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Electromagnetic foi-iii factors and static properties of the nucleon
in a relativistic potential model of independent quarks with chiral symmetry
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Nucleon charge and magnetic form factors Gg'M(q ) have been presented in a quark model with

an equally mixed scalar and vector potential in harmonic form taking the pionic contributions into
account. The static properties such as the magnetic moment, charge radius, and axial-vector cou-
pling constant in the neutron-P-decay process are shown to be in excellent agreement with the corre-
sponding experimental values. The role of the finite extension of the quark-pion vertex in determin-

ing the charge radius and magnetic moment due to the pion cloud surrounding the nucleons has
been studied.

I. INTRODUCTION

In chiral quark models, nucleons are described as an as-
sembly of confined nonstrange quarks surrounded by a
pion cloud. The existence of the pion-cloud coupling to
the bare nucleon arises out of the compelling necessity to
preserve the chiral symmetry in the flavor-SU(2) sector,
which is believed to be an excellent symmetry of strong
interactions. The charged pion cloud, surrounding the
bare nucleon, obviously contributes to the total elec-
tromagnetic current of the nucleon and thereby plays an
important role in determining the magnetic moments and
charge radii of the proton and neutron.

Taking into account the pionic contributions, the elec-
tromagnetic properties of nucleons have been calculated in
chiral bag models' as well as in some relativistic confin-
ing potential models. Of all the chiral bag models, the
cloudy bag model (CBM), though more phenomenological
in nature, has been quite successful in this respect. But it
is not entirely free from any objections because of its stat-
ic spherical bag boundary to which it owes much of its
success and simplicity. This is because of the fact that it
is difficult to believe that the spherical bag boundary
remains static and unperturbed by the creation of a pion.
Furthermore, in any bag model, to restore chiral symme-
try, it is essential to introduce an additional pion field in
the region exterior only to the spherical bag boundary.
On the other hand, the exclusion of pions from the interi-
or of the static bag, for a number of reasons, may not be
correct and reasonable. Although the CBM is correct in
not excluding explicitly the pions from the bag volume,
the very inclusion of pions in the interior region is more
or less ad hoc. Above all, the formation of a bag or its
properties or anything like that has not yet been derived,
strictly speaking, from any fundamental theory. There
are only some suggestive arguments leading one to believe
that the formation of a bag may not be far from the truth.
Hence the bag essentially provides a phenomenological
description of the nonperturbative gluon interaction in-
cluding gluon self-coupling.

In view of this fact, the motivation of our work is

mainly to replace the bag by some alternative phenomeno-
logical potential U(r), representing in the same way as in
the bag model the nonperturbative gluon interactions.
The chiral potential models, which are comparatively
more straightforward, are no doubt attempts in this direc-
tion. The term in Lagrangian density for quarks corre-
sponding to the effective scalar potential being chirally
odd through all space requires the introduction of an ad-
ditional pionic component everywhere in order to preserve
chiral symmetry. The effective potential of individual
quarks in such models, which is basically due to the in-
teraction of quarks with the gluon field, may be thought
of as being mediated in a self-consistent manner through
Nambu —Jona-Lasinio-type models, '

by soine kind of
instanton-induced effective quark-quark contact interac-
tion with position-dependent coupling strength. The
position-dependent coupling strength, supposed to be
determined by the multigluon mechanism, is impossible to
calculate from first principles, although it is believed to be
small at the origin and increases rapidly towards the had-
ron surface. Therefore, one needs to introduce the effec-
tive potential for individual quarks in a phenomenological
manner to seek a posteriori justification for finding its
conformity with the supposed qualitative behavior of the
position-dependent coupling strength in the contact in-
teraction.

However, with no theoretical prejudice in favor of any
particular mechanism for generating confinement of indi-
vidual quarks, we prefer to work in an alternative but
similar scheme with a purely phenomenologieal individual
quark potential U(r) in the equally mixed scalar-vector
harmonic form to represent the nonperturbative gluon in-
teraction, including gluon self-coupling the same way as
for the bag. Nevertheless in our choice of
U(r)= —,

' (1+y ) V(r), we have been guided by the usual
aesthetic compulsion of providing simplicity and tracta-
bility for the model. Such a potential model has been
used in our earlier works" for a reasonable prediction of
the core contribution to the magnetic moments of the oc-
tet baryon and charge radius of the proton as well as the
weak electric and magnetic form factors for semileptonic

34 2092 1986 The American Physical Society



34 ELECTROMAGNETIC FORM FACTORS AND STATIC. . . 2093

baryon decays. Then incorporating chiral symmetry in
the SU(2)-fiavor sector in the usual manner, we have ob-
tained the mass spectrum' of the octet baryons and also
estimated the quark-pion coupling constant, ' consistent
with those extracted from experimental vector-meson de-

cay width ratios by Suzuki and Bhaduri. ' Therefore, in

the present work we employ such a chiral potential model
to study the electromagnetic properties of nucleons by
taking into account the pionic contributions in the usual
manner, together with the spurious center-of-mass correc-
tion at appropriate stages. This model with a harmonic
form in particular for the scalar-vector mixed potential
turns out to be quite simple and tractable in these
respects, yielding very satisfactory results for the elec-
tromagnetic properties of the nucleons.

%'e present in Sec. II the potential model with chirsl
symmetry in the u-d-fiavor sector which leads to the
nucleon-pion coupling and the axial form factor. We also
give an account of the renormalization of the nucleon-

pion coupling constant. In Sec. III we discuss the elec-
tromagnetic form factors for nucleons which in their turn
lead to the estimation of the static quantities such as the
charge radius and magnetic moment of the nucleons,
which are found to be in reasonable agreement with the
corresponding experimental data.

