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As was first pointed out by %itten, a large number of colors (X,) leads to a simplification in the
theory of baryon masses in that the quarks may be assumed to move in a mean field which can be
found self-consistently. The interquark potential in such a description can be borrowed from the
meson-sector phenomenology in the absence of an accurate evaluation of it from large-E, quantum
chromodynamics (QCD). We have carried out this program with such a potential due to Richard-
son, used often by workers in the meson sector. This potential has the advantage of incorporating
the two main features of QCD: namely, confinement aud asymptotic freedom. In view of the small
number of parameters involved, the results agree surprisingly well with experiment for the case of
three identical quarks.

I. INTRODUCTION

Although QCD was formulated for three colors, many
of its features are more readily understandable if one lets
the number of colors N, become arbitrarily large. This
suggestion of 't Hooft' became an extremely powerful tool
for understanding hadrons after the work of Witten. The
I/1V, expansion gives, to leading order, most of the quali-
tative features expected of low-energy QCD, such as con-
finement and chiral-symmetry breaking. For mesons it
leads to a Bethe-Salpeter equation with a qq potential,
while for baryons it yields a Hartree-Fock-type equation.
An alternative for baryons is to solve classical meson La-
grangians, as in the Skyrme model, but this approach is
currently faced with the problem of justifying the trunca-
tion of the Lagrangians and incorporating important low-
mass mesons into the model. The relativistic Hartree-
Fock (HF) method looks therefore like a very promising
alternative for describing baryons and it is the purpose of
the present paper to explore this alternative while keeping
as close to QCD as present-day techniques permit.

Starting from the action for a system of interacting
quarks and gluons, we obtain, after a series of approxima-
tions, a Dirac Hamiltonian, Eq. (2.9), with a two-body
static potential, which is the actual point of departure of
our HF calculations. Present-day techniques do not per-
mit summing up all the planar gluon diagrams which
would yield unambiguously such a potential. As an alter-
native, we borrow a potential devised for meson-sector
calculations, the Richardson potential. It has the correct
renormahzation-group behavior at high q and a q
behavior at small q, as suggested by various groups. It
fits the charmonium data, and additional cross checks are
possible on its only free parameter A, which is related to
the string tension and hence to other parameters such as
the critical temperature T, through lattice gauge calcula-
tions. '

In the spirit of remaining close to the first principles of
QCD, we fixed the quark masses me at the current-
algebra values. " With tn, =150 MeV for the strange
quark, we find very good agreement with the 0 energy
for a reasonable value of the parameter A in Richardson's
potential. The result is not very sensitive to uncertainties
in the value of me, since the kinetic energy decreases as
ttte increases. On the other hand, with a mass of about 10
MeV for tt and d quarks, there are problems of confine-
ment connected with the Lorentz-vector nature of the ef-
fective potential as developed in Sec. II. These can how-
ever be alleviated by splitting the confining part of the in-
teraction into a scalar and a vector part, and this prescrip-
tion allows one to deal with light-quark systems quite suc-
cessfully.

In Sec. II we derive the relativistic HF equations and
we describe the method that allows subtraction of the
spurious center-of-mass kinetic energy. Throughout the
paper we limit our considerations, for the sake of simpli-
city, to systems formed of three quarks of a single flavor
in the same orbital wave function. Numerical results are
presented in Sec. III. In particular, we study the confin-
ing properties of the various potentials.

II. GENERAL FORMALISM

jp, = q3'p~ q ~

2
(2.2)

where the A,"s are the Gell-Mann matrices. The connect-

The action for a system of interacting quarks and
gluons can be written as

S =Sg)„,„+ q i —m q+jpA'" x, 2.1

where Sz~„denotes, collectively, the action of the free
gluonic fields A'", the gauge-fixing terms, and the action
of the ghost fields, while j„' is the quark current
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ed Green's functions of gluons are generated by the func-
tional

Z= f e'~dp[A][dqdq] . (2.4)

e'~'J'= f exp i S'si„,„+fj~A'"d4x dp[A],

(2.3)

