts6

e4s = —$56t45

es4 =$46t4s
e6s = —$s6t3s

e12 = —$26t 12

e41 $14t13

e51 $15t13

e61 =$16t13

e23 = —$36t23

e32 =$26t23

e42 =$24t23
es2 =$2st23
e62 ——$26t

f14 = —»462 13 fz4 = 2$46223—

(b)

e14= —$

e24= —$46t24

e34 = $46t34

e4s =$4st3s
e54 = —$45t34

e64 = —$

fls = —»56&13 fzs = —2$56223

e1s = —$s6t1s

e2s = —$s6t2s

e35 ———$56t35

es6 =$56t36
e65 ———$56

g =f1sf24/2

TABLE VI. (a) Auxiliary functions C (v,i1,i2,i3,i4,is,i6) for helicity case %=2,++—++—.%e use shorthand notation
i1=1, . . . , in the C expressions. (b) Auxiliary functions 8 (v„i1,i2, i3, i4, is, i6) for helicity case X =3,+++———.%'e use short-
hand notation i1—= 1, . . . , in the 8, 8', and 8" expressions. If C or 8 is called as a function of v then, in the above expressions,
each $ should be replaced by the corresponding t and vice versa. The 8's, f's, and g are not altered.

(a)

C2 =4d45e64 t 12$6sp312
2

C5 —~42 t65$42e 31e41p213

C7 =~16e56e 32e26p456

pip =«g+elk
(b)

C4 = —4d43 21 56 43 p312
2 2

C6 4d53e65t12$53p312p412

C9 4~ 16t34$21e56e 26p234

&5 =&e46p412 p312t 12$6s

~6 846[ 2$65( 213846+234812)( 821846+p256842) g846(dsl +d32)]
&13=—2P456 P312ts6$12

3

Ii14 2(3I $12[ 841 865+846(843861 841P653)]+$62841813846j +2$12r34856pelzp416P456 2g841(P456P+q4133 465+q465&)

815=2841 [p436(254865$32813 —r14$62856p312) —g (p456P+q4133 465 +q465v)]
~16 ~P413 P312t14$65& ~21 2P645 P456P312t56$21

3 2

~22 2256$21[(P635832+863834)(P624845+8 14843)1++
&24=2P623 e32e65t26$54

~25 ~e62t56p256(p634p312$41+ e63e65$43 )++

~26 2e62 65(e65t42+ e23t46 )( e12$53+ 54$31 )++
~29 2P412( P41286P rs4814845P $2384286382)

i)29 ~29 g [ P412(q465+1234+q421X3456)+P412'(y~»+2q465q421~]
~32 ~t56$43P652 e62P256 ~33 2t43$21P634 e65P534

2 2

~34 rsez(843f32812+f34r124) rzls(865f54834+f34r564)
ii34 ~34 f5286S812( 843P356+834845 +f34() g [(1S6812 121865 )q 143 143865812]
&35 =86zees[fzs(843P3se —83484s)+f34(8zses4 —8z48s3) fz4834Pslz+fss843Pz34 —2gkl+g [(deselz dzlee—s)q134 —14381zees]—
&6 = —g(e46 d12+e46q421~123), & 14 (g ~2)P456q46sd 12 ~ 18 —(g ~2)Ps»qs2]ds62

t tt t
~22 g (e62q632ds6+ e65q645d12 ) ~22 ge65e62~123 ~29 gq421q456123

r 15845 r 14856 P 63821 +$26 42 5 254831 +234 56

=143+121+ds6, / =3634+3534, r= —g865862(d21 —145 —d46 )

P =(d63 —d61 —d62 —ds3+ds1+d 52) ~'I ~=(d43 —d41 —d42 —~63+d61+d62 —ds3+ds1+ds2) ~4
pjk=e~)+e.k qgI =«g —ek)~2. &~jk=e)~ep —ej-ek

~iJa =dij'+Ik+~gkt Peak =(~ij —di'k ) t » &ij'kI =da +diI +dJk+dgl
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1

3

5

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

TABLE VII. Nonzero entries for co1or matrix E. (k, I).

I values
for + 1 entries

[1,12,13,25,37,43,55,67,91,98]
[2,14,15,3S,56,68,96]
[3,7,8,10,26,27,38,45,57,69,92)
[4,14,15,33,58,70,94]
[5,8,9,10,34,36,39,47,59,71,93]
[6,11,12,13,31,32,60,72]
[11,18,44,73,102]
[16,17,37„74,91,100]
[3,4,6,7,26,27,42,49,61,75]
[8,16,17,28,62,76,93,95]
[4,S,6,9,34,36,41,51,63,77)
[10,11,12,18,29,30,64,78,92]
[9,20,46,79,104]
[19,21,38,80,92, 101]
[1,2,S,25,50,81,93]
[19,21,42,82,97]
[2,5,6, 11,31,32,40,53,65,83]
[9,10,12,20,29,30,66,84,91]
[7,22,48,85, 105]
[23,24,39,86,93,103]
[1,2,3,35,52,87,92]
[23,24,41,88,99]
[1,3,4,33,54,89,91]
[7,8,22,28,40,90]