II. POTENTIAL MODEL %ITH CHIRAL
SYMMETRY

In this section we briefiy outline the framework of the
model incorporating chiral symmetry with quark-pion in-
teraction term in the Lagrangian density taken in s linear
form. For completeness we first mention the static prop-
erties of the nucleon core as obtained in the model with
the prescription for taking into account the center-of-mass
corrections at appropriate stages. Then, with the assump-
tion that the resulting hadronic states do not contain large
multipion components, pionic corrections to the elec-
tromagnetic properties of the nucleon can be calculated in

the usual perturbative expansion approach.

A. Potential model

V(r)=ar + Vo, a ~0, (2.1)

and obey the Dirac equation derivable from a Lagrangian
density

%e start with the assumption that the nonstrange
quarks in a nucleon core move independently in an aver-

age effective potential taken in the form

U( r) = ,' (g+ y ) V(r—),

with

the a»»-vector current of the quarks is not conserved, as
the scalar term

V(r)+m» q(x)q(x) =G(r)qq
2

in W»(x) is chirally odd. The vector part of the potential
poses no problem in this respect. To restore chirsl sym-
metry, we introduce, in the usual manner, a zero-mass e1e-

mentary isovector pion field {p with linearized interaction
Lagrangian density:

G(r)q(x)y'(». y)q(x), (2.4)

where f =93 MeV is the phenomenological pion-decay
constant. Then the four-divergence of the total axial-
vector current A"(x), due to quarks and pions as well,
vanishes. However, introducing a pion field of small but
finite mass m =140 MeV, one may have

a„A&{x)=—f m q(x), (2.5)

(2.6)

Without WI, which is dictated by chiral symmetry, the
model would describe bare nucleon states and free pions.
First of all, neglecting the pion coupling with the quarks,
we can study the bare nucleon in terms of its individual
quarks obeying the Dirac equation obtainable from the
Lagrangian density W». The spatial orbits q(r) of the
nonstrange individual quarks satisfy the equation

[y E» —y p —m» —U(r)]q(r)=0, (2.7a)

which, after absorbing the constant Vo part of the poten-
tial U(r) appropriately in E» and m», becomes

[y E' —y p —m' —U'(r)]q(r)=0. (2.7b)

Here,

E» =(E» —Vo/2), m»
——(m»+gvo/2),

and U'(r)= —,'(g+y )ar . Then, considering the (1Sig2)
configuration only for the ground state of the nucleons,
the spatial orbits q(r) can be written as

yielding the usual PCAC (partial conserved axial-vector
current) relation. Then the chiral-symmetric Lagrangian
density for nucleons with a bare-quark core surrounded by
a pionic cloud becomes

W =W»(x) +W {x)+WI (x),
when

W» —— q{x)y"B„q(x)—q(x)[U(r)+m—»]q(x) . (2.2)

ig(r)/r
q(r)= cr-rf(r)/r (2.8)

Under a global infinitesimal chiral transformation

q(x)~q(x) iy —q(x),
2

(2 3)

But with /&1, the solutions for g(r) and f (r) are not
quite straightforward. Therefore, we prefer to

take)= 1,
which yields with A»=(E»+m») and ro={aA») ' the
reduced radial parts of the upper and lower components
in a simple and straightforward manner as
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g(r) =X»(r/ro)exp( —r'/2ro'),

f(r)= — (r/ro) exp( —r /2ro ) .
kqrp

(2.9)

(Eq —mq)=3, (2.10)

and Eq is the overall normalization factor satisfying the
relation

Ãq ~pro
=1/(3Eq+mq) . (2.11)

Sk,q

Now calculating in the usual manner, certain quantities of
the bare nucleon such as the magnetic moment pz, charge
radius &r )r, and the axial-vector coupling constant g„
for neutron-P decay can be obtained at this stage as

4M'

(3Eq+mq)

(11Eq+mq )

(3Eq+mq )(Eq —mq )

gg =
9 (5Eq+7mq)/(3Eq+mq)

We have found that with

(a,mq)=(2. 273 fm, 10 Me&),

(2.12)

(2.13)

the eigenvalue condition (2.10) yields E»=540 MeV,
which in turn with Vo ———137.5 gives the N and b,

masses correctly, ' after the appropriate corrections such

as those due to c.m. motion, the pionic contribution, and
one-gluon-exchange interaction are accounted for. This
also provides an order-of-magnitude prediction for the
quark-care contributions to bare-nucleon properties as

(lup, (&r )p)', gg ):—(2.3Jtl, -,0.85 fm, 0.944), (2.14)

which seems to be quite reasonable in view of the possible
corrections (c.m. and pionic} involved. A detailed account
of the quark-core contribution to the static properties of
baryons with c.m. correction has been reported else-
where, '3 where we have adopted the prescriptions fol-
lowed by Wong'3 and other workers'" for the c.m. correc
tions. However, for completeness, we briefly mention this
procedure for taking into account the c.m. correction.

The static three-quark baryon-core state with the core
center at x can be decomposed into components y(P) of
plane-wave momentum eigenstates as

Here E» is the ground-state (lS,&2) individual quark-
binding energy obtainable from the energy eigenvalue con-
dltlon

' 1/2

W(P)=(M~ +P )'~ /Mg . (2.16)

The momentum profile function p(P) can be obtained
from (2.15) and (2.16) as

P'(P)=,I(P),
(2m )

(2.17)

I(r)=[(1 cr /ro —)exp( r /4r—o )]3, (2.19)

when c=(E» —mq)/6(3E»+m»). This result, along with
(2 15), can be used to calculate expe:tation values of any
function F(P) as

& F(P)) =&3q,0
~
F(P)

~
3q,0) = Jd3PI(P)F(P) .