Using (2.3}, one can integrate formally over the gluons
and the ghosts, and write

P

Z= f exp i f q(iB m—)qd x+8'(j) [dqdq]
where the volume element in path space, d)M[A], includes
the ghost fields. The full generating functional is given
by

:—f e [dqdq],
thus obtaining an effective action for the quarks:

(2.5)

S«&——f d'x q(iB m—)q ——fj'"(x)V„'„(x,yj)"(y)d'x d'y
i

1 j'"(xj)s"(y)J'I'(z)V„'„z(x,y,z)d x d y d z+ (2.6)

where the Vs are connected Green s functions. Now, Eq. (2.6) is an infinite expansion and it is absolutely essential to
have a truncation scheme if we want to extract meaningful numbers. For N, -quark systems like baryons, the 1/N, ex-
pansion provides such a scheme. This can be seen by going back to the formahsm of canonical quantization and consid-
ering S«i as a function of the field operators q and q. For an N, -body baryon, the expectation value of the N' currents

(N'~N, ) that are contracted with V„', . . .„"„,involves

&N.q' I qq qq IN.q'&-q'~ (1»,)&01 qq (2.7)
N' times (N' —N ) times

Now, the factor (0
I qq qq I 0) correspands to the production of virtual qq pairs and quark loops. It is suppressed by

1/N, and all terms involving mare than N, currents can be drapped in a similar manner.
In spite of this restriction, one cannot actually compute even the two-point Green's function V„'„ to all orders (Fig. 1).

Moreover, a fully relativistic treatment of the two-body problem keeping all components of V„'„(l,2) is prevented by the
standard relative-time difficulties in the Bethe-Salpeter equation. We therefore go to the static limit in our calculation
and use for Vco (1,2) the Richardson potential, the simplest interpolation incorporating both asymptotic freedom and
confinement. Quite obviously, this is a drastic approxiination. It is probably quite adequate for heavy quarks, but its va-
lidity is much more questionable for light ones. Unfortunately, it seems impossible for the time being, to assess quantita-
tively its degree of validity, but it should be borne in mind that it may affect the conclusions of this paper.

With such a static limit for all Green s functions in (2.6), it is easy to write down a Dirac equation for the subspace of
N, -quark states:

g (a; p;+m;p;)+ ,' g A(i) —A(j)V(x; xj)+ —+3-, . . . , N, -body terms %(xi, . . . , x~ )

=E+(xi, . . . , x~ ) . (2.8)

(2.9)

Little is known about the interactions involving more than
two quarks, except that they should be all of the same or-
der of magnitude as far as the 1/N, expansion is con-
cerned. Other considerations however may reduce their
importance. For three-quark systems with N, =3, the di-
agram shown in Fig. 2(a) gives no contribution, ' because
the expectation value of f'~Ahba; between color singlets
vanishes. Some higher-order diagrams [Fig. 2(b)] can
easily be shown' to vanish in the same manner. In view
of the present lack of knowledge on the remaining non-
vanishing three-body diagrams, we will drop them in our
computational work. %'hen dealing with more than three
colors, we wiH do the same for all Careen's functions in-
volving more than two quarks. Our Hamiltonian will
thus be reduced to

H = g (a"p +m p }+—, g A,(i) A,(j)V(rj. ),

+ & +

= GLUON

= QUARK

------ = GHOST

FIG. 1. Some of the terms appearing in the two-point
Green's function for the gluons. As discussed in the text, the
second diagram is suppressed by 1/X, and is dropped.
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with the Richardson potential for , A—(i) A.(j)V(r 1 )

Let us come now to the HF approximation. In order to
avoid the complexities of open-shell and multiconfigura-
tion HF calculations, we will limit ourselves in this paper
to the simplest case, in which X, quarks all have the same
fiavor and occupy the same state 1I)J~(r). In the formal-
ism of second quantization, this Slater determinant is
written as

N

+= II"-I» (2.10)
c=1

where af,j. creates a quark of color c and flavor f in
state (jm). The state pt is chosen so as to minimize the
average value of the energy,

(a)
FIG. 2. Vanishing three-body diagrams.

