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The effects of core motion in the nucleon are calculated in a simple model in which the
translation-invariant Hamiltonian describes a pion field interacting with a nucleon core. The ground
state of the system is shown to be a self-consistent state in which the pion field binds the core,
which, in turn, acts as an effective nonstatic source of the pion field. The form factor of the non-

static source is softer than the intrinsic form factor of the corresponding Hamiltonian without core
motion. The effects of core motion on the nucleon magnetic moments and charge radii are present-

ed for the case that the core properties are computed in the bag model. It is found that for a given

set of observed properties, the bag with core motion is smaller than the corresponding bag without

core motion.

I. INTRODUCTION

It is now widely believed that the nucleon has a core or
confinement region inhabited by quarks and gluons,
whose behavior is governed by quantum chromodynamics,
and that outside the core the interaction between nucleons

I

can be approximately described in terms of meson ex-
change. One consequence of this picture has been a
renewed interest in various models of nucleon-meson sys-
tems. The Hamiltonian for a nonrelativistic nucleon core
with field operator P(p) interacting linearly with a pion
field whose annihilation operator ai (k) is

ai, (k)+ai. ( —k) p+q
[16m to(k)]'~

5(p —q —k)1( (p)~io"J k, 1((q)dpdqdk,
2

where the summation convention is used for the isospin
index A, , and M is the mass of the nucltxin core; rn will be
used for the pion mass. The first term in H is the kinetic
energy of the nucleon core, the second is the usual pion
field energy, and the third is the Yukawa interaction of
the pion field with the nucleon core. The aim in studying
Hamiltonians like (1) is to learn something about the pion
current form factor J (k, K) that describes the (effective)
interaction of the nucleon core with the pion field. It is
assumed that J is such that all the integrals that mould
occur in the corresponding perturbation theory are finite.

In chiral bag (CB) models' that use confinement and
chiral symmetry to derive various forms of the pion
current form factor J this form factor depends on the
radius of the bag. In treating the interaction of the bag or
core with the pion field in these models, the static approx-
imation was used for the core; that is, the core was as-
sumed fixed in space; fixing the core affects both the core
kinetic energy term, which is neglected, and the Yukama
interaction term, which takes a simpler form, so that the
static-model (SM) Hamiltonian was taken to be

HsM ——f to(k)a i (k)ai (k)dk

ai (k)+a i ( —k)—f, „,~i.o JsM«)dk[16' co(k)]'~

and the assumption mas made that

JsM(k) =JCB(k,0),
where JcB is the form of the pion current form factor J~
in the particular chiral bag model under consideration.
Comparison of the nucleon static properties computed
from the Hamiltonian of Eq. (2) with observed data has
been used' to determine a best value of the bag radius
that appears as a parameter in JCB.

However, the core is not really static; it necessarily
moves mithin the meson field that it generates. The pur-
pose of this paper is to assess the effect of core motion on
the static properties of the nucleon as computed with the
Hamiltonian of (1), which is here assumed to be an ap-
propriate effective Hamiltonian for the nonstatic core in-
teracting with the pion field, effective in the sense that it
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k 3ji(kR)J.(k,K)=(4 y)'"—
kR

(5)

that has been used in computations that do not take core
motion into account; here R is the radius of the bag or
core and y is the (unrenormahzed) pion-core coupling that
is usually written f /4r. It should be emphasized here
that the aim of the computations is to obtain a quantita-
tive estimate of the size of the effects of core motion,
rather than to make any special claim for the special sort
of core motion that is implied by the self-consistent state
of the bag with its pion field. The self-consistent core
motion defined above is a special form of core motion
that should at least give a reasonable estimate of the mag-
nitude and trend of the effects of core motion on static
nucleon properties without the necessity of introducing
additional parameters to specify the core motion. Other
meson fields will also affect the motion of the core; the

does not contain the fundamental quark and gluon degrees
of freedom explicitly. %hen the core motion is treated in
the simplest approximation, it is shown below that the
Hamiltonian of (1) reduces to a form that is similar to the
static-model Hamiltonian of (2), with an interaction form
factor that takes the core motion into account. In addi-
tion to the terms in (2) the reduction leads to a term that
describes the kinetic energy of the core motion. More-
over, the interaction form factor in this approximation
[see (6) and (7)] depends on the wave function of the core.
In particular, the relationship between the "intrinsic" pion
current form factor J (k, (p+q)/2) and the effective
pion current form factor JsM(k), which will be called the
"nonstatic form factor, " is no longer (3), but depends on
the wave function f(r) of the core. In the special case
that J (k, (p+q)/2) is independent of its second argu-
ment, it is not surprising that the nonstatic form factor is

