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Pion as a qq soliton bag: Dressing of the nucleon and 5
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The pion cloud surrounding the nucleon and the 5 is studied in the soliton bag mode1. The
quark-antiquark substructure of the pion is fuOy taken into account using generator-coordinate tech-

niques. The one-gluon-exchange piece of the model Hamiltonian is responsible for creating the qq
pair. The results ere obtain for various hadronic properties are in good agreement vnth experimental
data and quahtatively similar to those obtained in the cloudy bag model.

I. INTRODUCTION U(o)= —o +—cr +—tT +p .
3f

(1.7)

The soliton bag model, introduced by Huang and
Stump' and by Friedberg and Lee,2 3 is a phenomenologi-
cal attempt to bridge the gap between the fundamental
quantum chromodynamics (QCD) theory of strong in-
teractions and the description of observed hadronic prop-
erties at low energy in terms of quark and gluon degrees
of freedom. This is achieved by assuming that the com-
plicated nonperturbative features of QCD which yield
color confinement can be approximated by a colorless, fla-
vorless self-interacting scalar field: the soliton field tr(x).
The model Lagrangian density is written as

W(x)=W»+W +W» +WG,
where

W»(x ) =%'(x)p4(x)

is the free quark Lagrangian (0 is the quark-field opera-
tor);

The model as presented here contains five parameters:
a, b, c, g, and g, [p is not a true parameter since it only
contributes an overall constant to the Lagrangian density,
and is determined by requiring U(tr„)=0]. It has been
extensively studied by the Seattle Nuclear Theory
Group. ' The general philosophy adopted in solving
the Lagrangian density (1.1) has been to consider first
only the quark and soliton pieces W», W „and W»,
neglecting the gluons, and subsequently to incorporate the
gluons perturbatively. At every level of approximation,
e.g., as one includes more gluons, the phenomenological
parameters of the soliton bag model must be readjusted,
and one expects the soliton field to play less and less of a
role. In fact, in the limit where the gluons are treated ex-
actly, the sohton field should decouple completely from
the problem [that is, we expect g~0; «(tr)~1] In th. at
ideal limit, the Lagrangian density (1.1) gives the exact
QCD Lagrangian density:

W (x)=-,'(8&cr) —U(o) (1.3) I

WqcD —— —,
' F&"F„'„+i—4y"d„+ g, %'y" Vt —4 . (1—.8)P

is the self-interacting soliton field Lagrangian;

W«(x) =—g%(x)tr(x)%'(x) (1.4)

represents the linear coupling between quark and soliton
fields; and

Considering the simplest version of the model for now
(WG neglected), one obtains the Hamiltonian operator in
the following canonical way:

H, = 'r %'ap%+ — + V~ '+Uo +g%~%,

WG ———-'«(a )Ft'"tF' —g 4y"—V' 4

represents the gluons self-interactions and their coupling
to the sohton field via the color-dielectric function «(o)
[constructed such that «(0)=1 and «(o„)=0] and to the
quark Geld. In our notation, V„'(x) is the gluon-field
operator,

(1.6)

1t! are the Gell-Maim matrices, generators of the color-
SU(3) group, and f " its structure constants. The QCD
strong coupling constant g, and the phenomenological
quark-sohton coupling constant g are not directly related.
The potential U(tr) is taken as a polynomial in a (limited
to fourth order to ensure renormalizability):

where m is the momentum canonically conjugate to o,
t)trfT—
t)t

(1.10)

The fields obey the usual equal-time commutation and
anticommutation relations

[a(r, t),n(r', t)]=i5 (r—r'),

I'P(r, t), % (r', t)] =53(r—r') .

Goldflam and Wilets first extensively studied the
Hamiltonian Ho in the mean-field approximation (MFA),
i.e., neglecting all quantum fluctuations of the soliton
field. Using the Schrodinger picture, the quantum opera-
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tor o(r} is replaced by a static c-number field oo(r), while

Iro(r) vanishes identically. We expand the quark-field
operator III(x) in a complete set of spinors,

q (x)=g b, fI,(r),
k

(1.13)

where bk and bI, have the usual meaning of quark
creation and annihilation operators. Neglecting vacuum-
polarization effects one finds the following coupled equa-
tions of motion:

[cc p+g&oo(r}N'k«}=&kA«»

d U(cro)
+g g fkkk=O.

k{vaI)

(1.14)

and corresponding to the eigenenergy e, . Here X, is the
12-component spinor carrying the spin-(2), flavor-(2), and
color-(3) projection quantum numbers of the quark [we
will limit the present discussion to two flavors (up and
down) of quarks only]. Low-lying baryons and mesons
can be constructed from these single-particle quark states
(three quarks in the isis state for baryons, one quark in
the isis state, and one hole in the lsiq2 negative-energy
state for mesons) by coupling them to the correct total

I I
i

I I I
J

I I I
f

I I
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0 02 O4
soliton field a. (in fm ')

FIG. 1. The soliton field self-interacting potential U(u} for
the following parameters: a =51.6, b = —799.9, and c=4000.