I values
for —1 entries

[7,8, 14,26]
[9,10,12,36,37,43,91]
[13,15,98]
[10,11,12,31,38,45,92]
[13,15,96]
[8,14,39,47,93,94]
[1,3,4, 16,25,27,37,55,91]
[2,5,6, 11,34,3S,44,56]
[17,18,93,102]
[6,11,12,29,42,49]
[17,18,92, 100]
[4,16,41,51,95]
[1,2,3,21,25,27,38,S7,92]
[4,5,6,9,32,33,46,58]
[7,19,20,26,42,61,104]
[5,8,9, 10,28,30,50,62,93]
[19,20,91,101]
[2,21,40,53,97]
[1,2,5,23,34,35,39,59,93]
[3,4,6,7,32,33,48,60]
[9,22,24,36,41,63,105]
[3,7,8, 10,28,30,52,64,92]
[11,22,24,31,40,65, 103]
[1,12,23,29,54,66,91,99]

a11 other 8(k, l)=0

for %=3. These tables assume that the diagrams are cal-
culated in the order 1 = 1—105 for fixed ii 6, some later
diagrams can then be specified trivially in terms of ones
already evaluated in the sequence. Note that in these
tables the shorthand notation i i =—1, . . . ,i6—:6 has been
employed. In Tables III and IV auxiliary functions, Ck
for X=2 and Bk, Bk, and BJ,

' for %=3, appear. They
are evaluated as functions of a collective variable set u or
u and integers il —i6. The variable sets u and u are de-
fined by

u =(s,t,d, e,f g), u = (t,s,d, e f g),

where s, t, and d are the subscripted spinor overlaps and
dot products defined in Eq. (5) and e, f (both subscripted),
and g derive from e;i =e; p~, fJ

——e; e~. , and

g =ei.e4e2 eq/2, respectively. These latter quantities de-

pend on the helicity case (%=2 or %=3) as given in (a)
and (b) of Table V. It should be noted that, in going from
u to u, the quantities d, e, f, and g are not changed, even

though they are computed in terms of s and t The quan-.
tities e, f, and g may thus be evaluated for the two helici-
ty cases at the same time as s, t, and d. All are obtained
immediately in terms of the six input four-momenta vec-
tors. (The two heheity eases must, of course, be kept
separate even though we have, for simphcity, used a com-
mon notation. ) The auxiliary functions, Ck or Bk, Bk,
and Bk', appear in (a) and (b) of Table VI, respectively. In
these tables the shorthand notation i &, . . . ,i6 —=1, . . . , 6

is used.
Before giving our final expressions for the squared am-

plitudes, Mz, it is necessary to discuss the color structure
of the various contributing diagrams. In all there are 24
independent color structures, which we shall label by the
index k =1—24. The choice of structures is dictated by
convenience. We have taken the color structures of dia-
grams I =67—90 as independent. The color factors asso-
ciated with any other diagram may be decomposed in
terms of these. We define a matrix R(k, !) which gives
the decomposition of the color factor for diagrams 1 into
our independent structures labeled by k. The matrix R
has only 0, 1, and —1 entries. In Table VII we specify the
nonzero entries by giving the contributing I values for
k =1—24. In squaring the amplitude for a given X we
must compute the squares and overlaps of our 24 indepen-
dent color structures. These are given by the matrix
C(k, k') in Table VIII.

IV. FINAL FORMULAS

We are now in a position to give our final expressions.

To optimize the numerical program based on our expres-

sions we imagine that a given set of six four-momenta

have been generated, labeled by k& 6. We then precom-

pute the s's, t's, and d's of Eq. (5). Using these we also

precompute the two sets of e's, f's, and g specified in (a)
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TABLE VIII. Color squaring matrix C(k, k'}. For the standard SU(n)-color group (defining N =n —1) we have a =n X/8,
b =3n2N/2, c =2a, d =a+&, e=4a, f=8a.

f e
e f
c 0
c e
0 c
e c

c a
a 0
a c
0 a
c a
a 0
0 0
0 b
d b
b b

Q c
0 a
0 0
b 0
b d

. b b

e c c 0 e c c a
c 0 e c c e a 0
f e 0 c c a 0 0
e f c e a 0 0 b

0 c f e a c d b

c e e f 0 a b b

c a a 0 f e e c
a 0 c a e f c 0
0 0 d b e c f e
0 b i) b c 0 e f
d b 0 0 c e 0 c
b b 0 b 0 c c e
e c 0 a 0 0 c a
c e a c 0 b a 0
c a b d c a e c
a 0 b b a 0 c e
a c 0 0 b b 0 a
0 a b 0 d b a c
0 a e c 0 0 b d
a c c e b 0 b b

b d c a a c 0 a
b b a 0 0 a a c
0 0 a c b b b 0
b 0 0 a b d 0 0

a 0
c a
d b

b b

0 0
0 b

c 0
e c
0 c

f e
e f
b d
b b

0 a
a c
b 0
0 0

a 0
e c
c e

0 a
a c

c a 0
a 0 0
e c c
c e a
0 a b
a c d
0 0 c
0 b a
c a e
a 0 c
b b 0
d b a
f e e
e f c
e c f
c 0 e
c e 0
0 c c
b 0 b