JsM(k) =J (k)p(k)

where p(k) is the Fourier transform of the core probabili-
ty density

~ f(r) ~; this form is evidently consistent with
the form (3) for the case of a static core for which P(k) is
1. Since the comparison with static nucleon properties is
made in terms of JsM, it follows immediately that the
motion of the core must be considered before conclusions
can be drawn about J . Of course, if the motion of the
core is small, so that P k) is nearly equal to 1, then JsM is
nearly equal to J, and the core motion can safely be ig-
nored.

Various types of core motion could be considered. Par-
ticularly simple is the self-consistent motion of the core
within the pion field that it generates. One result of the
following analysis is the demonstration that such a self-
consistent motion of the core actually is a consequence of
the Hamiltonian (1); that is, there is a self-consistent
bound state of the system consisting of the nucleon core
with its pion field. Roughly speaking, the core motion in
this state is analogous to the motion of the proton in the
ground state of the hydrogen atom. In addition to show-
ing the existence of the self-consistent bound state, the
quantitative effects of this self-consistent motion on the
computed static properties of the nucleon are calculated
for the form of the intrinsic pion current form factor,

specific quantitative effects will vary with the dynamical
origin of the core motion in the particular model used, but
the self-consistent wave function gives a simple picture of
the trend of the effects of core motion.

Section II considers the self-consistent core motion, and
shows that such a motion gives a variational nucleon
ground state for the Hamiltonian. In Sec. III the general
outline of the computations of static nucleon properties is
presented. Section IV describes the results of the compu-
tations, and Sec. V contains some remarks on the compu-
tations. A summary of the paper is given in Sec. VI.

II. SELF-CONSISTENT CORE MOTION

In order to test for the existence of a self-consistent
state of the moving core in its pion field, a single-mode
approximation is used for the motion of the core; the core
is assumed to be in a Os state (zero nodes) with radial
wave function f (r), whose Fourier transform is f(k); in
the subspace in which the core is restricted to be in this Os

state, the Hamiltonian of (1) is effectively Ho,

Ho, ——Tp+ f co(k)a i (k)ai (k)d k

aq(k)+ai( —k) k;
~ia;f, u(k)dk, (6)

[16m'co(k)]'i'

where

2

TF
2M P P

u(k)= f 5(p —q —k)

mk J (k, (p+q)/2)
Xf"(p), f(q)dpdq .

k

ai (k) =Hi;P;(k),

k;u(k)

Gm [16m m (k)]'
1 ku (k) dk,

12m m 0 cu k

P;(k)=

where the special form of the p-wave mode that is used
here has been shown to be the appropriate one in Ref. 6.
The summation convention is now used also for the @-
wave index i. The p-wave modes are normalized, and A~;
is the annihilation operator for a meson in the isospin sub-
state A, and p-wave substate i. The internal Hamiltonian,
that is, the Hamiltonian for the system where both the
core and the pion field are restricted to the internal modes
only, is obtained by substituting (8) into Ho„sothat

The standard methods for solving the pion-nucleon
static-model Hamiltonian can be applied to the pion part
of Ho„that is, 00, TF (Refs. 2——5). The nonstatic form
factor, which is the current form factor in this effective
static-model Hamiltonian, is (k/m)u(k). It has been
shown ' that an excellent approximation to the ground-
state energy of the effective static-model Hamiltonian is
obtained by taking just one p-wave mode P;(k) (three sub-
states, i =x,y, z) and neglecting the part of ai(k) that is
orthogonal to this mode. Then the pion field annihilation
operator takes the form
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0;„,=Tp+ VHg,

E If I
= Tp + Ve(6} (10)

is the ground-state wave function for the core in what will
be called the internal-field approximation. In the present
work, the energies and wave functions have been comput-
ed as in Ref. 5. Some details from that work are repro-
duced in the Appendix.