If the soliton potential U(cr) has two minima (a local
minimum at cr=0 and an absolute minimum for some
large positive value cr=o„), as shown in Fig. 1, these
mean-field equations admit baglike solutions: the radially
symmetric soliton field is small and negative inside a cavi-
ty, and large, approaching o„outside the cavity with a
smooth surface transition. As can be seen from the Dirac
equation (1.14), to this configuration of o(r) there corre-
sponds a whole spectrum of quark eigenstates, symmetric
with respect to zero energy (positive- and negative-energy
states). The lowest positive quark state (valence state) is
the 1 size state given by

u(r)
(r)=

I'U rcrr

spin, total isospin, color-singlet state in the standard way.
Static physical properties of low-lying hadrons can then
be calculated and give reasonably good agreement with ex-
perirnent. The results obtained are shown to be quahta-
tively similar to those of the MIT bag model. '

This level of approximation of the soliton bag model (as
well as of the MIT bag model} presents, however, two im-
portant and related shortcomings. First, it is in direct
contradiction with some well-established experimental re-
sults of nucleon-nucleon scattering. Those data clearly
show that at medium and long separation distances two
nucleons interact by exchanging pions. A single nucleon
should also be able to exchange pions with itself, or be
dressed by a pion cloud. Neither the MIT nor the soliton
bag in the MFA form allow for such piomc dressing.
Furthermore, the model we have just presented grossly
violates what is considered to be an important symmetry
of nature: chiral symmetry. That symmetry is satisfied
in QCD in the limit of massless quarks, but by introduc-
ing the soliton field o(x) to achieve confinement, we have
given the quarks an effective mass goo(r}, and by doing
so we have violated chiral symmetry in the surface region
of the cavity.

These two shortcomings (absence of a pion cloud and
violation of chiral symmetry) are related through the
Goldstone theorem: chiral symmetry is believed to be a
hidden symmetry associated with the existence of a inass-
less particle (the Goldstone boson). The abnormally low
mass of the pion (rri =140 MeV) compared to other had-
ron masses makes it a perfect candidate for that Gold-
stone boson. The fact that the pion is not absolutely
massless indicates that chiral symmetry is only partially
realized in nature. The corresponding conserved vector
current, the axial-vector current in this case, is only par-
tially conserved (PCAC).

These considerations have led a number of people to
modify the traditional bag models in order to restore ap-
proximate chiral symmetry to those models. '4 Is All
these approaches have in common the introduction of a
new degree of freedom into the original Lagrangian: an
elementary pion field. PCAC is then achieved in two
steps: first, the massless pointlike pion is coupled to the
quarks at the bag surface in just the right way so as to re-
store exact chiral invariance to the model Lagrangian;
then that symmetry is broken by giving the pion its physi-
cal mass.

The approach adopted in this paper, however, treats the
pion in a completely different way. Instead of modifying
the original model Lagrangian, we investigate whether ap-
proximate chiral symmetry is restored dynamically. We
believe that the soliton bag model should be able to ade-
quately describe both baryons and mesons in terms of
their quark substructure. Therefore, we treat both the nu-
cleon and the pion surrounding it as bags containing
quarks and antiquarks.

As me describe in the next section, the generator-
coordinate method is used to handle the large amplitude
dynamics of these two interacting bags. There we also
show how the one-gluon-exchange (OGE) interaction can
produce the quark-antiquark pair forming the pion. In
Sec. III we give the formal solutions of the generator-
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coordinate equations with the correct treatment of total
angular momentum, isospin, and color quantum numbers.
The numerical method used to solve the radial part of
these equations is discussed as weB. Finally, Sec. IV con-
tains a summary of the hadronic properties that can be
calculated in this model and how well they compare to ex-
periment.