(2.20)

If Ea(=g»E») and M~ denote, respectively, the relativ-
istic energy and mass of the quark core of the baryon state
under consideration, with its c.m. momentum Pz, then
one can obtain' according to (2.20}, &P~ ) =+»&@ )»,
with &p )q as the average of the square of the individual
quark momenta with respect to the corresponding single-
quark state. &p )» in this model can be obtained as

t I

(2.21)
6(3Eq+mq )

This also can similarly enable one to evaluate certain

q tt h 5, =&M /E, &, 5,'=&M,'/E,'&,
&8 ) with R =(g Eqrqlg E»), in terms of which the
center-of-mass effects can be estimated following the
prescriptions of Ref. 14. According to this, one can ob-
tain the corrected values of p~, & r )~, and gq (8) as

T

Mp
i ~= 3ua+Qa (1—4)

Mg
(1+5g+5g'),

J

& r )g ——(3 & r )g —3' & R ) j/(2+5' ),
g~(8) =gA(8)/(1 3&Pa'&/M—B'»

(2.22)

where Qg is the total charge of the baryon core. It can be
shown that to a good approximation 5~ ———,( I+5~ ) and
for nucleons in particular &8 )=—,

'
&r )». Here, &r )»,

the mean-square radius of each nonstrange quark with
respect to the corresponding single quark state, is obtained
in this model as

where

I(P)=
3 f d rexp( —iP r)&3q, 0 ~3q, r) (2.18)

(2m )3

is the Fourier transform of the Hill-Wheeler overlap func-
tio»(r) = & 3q, 0

~
3q, r), which for the three IS&&2 quarks

in the present model comes out as

d P
~
3q, x) =f exp(iP x)P(P) ~8(P)), (2.15) 3 (11Eq+mq }

2 (3Eq+mq)(Eq —mq )
(2.23)

where the momentum eigenstates ~8(P)) of the baryon
core 8 are normalized usually as

& 8(P')
~

8(P) ) =(27r)'5(P —P') w(F),
(2.24)

Then, particularly for nucleons, one can express (2.22) as

QN Mr (1—4')
( 1+5~') 3 Mx ( 1+5~')
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3(r'&~ —Q~(r'&, =.
(2+5v')

(2.25)
form factor which is related to the generalized axial-
vector current

(2.26) A~"(x) =gq(x}y"y q—(x)+f 8"q)~(x) .
2

(2.33)

[pr, (r &r'~,gz j—=(2.71@,;0.732 fm, 1.182) . (2.27)

However, if one actually takes into account the cou-
pling of pions to the bare nucleon, the core contributions
to the static properties as obtained in Eqs. (2.12) and
(2.14) before including c.m. corrections, will in fact get
modified because of the so-called wave-function renormal-
ization and vertex dressing. This aspect will be taken up
in the following section. In any case, the results obtained
in Eqs. (2.14) and (2.27) provide a reasonable preliminary
estimate justifying the suitability of this simple
phenomenological model with chiral symmetry for the
study of electromagnetic properties of nucleons.

B. Pion-nucleon coupling and the axial form factor

As a next step, we now consider the pion-Lagrangian
density W =(W +&I), including the pion-quark in-

teraction term Wr, to obtain another preliminary estimate
of the pion-nucleon coupling constant.

The field equation for the pion field (Ipj(x) can be ob-
tained from W as

(Cl+m )g&~(x) = — G(r)q(x)y rjq(x) . (2.28)

The right-hand side of Eq. (2.28) is the source function
for the quark-pion coupling. Then the coupling of pions
to quarks in the nucleon can be given by the source func-
tion:

These relations give, with the calculated value of
6g ——0.7338,

G~ (q') =g~ u(q), (2.35)

where u(q) is the same as that given in Eq. (2.32). Thus
the axial constant gz ——Gq (0).

Now, on comparing Eqs. (2.31) and (2.35), one obtains
immediately (for q «4M~ ) the usual relation between
the pion-nucleon form factor with the axial form factor:

G (q )= Gz(q ).M~

f (2.36)

Then the pseudoscalar pion-nucleon coupling constant
G~N, which is defined at q =m, is obtained as

But since the pion-quark coupling is linear in the pion
field q)j.(x) and the pionic part of the axial-vector current
is proportional to 8"(pj.(x), there will be no contribution
to the axial form factor Gz(q ) from f &'q (x) if the
pion field is a continuous function. Then Gz(q ) which is
determined essentially by the quark core alone provides
simply a measure of the spin distribution of the quark
core. It can be defined in the Breit frame with

q ~g4M~ as

G„(q )(u rj /'i) =(i)' Jd rexp(iq r)AJ(r) Nj,
(2.34)

where A(r) is the space component of the quark axial-
vector current only in A~"(x). Once again, if one does not
take into account the c.m. motion, then with the three
quarks in 1S1&2 orbits, one can easily obtain

JJ (x)=g— G(r)q(x)y5~, q(x) . (2.29) M~
g~u(q =m. »f. (2.37)

For a static source JJ'(r), one can introduce the pion-
nucleon form factor G(v~))(q ) as

which leads, with c.m. correction in gz, to the NNm cou-
pling constant G~~ /4n. =13.025, as compared to the ex-
perimental value 14.1. The pseudovector NNm coupling

with

M~
g~u(q»f (2.31}

=2M& N d3rexp iq-r JJ r N . 2.30

Here, o and r refer to nucleon-spin and isospin opera-
tors, to be taken between nucleon states. If one does not
take into account the recoil effect, then for the three
quarks in 1S,&2 orbits, as given in Eqs. (2.8) and (2.9), one
easily obtains

10

0.6

u (q()

0.4

3 1
u(q) = 1 —— q exp

2 ))v(SEq+ 7m@)

2 2

(2.32)
4

0.2

and gz is as given in Eq. (2.12). The q dependence of
u (q) is shown in Fig. 1.