In order to obtain some insight into the behavior of
EIfI, it is useful to consider the case that f(r) is a
Gaussian or exponential function that depends on a single
parameter S that represents the size of the wave function;
then the energy functional E[fI becomes simply a func-
tion E(S) of S. The parameter S will be referred to in the
following as the "core-motion parameter. "

As an example, the current form factor of (5) will be
used to illustrate the behavior of E{S). Figure 1 shows
the function E(S) for the case that the bag radius R is OA
fm and the unrenormalized coupling constant y is 0.4,
with f(r) chosen to be the exponential c exp( r IS). At-
small values of the core-motion parameter S the kinetic
energy term dominates, and the total energy varies as
S . For this particular value of R, the pion field in-
teraction with the core gives a negative contribution to the
total energy that excezxis the positive kinetic energy for in-

R=0.4 y=0.4

-5
0.0 0.2 0.6 0.8

FIG. 1. Energy E(S) of the self-consistent state as a function

of the core-motion parameter S; the values of the bag radius R

and the unreaormalized coupling constant y are fixed at the in-

dicated values.

1 ~km (k)&k
1TPl 0 ~ {k)

I.et the ground-state energy of H„bee(6); the even
function e(6) has long been known for 6 small and for 6
large, where it takes the values —9 and —3, respectively.
Reference 5 describes the results of a recent computation
of e(G) for weak and intermediate values of the coupling
strength 6, while the strong-coupling results are given in
Ref. 2. The quantities T~, V, 6, and e(6) are all func-
tionals of the Os momentum-space wave function f(q}; the
particular function f that minimizes the functional EIfI,
where

termediate values of S. When S becomes large, the core
density decreases so that the interaction energy becomes
less negative. The minimum in the curve of E(S) in Fig.
1 demonstrates the existence of a self-consistent state in
which the core executes a motion within the ~-meson field
that it generates. This state is the analog for the non-
Abelian current operator rior J of the ground state of the
Hamiltonian of the polaron, ' which has an Abelian
current operator. States of this type, in which a fermion
or fermions and the generated Bose field form a self-
consistent bound state, have been considered for the case
in which the current is Abelian and the Bose field is non-
linear in Refs. 10.

III. COMPUTATION OF STATIC PROPERTIES
OF THE NUCLEON

The Hamiltonian of (1) with the current form factor of
(5) contains the parameters M, m, y, and R. The meson
mass m was taken to be the charged pion mass. For the
purpose of obtaining a quantitative estimate of the size of
the effects of core motion on static nucleon properties, the
core mass M was taken to be the nucleon mass. At some
point, this should be corrected for the effective mass of
the pion field around the core; the size of this effective
mass is estimated in Sec. V. With M and m fixed, the
remaining parameters are 8 and y. The parameter y was
fixed by requiring that the renormalized Yukawa pion-
nucleon coupling constant y„„be0.08. Reference 5 gives
details of the computation of y„,„.Thus, the only free pa-
rarneter in the computations was the bag radius R.

In the computations, the Os core wave function f(r)
was expanded in associated Laguerre polynomials with
variable exponential falloff S; up to five such polynomials
were used in this expansion. It turned out that the over-
lap of the function f with the first term in the expansion
was better than 0.99 for the best value of S.