II. PIONIC DRESSING OF N AND h,

In this calculation, we choose to treat the gluon piece of
the soiiton bag model (1.5) at the level of one-gluon-
exchange approximation. This choice corresponds to the
following model Hamiltonian:

H =Ho+H', (2 1)

J,"(r)=Wr)y" 0(r),
2

a, is the @CD strong coupling constant

(2.3)

where Ho is given by (1.9) and H' is the one-gluon-
exchange interaction

H'=-,'a, r r'J," r &„r,r', ~ J," r' . 2.2

Here J,"(r) represents the quark-color current operator
(color index c):

(2.4)

and 6„„(r,r', co) is the gluon propagator. In principle, it
should be a confined propagator, calculated, for example,
as a functional of the soliton field o through the dielectric
function x(o). Such a propagator has been obtained by
Bickeboller, Goldflam, and Wilets and has been shown
to give an enhancement of the N-5 mass splitting over the
results obtained with a free propagator by a factor of
about 2. However, in order to keep this calculation as
simple as possible, we have opted for the use of a free
gluon propagator, at least as a first step, hoping that most
of the enhancement due to confining the gluons can be ab-
sorbed in the strong coupling constant a, (which will be
treated as a parameter in this approach).

Following Ref. 7 we write the free propagator
G&„(r,r', co) in the Coulomb (or transverse) gauge in terms
of scalar and vector spherical harmonics:

6 0 0 0
0

G „= (2.5)

0

where 6 and 6" are given by

1

G(r,r')=, =g, ', I'i (f)F~' (r'),
J
r —r' [,2l + 1 r',+ ' (2.6)

6"'(r,r';co)=4irg raj, (d'or—, )nr(d'or, )[I (f&)]"[;, (r, )]"
\

[VXjl(~& & )+0m(&&)] '[V&«1(r) )Ii (r) )] '

[Vxr' 9'g (r )] ' VX,+, +ii (9))
r0 (21+1) r +' (2.7)

An even further simplification adopted here is to consider the static (co=0 limit) of the tensor propagator:

6"'(r,r')=y i+, [0 (&&)] '[+'(i (&))]"—
, 21+1 r',+' 2(2I+3) ' - ' ",+'[VXr'&+ 8'g (r&)] ' Vx, +, 8'il (r))

+ [VXi"'&8'0 (9&)) ' VX i, ii (r ) (2.S)

%'e relax that approximation below by doing the calcula-
tiou for different values of co and show that a static limit
makes sense.

In order to find the eigenstates (and especially the
ground state) of the total Hamiltonian H, we use a per-
turbativelike treatment, building upon the MFA solutions
of Ho obtained by Goldflam and Wilets, because they
provide a good description of the low-lying hadron prop-
erties and because the one-gluon-exchange corrections are

small effects (as demonstrated by the smallness of the N-
LL mass splitting compared to the nucleon or b, mass).
However, we also need to allow for large amplitude defor
mations such as the emission of a pion bag by the nu-
cleon.

The generator-coordinate method (GCM) is well suited
for these two purposes. A dynamical state is constructed
from a superposition of static states each characterized by
a parameter called the generator coordinate and weighted
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by a function (in general complex) of that parameter.
That function is then determined by variation. Let

i B; )
be a known approximate baryon eigenstate of Ho obtained
in the MFA. The index i indicates the spin (S, projection
s}, flavor (T, projection t), and radial excitation (n} quan-
tum numbers:

iB;)= iS;,s;, T;,t;;n;) .

o(r)=tr„+ iii f d k(2~)'" 2 k
(+ t& i—k r+. u &ik r}

(2.12)

gate m in plane waves, taking out the vacuum value tr„ for
convenience:

Our generator-coordinate ansatz for the dressed ground
state of H will be

i B, &'=C,
i B, &++ f d'ay, ,(a)

i BJ,~; T„t,,a&,

tr(r)= f dik
(2~)'"

" 1/2

(gate
—a r ter)

{2.13)

(2.10)

where the parameter a is the generator coordinate and the
state ((B~,rt; T;,t;,a) represents a baryon with quantum
numbers j accompanied by a pion

i
tt) at a "distance" a,

the baryon and pion isospins being coupled to give a total
isospin of T„projection t;. The weight factors C; and

(I},J(a) have to be determined variationally. The sum over

j should be over all possible quantum numbers (spin, fla-
vor, and radial excitation) of the baryon iBJ), but for
simplicity we will restrict it to the lowest radial excitation
(no sum over n) Furth. ermore, only two types of baryons,
the nucleons (S=—,', T= —, ) and the 6's (S=—,, T= —, }
mill be considered.