(color singlet
~

A, (i).A(j)/4
~

color singlet) =—X, +I
2X,

E=(eiH i%') . (2.1 1) (2.12)

In order to compute this quantity, one needs the matrix
element One then obtains readily

E=N, f P~ (r)t(()J (r)dr— jgpss rJ j gpss 2 ]2 j1tg 1 JNl 2 (2.13)

t =a p+Pm . (2.14)

Pj. ~ (r)PJ~ (r)dr =5JJ 5~ss ~,JI ~ ~Im ~~ JIj m ~ j

yields the HF equation

Varying this expression with respect to (()J, subject to the
constraint

6 —(m —w,„+e)F=0,
Gfp

dF 2+ F+(E—ws„—m)G =0
p

dr r

where

(2.20a)

(2.20b)

(2.21)

=egj (r), (2.16)

where e is the single-particle energy. One gets a single
equation, instead of a set of coupled equations, since all
particles are in the same orbital (()J . For the same reason,
there is no exchange matrix element for V and the single-
particle self-consistent potential

r' V r —r' j r'dr' (2.17)

G( )X
(r)=

is& m 4~ tr rF(r)X
(2.19)

where X is a Pauli spinor, and Eq. (2.16) yields the sys-
tem of coupled equations:

is local. This self-consistent potential obviously behaves
like the time component of a vector, and not as a mass
term. The total energy EHF is related to the single-quark
energy e by the usual relation

(2.18)

For quarks in the lowest (Is—,
'

) orbital, one may write

Vo(r, r') being the I =0 part of V(r —r'):

Vo(r, r')= —,
' f V(r r')sin8d8 . — (2.22)

Quite obviously the single-particle energy e does not de-
pend on N, when w,„ is itself independent of this param-
eter. In the limit %,~00, this condition is seen to be
realized if V is proportional to I/N„ in accordance with
the philosophy of the 1/N, expansion.

It may be noticed, in Eqs. (2.20), that the single-particle
potential (2.21) is added to the energy term. This will be
shown later to lead to too large a radius for the confined
system. Indeed, confinement problems connected with
potentials considered as the time component of a four-
vector have been known for quite a long time. ' Some au-
thors have tried to overcome them by considering scalar
potentials, but these are not without problems either, since
an oscillatorlike scalar potential does not generate real
eigenvalues of the Dirac equation. '5 A much more com-
mon prescription' has been to use an equal mixture of a
static vector part and a scalar part. This prescription has
no sound theoretical justification so far. One expects a
potential which will behave like a mass term if the explicit
chiral-symmetry breaking is introduced as a constraint in
the action, as done, for example, by Simic, ' but it is not
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at all obvious that this potential would be approximately
equal to the static vector potential. Still, in spite of its
lack of justification this prescription has a certain number
of appealing features: it contributes no spin-orbit sphtting
to the p states, ' in agreement with phenomenology; it
realizes an exact SU(2)-spin symmetry of the Dirac Ham-
iltonian' ' and allows an exact Melosh transformation. '

It has been applied successfully to low-lying S-wave
baryons and to quark-antiquark systems, ' Crater and
Van Alstine, in particular, have broken up the confining
part of the Richardson potential into an equal vector and
scalar part and put the terms appropriately with the ener-

gy and the mass, respectively. We have tried both ap-
proaches: (i) treating the entire potential like an energy
term and (ii) splitting the confining part into half-energy-
like and half-mass-like terms, and the results will be dis-
cussed in the following section.

It is well known that HF solutions violate the transla-
tion invariance of the underlying Hamiltonian (2.9), since
they are formed of single-particle wave functions derived
from an average potential ic,„ that is not translation in-
variant. As a consequence, the center-of-mass momentum
is not well defined in HP solutions and this entails a
spurious contribution from the center-of-mass kinetic en-

ergy to the total energy. Since the relative importance of
this spurious effect increases as the number of particles
decreases, it is important that it should be corrected for
systems formed of few quarks. This can be done by ex-
tending to the relativistic HF equations the Peierls-
Yoccoz~~ procedure of nuclear physics.