For given R and y, the core wave function was varied
to minimize the energy (10) in the internal-field approxi-
mation, and the corresponding renormalized coupling
constant y„„wascomputed. Then y was varied, for fixed
8, until y„„was0.08. Thus y can be considered to be a
function of R, y=y(R). The values of e(6) were taken
from Ref. 5, and should be reasonably accurate for weak
and intermediate coupling; in particular, the values of
e(6) should be valid as long as the coupling constant 6
does not become so large that the number of virtual pions
in the state vector is greater than 6. From R and y(R),
the approximate ground-state eigenvector was determined
in the internal-field approximation by using the methods
of Ref. 5. The pion field contributions to charge radii and
magnetic moments are computed from the pion charge
and magnetic moment densities, which, in turn, are expec-
tation values of the corresponding pion field current
operators. The pion charge density and magnetic-moment
density operators are

4

pi(r) =ee

p3(r) = —,r X j3(r), (11)

ji,(r) = ——e~p&(r)BQ„(r),
2
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where pi(r) and I((i(r) are the pion field operators in con-
figuration space that are related to the annihilation opera-
tors a)„(k)by

Ii)„(k)+Iz), ( —k)
&i( )=f s In[16m co(k)]'

ai(k)+ai, ( —k)
Pi(r) =f, [ ice(—k))e'"'dk,

[(16m nI(k)]'~

where ai (k) is given in (8). The charge density of the sys-

tem is given by

0.5

0 4

0.3

0. 2

p,h(r) =p (r)+ f p(r —r')pb, s(r')dr', (13)
0.0

0.55 OAO 0.45 0.50 0.55 0.60 0.65
R (fmj

where p is the pion charge density of Ref. 3 in the
single-mode approximation, p is the core probability den-

sity
~
f(r) ~, and ~s is the bag charge density used in

Ref. 2, which has isoscalar and isovector parts. Then it
follows directly that the mean-square charge radius opera-
tor is the sum of three contributions, one from the pion
charge density, one from the core motion, and one from
the internal charge density of the core, as given by the bag
model, namely,

where A, =0.57 is taken from the bag-model calculations
of Ref. 2, vs is the isospin of the bag that acts on the
state-vector components of Appendix A, and &r & is the

pion contribution in the single-mode approximation. The
quarks are taken to have mass zero and to be in the lowest

s state. The mean-square charge radius is the expectation
value of the operator of (14) in the nucleon ground state
described in the Appendix. The core motion makes no
direct contribution to the magnetic moment of the nu-

cleon, since it is an s wave; it makes an indirect contribu-
tion by affecting the nucleon state vector, and, hence, the
pion contribution to the magnetic moment. The bag con-
tribution to the magnetic moment was computed as for a
static bag, as in Ref. 2.

FIG. 2. The core-motion parameter S(R) as a function of
the bag radius 8; the renormalized coupling constant y& is 0.08.

plies a decrease in the pion field strength and therefore a
smaller pion electric current. For the range of bag radii
specified above, the effects for the proton are roughly
20% while for the neutron the range is 20—30%%uo. Note
that the isoscalar contribution, which comes from the
quarks, is small in this range since it is proportional to the
bag radius.

For the charge radii the situation is somewhat different,
in that the pion contribution dominates for small bag ra-
dii when the core-motion parameter S is small, but the

1.5

1.0

IV. RESULTS OF COMPUTATIONS
0.0 I I I I I I I

o.ss 0.40 0.45 o.so o.ss o.so o.ss
R (vr )

Figure 2 shows the computed core-motion parameter S
as a function of the bag radius R, and Fig. 3 shows the
dependence of the normalized coupling constant 6 and of
the expectation value n of the pion-number operator on
R. For small values of R, the pion-core coupling constant
is large, the pion field binds the core tightly, and the
core-motion parameter is small. As 8 increases, the
pion-core coupling decreases, and the core-motion param-
eter increases. At a value of 8 of about 0.65 fm, the self-
consistent state ceases to be bound in this approximation.

The results for the proton and neutron magnetic mo-
ments are presented in Fig. 4 and the charge radii squared
in Fig. 5. In the case of the magnetic moments, for bag
radii in the range 0.4~ R ~0.6 the largest contribution,
90—60%, respectively, comes from the pion degrees of
freedom. The inclusion of core motion decreases the mag-
nitudes of the proton and neutron moments. This is sim-
ply a consequence of the reduced core density which im-

0.35 OAO 0.45 0.50 0.55 0.60 0.65
a &tm)

(s) The normalized coupling constant G (R} [see Eq.
(8)] as a function of R with yII ——0.08. (h) The expectatjon va]ue
of the pion-number operator as a function of R with y~ ——0.Q8.
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with core motion ~' without core motion