It is worthwhile at this stage to obtain the nucleon axial

02 03 04
-q (Gev )

0.5 66

FIG. 1. q dependence of the vertex form factor u (q).
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constant fz& can be computed from the usual relation-
ship v 4n(fN~ /m )=6~~ /2MN to give fpg~ -0.269,
as against the standard value 0.283.

C. Pionic perturbation and renormahzation of f8/pq

The pion-coupling effects can be studied in low-order
perturbation theory following the usual Hamiltonian tech-
mque as I CBM by pro)cct1ng again the quark Ham11-
tonian on to the nonexotic baryon subspace of color-
singlet baryons such as N, b., 8 (the Roper resonance),
etc., as

a'k w, a,'.a „.
J J

J
(2.40)

with the color-singlet nonexotic baryon states
~
8) as the

eigenstates of the Hamiltonian H [obtained from Wz(x)
in a canonical way] with masses Mii. Here, b a creates a
three-quark baryon state with quantum numbers of X, 5,
etc. Sirnilarjy, with ak. and a k as the pion destruction
and creation operators and wk (k——+m )' as the pion
energy, the Hamiltonian for the quantized free pion field
q&i(x) becomes

0=~o+&~+8
when

Fr, =y ~8)(8 ~M,'=gb,'b, M,',

(2.38)

(2.39)

Finally, the interaction Hamiltonian corresponding to
Wl(x) in the already mentioned nonexotic baryon sub-
space can be written in the form

Hr = — g f r( rG(r) 8' gq(r)(r p)y'q(r) 8))b ebe,f- a,a
(2.41)

which, on using the pion-field expansion, becomes

V (k)=—

f dik[VJ (k)biibiiak+H c ], . . . (2.42)(2~)'/2 „ 1

Here, H.c. denotes the Hermitian conjugate and Vi (k), the baryon-pion absorption vertex function in the point pion
approximation, is given by

(2') 'rx f r(rrG(r)exp(i)er) 8' gq(r)y q(r)rr 8j. (2.43)

Assuming that for the 88'ir vertex, the spatial orbits of
all the quarks in the initial and final baryon state are the
same 1Si/2, one can use Eqs. (2.8) and (2.9) to obtain

~ 2 k —3/2 V"'(k) = ~4
m~

ku (k} (~ii k)pii
)
1/2 (2.48)

I

In the same manner, the general baryon-pion vertex func-
tion can be written as

X 8' oqk~j 8 (2.44)

when u (k) is the same as that given in Eq. {2.32). Final-
ly, using the familiar Goldberger- Treiman relation
~4m(f~& Im )=g„(X)I2f,one gets

Vf~ (k ) =i V 4' (2.47)
ku(k) ~N ~k) ~)v

(2w )i/2 J

where

I(k)=2 I dr r G(r)J2/2(kr)exp( r /r& ) . (2—.45)

Now, using the standard integral result for I(k) and the
axial-vector coupling constant gq (8) in the present model,
the expression for VJ (k) can be simplified further. As
for example, considering the NXir-vertex function
V/ (k), we get

V~ (k) = (2wk } '/ g„(N)ku(k)(cr .k)P~, (2.46)

The bare pseudovector coupling constants xiii are taken
in the SU{6) ratio as f~z .f~ .faa ——1:&72/25:—,'.
Now, with the vertex function VJ (k) at hand, it is possi-
ble to calculate the pionic effects such as vertex modifica-
tion, wave-function renormalization, and pionic self-
energy of baryons in a perturbative manner.

The pionic self-energy of the baryons can be obtained
with the help of the single-loop self-energy diagram (Fig.
2) from second-order perturbation theory as

Vq|88'(k) VBB'(k)
(2.49)

(E wk —Mii )—
when gk=g. f d k/(2m) . The physical baryon state

~8) may be distinguished from the bare-quark —core
baryon state

~

8 ) by writing it up to the one-pion level as

~
8)=Z, '"~8)+QC, ..~8'~), (2.50)

where 8' are the appropriate baryon intermediate states,
and Zii and

~
Cii

~
are the probabilities of finding the
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N
N

FIG. 2. Lowest-order nucleon self-energy due to quark-pion
coupling.

r
L

states
~
8) and

~

8'Ir), respectively, in the physical
baryon state. It is worthwhile to point out here that if all

possible corrections such as gluonic and pionic corrections
applicable to the quark-core quantities are treated in-

dependently, as though they were of the same order of
magnitude, then at the quark-core level (N, b, ), (A, X,X'),
and (:-,:-') would be separately mass degenerate. Consid-

ering in particular the case of a nucleon, the appropriate
intermediate states like N and b, can then be treated on
mass shell with M~ ——M~, so that the physical nucleon
state is written as

FIG. 3. Lowest-order contribution to the vertex renormaliza-
tion of the nucleon axial-vector coupling constant.