Let 4'(x) be the HP wave function in configuration
space, where x denotes in a collective way the quark coor-
dinates. It is possible to expand 4(x) on the basis of
eigenvectors of the center-of-mass momentum:

& q ~"
I
q f'& =@k—k')I(k),

where

I(k)=— i f e'" X(a)da1

(2n )

is the Pourier transform of the overlap kernel

N(a —a')—:&%(x—a')
~

O(x —a) & .

(2.26)

(2.27)

(2.28)

f [G(r+)G(r )
1

+F(r+)F(r )cr 9+rr r ]dr, (2.30)

where
r+ =r+a/2 .

Now,

(2.31)

(r a /4)—+a rXaA
cr r+cy"r

r+r
and the term in cr rga brings no contribution to (2.30)
since it yields an integrand that is odd in r. One is thus
left with

n(a) =n (a)

r~r u r+Gr

Substituting (2.26) into (2.25), one gets

&+(x}IE(p} I
+(x}&=f E(k)I(k}dk. (2.29)

One is now left with the task of computing I(k). The
single-quark overlap kernel for wave functions (2.19) is

n (a) = &P, , (r+a/2)
~ P, , (r—a/2) &

4(x}=f e'"'
QRI,"'(x—R)dk, (2.23)

where R is the center-of-mass coordinate and QI,
"' (x—R)

describes the internal motion of the system. Of course,
this internal wave function will be different for every
value of k, since there is no factorization of the center-
of-mass motion. The Peierls-Yoccoz method allows one
to project out of %(x) a state %i,

" of definite total
momentum k:

%z (x)= i f e'"'4(x —a)da
(2m )

=e'"' g„'"'(x—R), (2.24)

where %(x—a) is the HP wave function translated in such
a way that it is centered at point a.

Once this projection is performed, it is quite easy to
compute the expectation value. of any operator F(P} de-
pending on the total momentum P, when the system is in
the state %'(x):

&%(x)
~

F(P)
~

%(x) & = f & %q (x)
~
E(P)

( %i,"&dkdk'

= f E(k)&qf'~q„"&dkdk'.
(2.25)

Now, it is trivial to show that

F(r+ )F(r ) zr
r+r 4

(2.32)

where u is the cosine of the angle between r and a.
The overlap for IiI, quarks in the same orbital is simply

N(a)=[n(a)] ' (2.33)

I(k) =I(k)
ao N

2 k f asinka[n(a)] 'da . (2.34)

T, =E(P)=(M'+P')'i' —M

where M is the mass of the system, one gets finally

(2.35)

&q
~
T,

~

q &=—f ka[(M'+k')'" —M]
m'

csin(ka)[n (a)] 'dk da .

(2.36)

Taking for E(P) the center-of-mass kinetic energy opera-
tor
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TABLE I. Hartree-Fock energy EHF and center-of-mass kinetic energy (T, ) for a timelike vector

average potential derived from the Richardson two-body interaction for the 0 with m, =150 MeV.

All quantities except the average radius (r2)'~ (fm) are in MeV. Eo is the single-particle energy and

5e is the nodal excitation energy when the Hartree-Fock field is kept unchanged.

400
350
325
300

2247
1950
1831
1690

(T. . )

197
155
140
122

+HF ( Tc.m. )

2050
1795
1691
1568

Eo

1081
916
860
781

334
294
281
263

( ( &2) )1/2

0.92
0.99
1.08
1.13

The calculation of this quantity thus involves a fourfold
integral. Particular attention has to be paid to the in-

tegration over k, which was handled through Filon's
method.