0 0 b

b b b
b d 0
a c 0
0 a Q

0
b

0
b

b

0

e
a

c
0

c

b

0
0
a

d b

b b

a 0

0 b
0 0
b d
b b
0 a

b 0
0 0
c 0
e c
0 c

e

f e
e f
a 0
c a
0 a
a c
e c
c e

a 0
c a
0 a
a c

c e
0 b
0 0
b b
d b
c a
a 0
b 0
0 0
b b
b d
a c
0 a
f e
e f
e c
c 0
c e
0 c

0 b b
0 0 d
b b 0
d b 0
c a a
a 0 c
a 0 b
c a b

0 a b

a c 0
e c 0
c e a
b b a
b d c
b 0 0
0 0 a
0 a e
a c c
e c c
c 0 e

f e 0
e f c
0 c f
c e e

and (b) of Table V. These are not recomputed in the fol-
lowing sum over permutations. In Eq. (7}, for a given I)/

and given III [for which we use the generic notation I,
with components I (1}—I(6)], we compute

24 24

MIv(I) = g g C(k, k')TN(k, I)Tlv(k', I)iKII(I), (10)
k =1k'=1

where KII(I}is a normalization factor given by

10 2
I dl(l)I(6)dl(2)I(6)dl(3)I(6) dl(4)I(6)di(S)l(6) I

KII (I)=
10 2

I dl( )I()6)di(2)l(6)dl(3)I(6) di(4)I(3)di(5)I(3) l

The factor K(v in Eq. (10) derives from trivial overall factors that are common to all diagrams of a given /)/ K3I in-.
cludes the normalization factors for the polarization vectors in Eq. (6). The quantities TII(k, I) are the independent color
amplitudes and receive contributions from the / = 1—105 diagrams according to the color decomposition matrix R (k, /).
We find

A„(/, mlI, I(j ', ),I(j', ),I(j', ),I(j4),Ij(', ),I(J6))
D~(/, I(j 1),I(j 2),I(j 3),I(j 4),I(j 5 ),I(j 6)}

(12)

(13)

Recall that the numerator functions A)v appear in Tables III and IV, and that the I of Eq. (12) is one of the integer-
valued vectors of Table I, while the m~ and j; are the topology types and integer permutations, respectively, of Table II.
The functions DII(/, i i,i2,i 3,i 4,i 5,i 6) are easily specified

d12d56(d12+ d13 +d23 )
D)v(/, 1,2, 3,4, 5,6)= ~

d12d34d56 1 91—105

where we simplify notation as in Tables III and IV, denot-
1Ilg l 1

—16 bg 1—6.

V. EXPLICIT EXAMPLE

the components I(1)=1, I(2) =3, I(3)=6, I(4) =2,
I(5)=4, I(6}=5 are used in Eqs. (11) and (12}. In particu-
lar, referring to Table II we evaluate A3(/=14, m3' ——8,
I(5),I(4),I(2),I(3),I(6),I(1)}and similarly for D3. Us-
ing Table IV and then (b) of Table VI we find

As an example let us consider I)/=3 and I =I3 (from
Table I) in Eq. (10},together with /=14 in Eq. (12). Then

A3(14,8,4, 2, 3,6, 5, 1)= —8&(u, 2,4, 3,5,6, 1)
2

2e»@524 P324S24t &6 (14)
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with p524 ——e52+e54, etc., as precomputed. Finally from
Eq. (13) we have

D 3 ( 14,4,2, 3,6, 5, 1 ) =d 4215 i (d42 +d 43 +d 23 ) ~

VI. CONCLUSIONS

%'e have given an explicit and easily programed expres-
sion for the six-gluon scattering amplitude. Of the two
independent helicity amplitudes that must be directly
computed, %=2 and %=3, the %=2 amplitude (with
two negative and four positive gluon helicities) is extreme-
ly simple and can undoubtedly be further reduced by com-
bining all terms that contribute to a definite color struc-
ture. This was indeed the case for the simpler helicity
amplitude of the ggqq/l calculation of Ref. 4. We have
not pursued this possibility. In contrast, the %=3 ampli-
tude appears to have a multivariable pole structure that is
not obviously amenable to further reduction.

As a matter of curiosity, we have compared the running
times of the three different six-gluon programs on the
same computer; we will refer to them by initials K for
Ref. 6, PT for Ref. 5, and KG for the present work. All

three programs use the parity-symmetry short cut, cf. Eq.
(8), and set up the color, permutation mappings, etc. , as
part of a program initiahzation process. On the sLAcvM
system the running times for computation of a single
momentum configuration using the core analytic program
were K=0.46 sec, PT=0.29 sec, and KG=0.18 sec.
Since none of the groups has made a serious effort to
maximize efficiency, it is clear that all the techniques
should be regarded as comparable. Anyone of the three
programs runs fast enough that phenomenological Monte
Carlo calculations become possible.
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