(r) —1

fNN» =ZNZI fNN» . (2.55)

The wave-function renormalization factor ZN given by
Eq. (2.54) reduces fNN„ from its bare value fNN, whereas
the dressing of the vertex described by Zi tends to in-

crease this value. Figure 3 shows the first-order dressing
of the vertex which yields, ' with eNq ——", fNN

—I i,

with

~
g) =ZNI~I

~
X)+CN I IiIIr)+Ca

~
hsr), (2.51)

1 5 8=(1+ s &N»+ s &a»+ is &Na»)

=(1+ I's'I IfNN ') (2.56)

eN»=
I &N» I

'= 3I»ifNN»'

96 2ea»=
I ca»l = IsI»ifNN» .

Here,

1 " k u (k)
dk

KNl ~ 0 Nk

Then, with the bare value fNN =0.269 obtained earlier,
one obtains the renormalized IiINIr coupling constant as

fNN -0.23. Thus it is shown that within the present
model, the renormalizations of the pion coupling to bare
nucleons is not only finite but small, as is the case in
CBM. Therefore; a perturbation approach, in taking into
account the pion-cloud effects, seems quite justified in the
study of electromagnetic properties of nucleons, in the
present framework of a chiral potential model.

1
(I4 2Aro—I6+A ro Is),2 2 4

flVPl ~
(2.52)

III. ELECTROMAGNETIC PROPERTIES
OF NUCLEONS

1

exp(z)
2n (~ ))2o, m 0- ( —z) 1 (n m —l,z}—,

(2.53)

where, a=ro /2, z=am, and (" ' } are the binomial
coefficients. Then evaluating I, as I I

——0.7247, one can
obtain the bare-nudeon probability Zz in a physical nu-

cleon state
~

N ) from the normalization requirement as

ZN=1 —«N +&a }=(1—'I's'I ifNN ') . (2.54)

It rs worthwhile to point out that because of the quark-
pion coupling effecting wave-function renormalization
and also vertex modification, the pion-nucleon coupling
coIlstaIlt fNN ls sllpposed to get renormallzed. In a
theory without antinucleons and therefore with no renor-
malization of the pion propagator the renormalized NNm.
coupling constant is usually given by

when g=(g„' —m„')/2(5E„'+7m„') and the reduced in-

teg rais

k2nI2„f dk ——exp( —ro k /2)
mk

evaluated in a convergent series form can be written as

Now, with the convergence property of model at hand,
one can use a perturbative approach to include explicitly
the role of the pion cloud in studying the electromagnetic
properties of the nucleons. For that, we first of all give a
brief outline of the electromagnetic form factors of the
nucleons.

For a given nucleon current J"(x), the Dirac-Pauli nu-
cleon form factors are written in the form

(&(Pf )
~

J"(0)
~
N(P;) )

(X(q/2)
~

J'(0)
~

N( —q/2))

= (1+ Ii ) 'i'X, X,[Gg(q')+I.IGg(q')],
(32)(&(q/2)

~
J(0)

~

&( —q/2))

=( +Il) ' X, X, [GM(q )+IIGII(q )],

l q~—U '(Pf ) Fi (q )1"+ FI(q ) U, (P; ), (3.1)

when FI I(q )=Fi I(q )+I~FI"z(q ) and U, (P) are the
nucleon spinors with P; and Pf as the ingoing and outgo-
ing nucleon four-momenta, such that P; f MN . Here, ——
q& is the four-momentum transfer with q =(qo, —q ).
In the Breit frame, with —P; =Pf ——q/2 and qo

——0, one
can have
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Ji'( —q )= Jd r Ji'(r)exp(iq r), (3.6)

where the nucleon current considered as the sum of the
quark-core current and the pion current due to chiral
quark-pion coupling is given as

J"(r)=J,"(r)+J"(r),
with

where ~i=+I for the proton and neutron, respectively,
and the Sach's form factors G(q ) with i}=q /4M~ are

GE'(q'}=+i'(q') n—+i' (q'»
(3 3)

G ' (q')=F, ' (q')++ ' (q') .

In the static limit (M~ —+ ao ), if we define

11m (N(q/2) I
J (0)

I
N( —q/2) &

M~ -+ ot}

=(N(s', A, ')
I
J"(—q ) IN(s, A, )&, (3.4)

where
I
N(s, A, ) & is the nucleon spin-isospin states, we can

obtain

(N(s', A, ')
I [GE(q2}+r3GE(q )] I

N(s, k. ) &

=(I+rl)'i (N(s', J(,')
I
J ( —q ) IN(s, A, )&,

(3.5)
(N(s'A, ')

I [Gsr(q )+v3G~(q )] IN(s, J(, )&
N

=(I+il)'i (N(s'A, ')
I
J( —q ) IN(s, A, )& .

For computation of the theoretical values of the nucleon
form factors, it is useful to define the Fourier transform
J"(—q } as

3

J,"(r)= g eqq(r)y"q(r),

J"(x )=eel jy; (x)B"pj(x) .

However, with the usual expansions of the free pion field
y;(x), J~(x) can be simplified to obtain the pionic charge
and current densities in terms of the pion creation and de-
struction operators, as given in Ref. 5. It is worthwhile to
point out here that in calculating the nucleon form factors
from Eqs. (3.5) through Eqs. (3.6) and (3.7), one must use
the physical nucleon state

I
X & as given in Eq. (2.51) for

the nucleon spin-isospin state
I
X(s,A, ) &.