Although the Peierls-Yoccoz method enables one to
subtract the average value of the center-of-mass kinetic

energy, it does obviously not eliminate all effects connect-
ed with spurious center-of-mass motion: in particular, it
does not change anything to the fact that the HF wave

function is a linear combination or internal wave func-

tions, Eq. (2.23), each of which yields a different average
value of the internal energy.

draw any definite conclusion from this agreement, since
the wave functions, somewhat to our surprise, turned out
to have relatively large small components (Fig. 3), and
thus not to be nonrelativistic. This raises, among other
things, the question of the appropriateness of the Martin
potential for our calculation, since it was devised for non-
relativistic systems.

Such a question does not arise, of course, for
Richardson's potential:

uI. NUMaRICAI. R.ESUI.TS

Taking for granted the legitimacy of describing hadrons

by an effective Hamiltonian with two-body interactions,
there remains the question of the validity of the HF ap-

proximation. We obviously have no exact relativistic
solutions for the three-body problem to compare our HF
solution with, and the best we can do is to perform such a
calculation in a situation where relativistic effects are
presumably small. We took as a reference Richard's cal-
culation of the 0 mass, using the Martin potential in

the hyperspherical formalism. Since the strange quark is

given a mass of 518 MeV in this calculation, one might
expect the situation to be nonrelativistic. Richard found a
mass of 1617 MeV before including spin-dependent

corrections. VA'th the same potential and quark mass, we

obtained EHF ——1821 MeV. The average value of the
center-of-mass energy was computed as described in Sec.
II. Since such a procedure removes the center-of-mass

spurious behavior in an approximate manner only, we did

not try to reach self-consistency between the mass used in

computing the correction and the corrected mass. %'e

thus used the experimental value of the 0 mass in Eq.
(2.36), finding (T, ) =237 MeV. The corrected mass

thus went down to 1584 MeV. Although this is reason-

ably close to Richard's value, it turns out to be difficult to

3

l

1

l
I

I
1

ICHARDSON
= 500 MeV

TABLE II. Dependency of the Hartree-Fock energy

EHF (m, ) on the strange-quark mass rn, . All quantities are in

MeV.
r (fm}

EHF (150)

2247
1690

EHF (300) EHF (500)

2605
2198

FIG. 3. Large (upper half of the figure) and small (lower
half) components of the wave functions for the potentials of
Richardson (A =300 MeV) and Martin.
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TABLE III. Hartree-Pock energy for half-vector, half-scalar confining potential for nucleonlike sys-

tems with m~ = 10 MeV. The notation is as in Table I, p is the magnetic moment in nuclear magnetons.

400
350
300

EHF

1523
1373
1212

154
124
87

1369
1249
1125

(p2) I/2

0.96
1.03
1.15

&0

647
562
481

282
245
189

2.48
2.48
2.38

A(1) A(2) 6m f(Ar)
4 33-2E.' " A

(3.1)

where Nf is the number of flavors, taken to be three, and

~dq ef(r)=1—4
q [ln(q —1)] +n.

(3.2)

%e have computed the 0 mass with this potential,
which contains only one free parameter: the scale factor
A. Since our calculation is relativistic, we need not work
with an unrealistically large quark mass and we can take
the current-algebra value, " m, =150 MeV. The results
for the case where the entire potential is treated like the
time part of a vector [Eqs. (2.20a) and (2.20b)] are given
in Table I for several values of A. They are rather sensi-

tive to the value of this parameter. In view of uncertain-
ties in the value of the quark mass, we have checked how
sensitive the HF energy is to m, . One sees in Table II
that doubling the mass from 150 to 300 MeV changes

EHF by less than 5% for A=400 MeV and 10% for
A=300 MeV. This relative lack of sensitivity is due to
the fact that the increase in m, is compensated, to a large
extent, by a decrease of the kinetic energy. However, as

shall be seen later, a decrease of the quark mass enhances
the small component of the wave function and leads to
confinement problems.

The single-quark wave functions obtained with the
Martin and the Richardson (A=300 MeV) potentials are
compared in Fig. 3 and appear to be less confined in the
second case. As can be expected, the Richardson wave
functions are less confined for A=300 MeV than for
A =400 MeV (Fig. 4), and more relativistic for m, =150
MeV than for m, =500 MeV (Fig. 5).