NEUTRON MAGNETIC MOMENT (n(T) j

I I l I

0.35 OAO 0.45 0.50 0.55 0.60 0.65
R {fm)

FIG. 4. Computed values of the nucleon magnetic moments,
demonstrating the effect of core motion,

core-notion contribution dominates for large radii when
the core-motion parameter S is large. For the proton, the
motion of the core tends to spread out the charge distribu-
tion of the core and this spreading is most pronounced
when the core is less localized, i.e., when the coupling is
weak or the bag radius is large. For bag radii such that
0.4& E. &0.6 the proton charge radius squared increases
by 3—20% due to motion of the positively charged core.
(The components of the proton wave function that have
neutral core make no contribution to the charge radius. )

The situation for the neutron is somewhat different. It
should be kept in mind that in this model the dressed neu-
tron, roughly speaking, is composed of a positively
charged core surrounded by a negatively charged pion
cloud and a neutral core surrounded by a neutral pion
cloud. The neutral core contribution to the charge radius
is zero for equal-mass up and down quarks. However, the
motion of the charged core makes a positive contribution
which tends to cancel the negative contribution from the
pion degrees of freedom. When the core motion increases,
the positive contribution to the squared charge radius also
increases. Hence, the magnitude of the neutron charge ra-
dius decreases when core motion is included. For the
range of bag radii specified above the magnitude of the
neutron charge radius squared decreases by 7—70% due
to core motion.

! I I

PROTON CHARGE RADIUS SQUARED I&m )

with core motion— without core motion

NEUTRON CHARGE RADIUS SQUARED (&rr)

0.35 0.40 0.45 0.50 0.55 0.60 0.65
R ((m)

FIG. 5. Computed values of the nucleon charge radii,
demonstrating the effect of core motion.

Roughly speaking, the numerical results are not to be
trusted for small bag radii, R less than about 0.4 fm,
where the calculations are limited by the accuracy of the
intermediate-coupling approximation to the dressed nu-
cleon state vector. As was shown in Fig. 3(a), for small
values of R, the pion-core coupling constant G gets large,
and the number of pions n in the state vector also grows.
The accuracy of the methods used in our computations
has not been proven for large numbers of virtual pions.
Both the present computations and strong-coupling calcu-
lations without core motion show that the number n of
pions in the dressed nucleon state is roughly five when
R =0.3 fm; in terms of the methods used in Ref. 5, this is
a large number of pions. In order to obtain a better ap-
proximation to the pion part of the state vector, the num-
ber of pions included in the intermediate-coupling calcula-
tions must be increased. Although the numerical values
are unreliable for R ~0.4 fm, we believe that the trends
shown by the curves in the figures are correct even in the
region near 0.35 fm.

For large bag radii, R greater than about 0.6 fm, the
coupling is weak, and the approximations used in the
description of the core motion become inaccurate. As in
the case of the polaron, translation invariance becomes
important when the coupling is weak, and the single s-
wave mode approximation used here is no longer ade-
quate. This situation could be improved by including p-
wave modes, as in the work of Lee and Pines9 on the pola-
ron. Again, we believe that the trends shown in our com-
putations are correct, even near 0.65 fm.

Overall, the figures show that in models described by
the Hamiltonian of (1) in which a quark bag is coupled to
pion degrees of freedom, the effects due to core inotion on
the static properties of the proton and neutron are sub-
stantial. The relation between the intrinsic form factor J
and the nonstatic form factor is such that its extent is
greater than that of the intrinsic form factor. This is
especially clear in the curves of Fig. 5 for the charge radii.
In other words, for a given set of observed nucleon prop-
erties, the bag with core motion is smaller than the corre-
sponding bag without core motion.

V. REMARKS

(i) In common with bag models that neglect core
motion and treat pion field interactions with a bag core in
terms of an equivalent static model, the present calcula-
tion ignores the effects of the pion field on the motion of
the quarks in the b@g.