A. Charge form factor GE(q ) and nucleon charge radius

The nucleon charge form factor, in general, for the pro-
ton and neutron can be given as

GE(q')=GE, ,(q')+Gg (q'), (3.8)

where Gx, (q ) is the contribution of the quark-core
current and Gx (q ) is that due to the pionic current.

1. Co~e contribution GE,,(q )

First of all, we proceed to obtain the core contribution
GE, (q ) to the nucleon charge form factor which arises
because of the virtual photon coupling to the quarks in
the bare-nucleon core, together with processes correspond-
ing to vertex and self-energy corrections [Fig. 4(a)].

Now, according to Eq. (2.51), the physical proton and
neutron states, written in the perturbative expansion form,
up to the one-pion level, would be

I p & =ZN'"
I p &+cN~«2/3 In~'& —&I/3

I
p~'&)+c~.«I/2

I
~"~

&
—&I/3

I
~'~'&+&I/6

I
~'~'&»

I
n &=z„'"In &+c„.(v'I/3 In~'& —&2/3

I
p~-&}+c,.(v'I/2I a-~+ &+~1/6I/+~ & &I/3

I
to~0&) . -—(3.9)

For the charge-neutral bare three-quark states such as
I

n & and
I
b &, the expectation value of J, ( —q ) would

be zero, leading specifically to no charge distribution for
the neutron in the lowest order. However, for a charged

bare three-quark state such as lp&, I
&++&, or

I
b,

etc. , the expectation value of J, ( —q2) would be nonzero.
If we denote this as nGP, (q ), where n gives the total
charge of the three-quark state as an integral multiple of
proton charge, then Gx}',(q ) in the present model, using
the quark spatial orbits as given in Eqs. (2.8) and (2.9),
would be

2

Gg (q')=(I+il)' '
2 (Eq+mq}(3Eq+mq)

N (a) Xexp( qro /4) . — (3.10)

(b)

Then from (3.8), using the physical proton and neutron
states as given explicitly in (3.9), one can obtain the core
contribution to the charge form factor for proton and
neutron, respectively, as

FIG. 4. Relevant diagrams contributing to the electric charge
form factors for nucleons due to (a) photon-quark interaction,
(1) photon-pion interaction.

Gg, (q )=(ZN+ —,e~ + , eg )GP, (q ), —

Gz,.(q')=( i &w —
3 &a )Gk. (q') .

(3.11)
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Now using EN and Ea from Sec. II, we obtain

Gf, (q') =(Zw+ '2'5'fed i)GP,.(q'»

GE,.(q')= 25f~xd tGE,'(q') .
(3.12)

GE (q )=F (q )C(q)GE (0)

Thus, it is evident that the charge distribution of the neu-
tron in the core in this model is a first-order effect of pion
coupling arising directly from the

~
pn),.

~

b, +rr ), and
rr+ ) components.

(3.18)

where v&
——+ 1 for the proton and —1 for the neutron.

Hence, the total charge form factor for the proton and
neutron, respectively, can be given as

2. Pionic contribution GE (q ) Gg "(q') =Gg;,"(q')+Gf ".(q') . (3.19)

j (r)=(N
~

J (r) (N) . (3.13)

This leads to two nonzero terms depicted in Fig. 4(b)
which can be written according to the relevant intermedi-
ate stages as

J~(r) =Js;x(r)+Jn, a(r) ~ (3.14)

Now the Fourier transform of expressions in Eq. (3.14)
would yield GE& (q ) and GE a (q2). However, for sim-
plicity we first of all calculate these quantities in the
q2~0 limit, so that

GEN „(0)=lim(1+g)' f d3rexp(iq r)r3J Jv (r),
q~ 0

(3.15)

when according to Ref. 15, with degenerate N and b,
states,

Finally, to calculate the pionic contribution to the
charge distribution, we first regard the pions as pointlike
objects. Later on, the strong-binding effects in the isovec-
tor re. channel and the effect of the finite pion size will be
incorporated phenomenologically in terms of the pion
form factor and an additional multiplying cutoff factor,
respectively.

Since pions contribute only to the isovector form fac-
tors, one can define effectively the pion charge-density
operator by

Now, using Eqs. (3.12) and (3.18) in (3.19), it is straight-
forward to observe that the total charge of the physical
nucleon Qz„—Gg'"(0) comes out correctly. The exact
cancellation between Eqs. (3.12) and (3.18) at q =0
guarantees the total neutron charge Q„ to be zero. On the
other hand, the core charge Q~, = Gg, (0) and the pion-
cloud charge Q~ =Gg (0) add up exactly to give Q~= 1,
implying thereby the conservation of charge. In Figs. 5
and 6, respectively, we have shown the q dependence of
Gg(q ) and GE(q ) as calculated from Eq. (3.19) in com-
parison with those obtained in MIT-bag-model calcula-
tions. %e observe that the overall agreement with the ex-
perimental data' is reasonably good, with discrepancies
more prominent for the higher q region only. This may
be due to the fact that possible recoil corrections have not
been taken care of in our calculation. One should further
note that the dressing of the quark core by a pion cloud in
this work has effect only on the isovector form factor
GE- —,'(Gg —GE). Modification of isoscalar form factor
GE ———,'(Gg+GE) requires a description of photon cou-

pling to at least three-pion intermediate states. In that
case, a small correction to GE would affect GE much
more than Gg. Therefore, apart from a qualitative com-
parison of GE with the experimental data, we do not at-
tach greater quantitative significance to the results for the
neutron form factor in particular.