It can be seen in Fig. 5 that as the quark mass is de-
creased the wave function, particularly the small com-
ponent, is enhanced at large radius. The average radius of
about 1 fm given in Table I is already large. If one were
to calculate the radius of systems like the nucleon or the
delta isobar one would have to use current-quark masses
of the order of 10 MeV. With A=300 MeV and m~ =10
MeV the Richardson potential yields wave functions lead-
ing to an average radius of about 1.7 frn. Clearly this is
unrealistic and the purely vector potential is unable to
confine massless quarks. As we have indicated before,
this problem is well known and we circumvent it by divid-
ing the linear part of the Richardson potential in Eq. (3.1)

Al

l

E

D

LL
)

4J

A = 300 MeV
---- A =400MeY

C4

tO

E

O

h.

m =l50 MeV
——— m =500 MeV

- )
l

FIG. 4. Large (upper half of the figure) and small (lower

half) components of the wave functions for two different values

of the parameter A in the Richardson potential.

r{fm}
FIG. 5. Large (upper half of the figure) and small (lower

half) components of the wave functions for two different values
of the quark mass and the Richardson potential (A =300 MeV).
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TABLE IV. Same as in Table III but for quark mass m, = 150 MeV appropriate for the 0

400
350
300

EHF

1778
1598
1419

1588
1448
1304

( r2) 1/2

(fm)

0.75
0.83
0.93

652
578
503

345
304
264

—1 ~ 81
—2.19
—2.00

into two equal parts, as done by Crater and Van Alstine,
S = V=gnA r/54, the vector linear part in the average
potential w,„[Eq.(2.21)] being half of what it was, while
the contribution from the second term of the Richardson
potential remains the same. The S term now gives a v,„
which is found through Eqs. (2.21) and (2.22), with V re-
placed by S, so that Eqs. (2.20) are changed to

quarks there are (i) greater uncertainties about the legi-
timacy of using a static potential, (ii) greater uncertainties
in the masses, (iii) mass difference between the two flavors
and, and (iv) effects from the open-shell character of the
wave function. We prefer the value of A=400 MeV since
this is in accord with lattice string tension estimates and
meson sector results.

6 —( m +U,„w,„+—e)I' =0,
dr

(3.3a)

dI' 2+ F+(e—w,„m——U,—„)G=0.
dr r

(3.3b)

For m~ =10 MeV and A=300 MeV, the radius of the
system now becomes 1.1 fm, which is more reasonable.
The results for various values of A are given in Table III.
For the 0 system as shown in Table IV the mass is 1588
MeV for A=400 MeV in very good agreement with ex-
periment. The magnetic moment of the Q, p, (Q ), is
not experimentally known. However, in large-E, ex-
pansion it is related to the p, (A ), as shown by Karl and
Paton, 2

p(Q )=3@,(A ) . (3A)

Since p(A ) is known to be —0.6138+0.0047 nuclear
magneton the agreement between the p(Q ) in Table IV
for A=400 MeV and Eq. (3.4) is very good. In Table III
we give the calculated magnetic moment of the nucleon-
like system assuming it is a proton composed of uud.
Whereas we neglected the difference between the u and d
fiavors in the Hartree-Fock calculation and assumed a
shell of identical quarks, we put appropriate charges on
these quarks in the magnetic calculation. In the absence
of strong spin-dependent forces, this may be justified.
Again, the magnetic moments in Table III are close to the
experimental proton magnetic moment. The mass of the
nucleonlike system is close to the mean of the nucleon and
the delta isobar for A=300 MeV. But we feel less sure
about the results of Table III since in the case of light

IV. CONCLUSION

» conclusion we are of the opinion that the Richardson
potentia with A=400 Mev cm explain baboon properti~
as well as meson properties provided the confinement part
is split into equal scalar and vector parts. For a purely
vector potential there are problems with confinement. It
is remarkable that a large-N, theory with practically no
free parameters can achieve such good results.
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