(ii) The model Hamiltonian defined by (1) is transla-
tionally invariant; however the single core mode (in this
case s wave) approximation breaks translational symme-
try. As in the case of the polaron this situation could be
improved by including more modes of the core, specifical-
ly the three p-wave modes which become important when
the core is less tightly bound. In the calculations present-
ed above, this happens when the bag radius is large. The
inclusion of p-wave modes would also allow for the possi-
bility of describing odd-parity baryons. In such an ap-
proach both the core and the pions form a shell structure
which is determined self-consistently.



EFFECTS OF CORE MOTION ON STATIC PROPERTIES OF. . .

(iii) The effective mass of the self-consistent ground
state can be computed by methods that have been

developed previously for such systems;" the result is that
the core contributes an amount M to the effective mass
and the pion field contribution is

~ k u (k) dk,
1ger m 6 co (k)

(15)

where n~ is the expectation value of the pion-number
operator. Figure 6 shows how the pion-field contribution
rn to the nucleon mass varies with R in the particular
case that the core motion is of the self-consistent charac-
ter used in our computations. The mass parameter M in
the Hamiltonian should be less than the nucleon mass by
an amount equal to the pion-field contribution to the nu-
cleon mass; a fully self-consistent computation would take
this effect into account. It is easy to see that this will
tend to increase the core-motion parameter S.

(iv) For these estimates of the effects of core motion,
the excited states of the quarks in the core or bag have not
been included. Of course, a realistic computation that in-
cluded all important physical effects would have to deal
with the contributions of the b, isobar as well as other in-
fluential excited states.

(v) No nonlinear terms in the pion field have been in-
cluded in the Hamiltonian of (1). The composite nature
of the pion does imply that such nonlinear terms should
probably be included in effective Hamiltonians for pion
interaction. In the present calculation aimed at comput-
ing the effects of core motion, nonlinear terms would

probably be an unnecessary complication.
(vi) The electromagnetic current operators that have

been used for the pion field are consistent with the Hamil-
tonian. On the other hand, the electromagnetic current
operators for the core have been taken in rudimentary
form. This simple treatment is adequate for the purpose
of calculating the effects of core motion, but a careful
study of nucleon parameters would need to treat the phys-
ics of the electromagnetic interaction of the core more
carefully.

(vii) The most general form of the intrinsic pion current
form factor, J (k, (p+q)l2), corresponds to a pion-core
interaction that is nonlocal in configuration space in two

ways: (a) the pion-field operator is at a different point
from the core density and (b) the core density with which
the pion field interacts is nonlocal in the operators g and

P . The form factor in (5) is independent of its second ar-
gument, which implies that the nonlocality of type (b)
does not occur, and the core density is local. %e believe
that our results are not sensitive to this limitation on the
form of J .

VI. SUMMARY

A simple translation-invariant Hamiltonian that de-
scribes a nucleon core interacting with a pion field has
been used to study the effects of nucleon core motion on
magnetic moments and mean-square charge radii of the
nucleon as computed in bag models that contain pion-
field interaction. The pion-core interaction was taken to
be the one used in calculations in the little-bag and
cloudy-bag models. ' For sufficiently strong coupling of
the pion field to the core (sufficiently small bag radii), the
nucleon ground state of the Hamiltonian was shown to be
a self-consistent state in which the core generates the pion
field and is in turn bound in that pion field. The magnet-
ic moments and charge radii were computed for the self-
consistent state and compared with the corresponding mo-
ments and radii computed without core motion. The
main effect of the core motion is to soften the correspond-
ing static-model form factor of the core-pion interaction;
that is, this nonstatic form factor for the bag with core
motion is larger in configuration space than the intrinsic
form factor that describes the pion-core interaction in the
Hamiltonian.
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APPENDIX

Some of the details of the wave function are reproduced
here from Refs. 5 and 12. The basis states are coherent-
pion-pair states, each of which is based on an invariant-
pair-free (IPF) state with a fixed number of pions. An
IPF state

~
n, a ) with n pions satisfies the relations

(A 1)

20
The nucleon state in the present case has components with
T =I. =0 and with T„=I.=1. As was discussed in
Refs. 5 and 12, there are 12 such IPF states with up to six
pions in a single p-wave mode. The coherent-pair state
with coherence parameter y based on the state

~
n, a) is

given by

0.35 0.40 0.45 0.50 0.55 0.60 0.65
R {fm)

FIG. 6. The pion-field contribution to the nucleon effective
mass computed according to Eq. (IS), Ineasured in units of m.