GE,Nn (0) r32efNNm Im i

V 32
GE,a (o)= 'r3» ef&~ 'I i—

(3.16)

Then, GE (0)=GE N (0) + GE a (0) in the units of e is
O.s

18
GE,.(0)='r3 „few. I~l . — (3.17) O.6

G,(4
Here, only terms of second order in 1/f have been kept.
Now, in view of the fact that a pion may have finite size
and mw pairs in the isovector vector channel undergo
strong interaction, we can introduce the entire q depen-
dence of the pionic charge form factor in a phenomeno-
logical manner, through additional multiplying factors
like the pion form factor F (q )=('1——,

' (r ) q ) with
(r ) t~ =0.78 fm ( experimental value) and a cutoff fac-
tor' ' C(q)=exp( —q A /4), with the size parameter
A =2 fm corresponding to the effective pion radius'
r 0 4fm. Then we ha. ve

0.2

0-6
-q (Gev)

FIG. 5. Electric charge form factor Gg(q') for a proton, in
comparison with experiment and MIT work.
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(r'&N ——(r'&Iv, , +&&r'&~,. (3.22)

G" (@
~ ~

P RESTANY O'ORK

~ p

11

05 10

Carrying out the calculation, we find the charge radius for
the proton (r )z'/ -0.79 fm and that for the neutron
(r )„'/ ——0.344 fm. These results are presented in
Table I, in comparison with the corresponding experimen-
tal values; this comparison shows excellent agreement.

S. Magnetic form factor G~(q )

and nucleon magnetic moments

3. nucleon charge radius

The nucleon charge radii, however, can be computed
from Gf(q ) and GE(q ) in the usual manner as

(r')„=—6
aG (q2)

(3.20}
t)q

2
q2 o

But in order to incorporate the effect of c.m. motion in
the core radius only, while neglecting it for the pionic
component, we separately calculate the radius of the nu-
cleon core coming from Gx, (q ) and the correction factor
coming from Gs (q ). This yields

& r')„=(Z~+ '2", f~~ 'I i) &r'),', ,

& "&...= i"sf~a.'~.i &"&p,.

FIG. 6. Electric charge form factor GE(q ) for a neutron, in
comparison with experment.

Gsr(q')=G~, .(q')+G~, (q'} . (3.23)

I. Core contribution G~,,(q~)

Core contribution to the nucleon magnetic form factor
is essentially due to the photon-quark interactions, as de-
picted in Fig. 7(a). But unlike the charge density opera-
tor, the current operator can cause transition between the
nucleon and b, states. First of all, we can calculate the
zeroth-order term in Gsr, (q ) corresponding to the bare
three-quark component of

~

N ). This leads to
1/2

exp( qro /—4),Gg. (q') =V,' 1+
N

GM~. (q'}=—
1 j2

Pp q
2 exp( qro l4), —

(3.24)

Using Eqs. (3.6) and (3.7) in (3.5), the magnetic form
factor Gsr(q ) can, in principle, be derived in the model,
when for the nucleon spin-isospin state ~N(s, A, )) one
must take the physical nucleon state

~

X). Since the nu-
cleon current density has a core part and a pionic part, the
magnetic form factor, as a result can be written accord-
ingly as

(11Eq +mq }

4M~ 2 (Eq mq )(3Eq+mq)
(3.21)

4M'
(3E'+mq )

Now applying the c.m. correction to the core radius
(r )&, and (r )„,according to Eq. (2.25), we obtain

However, because of the vertex correction and wave-
function renormalization, the bare-quark —core contribu-
tion to the magnetic form factor would get modified,

TABLE I. Static electromagnetic properties of the nucleon.

Quantity

( p2) 1/2
P

& p2) I/2

Pp
Pn
gw

Present work

0.79 fm
—0.344 fm
2.730@.q-

—1.975p p--

1.182

Expt.

0.85+0.02 fm
—0.341 fm
2.7928@ .~."
—1.913@~-

1.25S+0.006

CBM values

0.83 fm
—0.36 fm

2.6p p--

—2.01@,]-
1.33

%ith (a, Vo„ro, m„'=mq)—:(2.273 fm, —137.5 MeV, 0.63 fm, 10 MeV)
(I 1,I P)=—(0.7246643, 1.902)
(5 A )=(07338 2 fm )
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N

g((

hJ' h

-&.0

-&.5

N & & N

FIG. 7. Relevant diagrams contributing to the magnetic form
factors for nucleons due to {a) photon-quark interaction, and {b)
photon-pion interaction.

which according to Ref. 15, becomes

Gk,.(q')=Zx(1+ z'red + 17 ed + 9s'Nd )GP/e(q'»
(3.25)

GM,.(q')=Zd(1+ 9ed + i'sad + 1 eNd )GM",.(q')

2. Pionic contributio G~ (q )

-'2.0

'0 Q.6
—c)a(GeV')

FIG. 9. Magnetic form factor G~(q ) for a neutron, in com-
parison with experiment.