~
n, a,y ) =g~„+9(yA .A )

~
n, a),

where g (x) is the pair coherence function

g (x)= g " x".( v 2 )!!

o 2 m!(v+2m —2)!!

(A2)

(A3)
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p 1.01
~y'" (Gev)

p 1.02
~y"" (Gev)

TABLE III. Same as Table II but for model Fi. Using (15) and taking n7 0 we find that

Non-SUSY:

Non-SUSY
MF ~My
MF 10M'
SUSY
MF Mg
Mp 10M@

Non-SUSY:

0.92
0.90

0.99
0.95

126.9
127.8

123.7
125.3

0.66
0.64

0.73
0.69

111.4
111.9

109.6
110.5

xw 0 222,

U 27.68,
0.181, MF =Mw,a„'32.09+X/z, X ='
0.184, MF =10Mw,

aF ' (MF ) 10826 —155X;

SUSY: (16)

xw 0 218,
U 28.09,
c„'41.32, X,

SUSY:
xw

U -28.94,
Oe 1 75' MF Mw~

0.180, MF 10Mw,

aF '(MF) 12875 —313X .

0.185, MF Mg,
0.188, MF 10M@,

aF ' (MF ) 1022 —129X;

(13)

xw -0.276,

U 26 53,
0.162, MF ~Mw,

0.165, MF 10Mw,

aF '(MF ) -16090—470X .

2.99+3X/2x, X ~

g2 Mi
+L', ~4.3 x 10

16 M22

sin &&3.8 &&10

We then obtain A =4, 8 (248+500x)/3 with x 0,2/

using (16) and the results obtained in Table IV. In ad-
dition to this we also obtain the limits

These results are similar to pattern C discussed earlier.
Using the notation of Eq. (9) we obtain A 1, 8 34
+200x(x=—U, /vd ) with the results shown in Table III.
We also obtain the limits

M
XL", &2.4X 1016M'

both of which are reasonably small.
We now turn to a discussion of the Z2 total width and

leptonic branching ratio. Neglecting terms of order
mf2/M22 the decay rate Z2 ff is given by

1(Z2 ff) N,
™

(XL, +X~ ),
sin &&4.8 & 10

(14)

Clearly, we must have M2 somewhat larger than the limit
obtained from the p-parameter analysis to suppress the ra-
tio M i /M2 appearing in (14).

Pattern F2 is somewhat similar to pattern D described
earlier in I. We find

where Table V gives the values of XL, X~ for all the fer-
mions in the 27 representation. With XL, X~ determined

TABLE V. XL and Xg quantum numbers of all the 27 E6 fer-
mions for models E, F~, and F2.

TABLE IV. Same as Table III but for model Fq.

Non-SUSY
MF Mg
MF 10M'
SUSY
MF Mw
MF ~ lOMg

9.93
9.90

10.13
10.07

p 1.01
~y"" (Gev)

350.5
356.0

312.3
322.4

Xmin

5.12
5.10

5.33
5.27

p 1.02
WI"'" (CeV)

257.5
261.3

231.4
238.2

TL n ~+n2+n5+4n7 3+4n7

Ty n j+n2+n5+6nq 3+6n7,
(15)

TF, =64n i+ 144n2+ 200n3+ 784n5+ 800n6+ 384n7

1992+384n 7.

VL

eL

dg
QL

di

NL

EL

DI
VL

8
8
0

4
0
0
0

—12
12
0
0
0

—8
20

0
0

—8
0
0

—4
—4

0
0
0

12
8
8
0
0

—6
—6

0
2
2
0
0
0

4
0
0
0

—4
I.O

Fi

0
0
6
0
0

0
0
0

—4

4
0
0

0
2
2
0
0
0

—6
—6

0
0
0

0

F2

0
0

0
0

—10
0
0
6
4
4
0
0