02

According to Ref. 15, with degenerate ItI and h, states, it
is easy to obtain, in the limit q ~0,

88
GM, (o)=rizsf~n I 2

j (r) =
& &

I j (r)
I
& &

=j~ d (r)+ jmd(r) (3.26)

Next we calculate the pionic contribution to the mag-
netic form factor; we define the pion current operator:

with

k'u'(k)
dk

mm Wk

where j ~(r) and j d(r) are the contribution of the pionic
current with bare nucleon and 6 intermediate states
shown in Fig. 7(b). In analogy with Eq. (3.5), we define
the pionic contribution to the magnetic form factor as

Gn'", (q') =r3fG~~.(q')+G', .(q')]

3.Q

2
(I4 2Aro I6+—A ro Is)

VlNl~

The reduced integrals

I2„=f dk k'"exp( —alt2)/wk4

can be evaluated in a closed form as

r(n+ ,
' )-

2Q

(3.28)

(3.29)

2.0

Gg(w)

wheil z=Qrrt~ =ro rrt /2 and Q(g b z)
Kummer's confluent hypergeometric functions of the
second kind. ' The I~2 can be evaluated as I~2 ——1.902
MeV, enabling the explicit calculation of GM (0). As
done before, if we choose to introduce the entire q depen-
dence in a phenomenological manner through the same
additional multiplying factors C(q)F (q ) as used in case
of Gd. (q ), we obtain

G~ (q )=F (q )C(q)G~ (0)

A
=r32Ifm 'I 2(1 —

6 &r'& q')exp—

0.5

0-6
— '(GeP)

).o

FIG. 8. Magnetic form factor GQ(q2} for a proton, in com-

parison with experiment.

(3.30)

Then we can compute the q dependence of G~(q )

without taking into account the recoil corrections. The
results so obtained for GQ(q ) and G~(q ) have been
presented in Figs. 8 and 9, respectively, in comparison
with the experimental data, which shows very good agree-
ment.
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The magnetic moments pp and p„of the proton and
neutron, respectively, can now be computed from GQ(q )

and G~(q ) at the q ~0 limit so as to give, in nuclear
magneton units,

Pp(n) =Pp(n), c+&Px,~ ~ (3.31)

when from Eqs. (3.24) and (3.25) we have the core contri-
butions

{3.32}

However, if we apply the c.m. corrections to the core con-
tributions to the magnetic moment only, according to the
procedure adopted through Eq. (2.24), then we can obtain

p~, . Finally, the correction to the nucleon magnetic mo-
ment due to the pion cloud is obtained from Eq. (3.29}as

88
~P'N, e +3 15 fNNe In2 ~ (3.33)

IV. SUMMARY AND CONCLUSION

We now summarize the results we obtained and the ob-
servations made in studying the electromagnetic proper-
ties of the nucleons by incorporating chiral symmetry to a
simple phenomenological potential model with the indivi-
dual quark potential in an equally mixed scalar-vector
harmonic form. Although the tools used in the perturba-
tive approach with a linearized pion-quark interaction are
quite well known, the calculations involved in considering
the pion-cloud effects become more straightforward and
tractable in the model, yielding very satisfactory results
for the electromagnetic properties of the nucleons.

Wc llavc trcatcd all possible corfcctloiis (p10111c, gluoil-
ic, and those due to c.m. motion) to the bare-nucleon
values independently, assuming that they are of the same
order of magnitude. In that case,

~
N) and

~

b, ) can be
treated as mass-degenerate bare states. In such a simplis-
tic approach the integral expressions involved in the per-
turbative calculation of the self-energy, vertex modifica-
tion, and wave-function renormalization turn out to be

which is positive for the proton and negative for the neu-

tron. Hence,

(3.34)

On calculation, one finds that
~
5@~ ~

=0.5356@,&-,

whereas the core contributions after c.m. correction are

p&, ——2.1923@," and p'„, = —1.44p~-. Thus, applying the
pionic corrections to the core values, we obtain pp =2.73
p,&- and p„=—1.975',;, which are very consistent with
the experimental values.

simple and can be evaluated as shown in the text. The
values of these relevant integrals are summarized in Table
I, along with the results obtained for the charge radii,
magnetic moments, and the coupling constants. In all
these calculations we have used the standard value of
f~v ——0.283. The results obtained are shown to agree re-
markably well with the corresponding experimental
values.

The nucleon form factors such as Gz(q ), Gz(q ), and
G~(q ) have been studied, neglecting the recoil correc-
tions. The contribution of the bare-nucleon core to the
charge form factor Gx(q ) and the magnetic form factor
G~(q ), in view of the pion-quark coupling giving rise to
vertex dressing and wave-function renormalization, gets
modified keeping its q dependence in tact. However, ob-
taining the q dependence of the corresponding pionic
parts in Gx{q ) and G~(q ) is not so straightforward. In
view of the fact that the pionic contributions to the iso-
vector part of the charge and magnetic form factors in
this model are significantly small, we evaluate them from
the theoretical expressions only in the limit q ~0. Then
its overall q dependence is provided in a phenomenologi-
cal manner, considering the finite size of the pion and also
the strong-binding effects in the isovector arm channel.
The results for Gg(q ), Gx(q ), Ggz(q ), and G~(q ) are
shown in Figs. S, 6, 8, and 9, respectively. The overall
behavior of Gf(q ), GE(q ), GQ(q ), and Gir(q ) is
found to be in good qualitative agreement with the experi-
mental data. Inclusion of recoil correction and the short-
distance one-gluon-exchange effects not considered here
might improve the agreement.

Thus we conclude that such a chiral quark model, with
an equally mixed scalar and vector-harmonic potential for
individual quarks incorporating pion-quark interaction in
a linearized form, provides, in the usual perturbative ap-
proach, a reasonable and consistent description of the
electromagnetic properties of nucleons. The pion-cloud
effects, although not very significant in this model, give
an overall result very much in agreement with the experi-
ment. The charge radii, magnetic moment, and the axial-
vector coupling constant in neutron-P decay, after pionic
and c.m. corrections, are in remarkable agrewnent with
the experimental values. In view of the simplicity of the
model the results are quite encouraging.
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