The states
i Bj,m.;T;,t;,a) should be chosen very care-

fully and built from the MFA solutions if the model is to
make any sense. For example, one feature we require is
that for large baryon-pion separation distances (a~oo),
the state

i Bl,n-, T;,t;,a) should go over to two separated
bags:

B,, rt; T;, t;,a )~ i B, )0(3(
i

m )I as a~ a) . (2.11)

Recoil and center-of-tnass corrections are serious prob-
lems affecting all relativistic quark models. The MFA
treatment described above is no exception. By nailing
down" the bag at the origin, one finds localized solutions
that are not eigenstates of the total momentum operator.
A thorough treatment of that problem in the framework
of the soliton bag model has been obtained by Lubeck,
Birse, Henley, and Wilets. It involves variation after pro-
jection. We will not attempt to solve the delicate question
of center-of-mass corrections in this calculation even

though the treatment by Liibeck, Birse, Henley, and %i-
lets could in principle be applied here. The baryons

i
B)

will be "nailed domain*' at the origins as in the MFA. No-
tice, however, that by considering pion states at different
distances from the origin in the generator-coordinate state
(2.10), we are in effect making center-of-mass corrections
for the pion.

The first problem we address when working with the
states

i B) obtained from the MFA concerns the soliton
field part of that state. The MFA is a classical approxi-
mation for rr and knowing the soliton mean field ao(r)
alone does not tell us @shat the quantum state is. A simple
and elegant way of constructing a full quantum state from
a classical field is the coherent-state approximation. First,
let us expand the soliton field o and its momentum conju-

The operators aq and a~ have the usual meaning of
creation and annihilation operators for the sohton field
quanta, and the vacuum state is defined by

ai, i
vac)=0 for all k. (2.14)

Starting from a given mean field tro(r) (a c number} one
first constructs f(k), the Fourier transform of f(r)
=oo(r) —o,, as

f(k)= f d'r f(t(e1
(2.15)

The coherent state corresponding to pro(r) is then
' 1/2

f(k)ai, i
vac) .

i f) =exp f d k (2.16}

Such a state has the interesting property that the expecta-
tion value of any normal-ordered operator involving cr or
rr gives the mean-field result. More generally,

(fi I:tr":
I f2 & f i «)+f2(r)

(2.17)

'2
gi(r)-g2(r)

2
(2.18)

where the function g(r) is defined by

g(r)=
s i f d kcokf(k)e'"'.

(2~)3j2 (2.19)

Thus the state
i f) is what we are looking for, it is a true

quantum state and the expectation value of Ho in that
state gives the MFA (except for renormahzation factors
arising from normal ordering):

(f i:H:if) =f dir[%ta p%+ —,
' (rr + i

Vcro i }

+ U(tro)+g%o%] . {2.20)

Since the state
i BJ,n-, T;,t„a) describes two possibly

overlapping bags, we choose to describe the soliton part of
that state by a coherent state constructed from the follow-
ing mean field:
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2 ~-el*—&'I

o(a;r) —o„=f(a;r)= — oi f d r'8(a;r')
4n

'
/r —r'f

%'(x)=g bkgj, (r) baryon expansion, (2.24)

tr p+ga(a;r} jA(a r)=~kWk(a, r}, (2.23)

for different values of a. Better than either of these two
extreme cases, a large set of single-particle quark states
can be included in the ground state (2.10) by enlarging the
suIQ over J.

In this calculation we have opted for the first choice
(sudden approximation) for reasons of simplicitly. The
quark-field operator is expanded in different orthonormal
bases:

(2.21)

where the 8 function 8(a;r) is determined by the
geometry of the system,

r

1 if r&Rs or ~r —a~ &R,8(a;r) = (2.22)0 otherwise

and is folded with a Yukawa function to give the approxi-
mate surface smoothness. At r~ or r=a (in the center
of either bag), f=—oi for large enough p, . So, this soli-
ton mean field contains four pariuneters: As, R, p, and
cri, determined by least-square fits with the isolated MFA
solutions for each individual bag. This choice was also
the one adopted by Schuh, Pirner, and Wilets in their
nucleon-nucleon scattering calculations.

When it comes to choosing the quark part of the state
~BJ,n T~, ti,a), several options are available One. possi-

bility is to keep the same quark wave functions as for the
isolated system, regardless of whether the bags overlap or
not. This can be called a sudden approximation for the
quarks: as the separation distance a changes, they are not
affected by the changing soliton field configurations. The
single-particle baryon quark states are exactly the same as
for an isolated baryon centered at the origin of the coordi-
nate system, while the pion quark and antiquark wave
functions are simply translated by a. On the other hand,
one could also carry out the calculations for an adiabatic
approximation where the quark wave functions would
readjust instantly to the different soliton mean fields, by
solving a different Dirac equation,

%'(x)=gbkgk(r a—) pion expansions .
k

(2.2S)

Neglecting vacuum-polarization effects arising from the
transformation properties between these different bases,
we write the quark part of the state

~ Bj,m; T, , t;,a) as

~ BJ,S-,T;,tt,a) i~"= g C, br (b, ~ }t
~ BJ),

m

(2.26)

where the coefficients C, ~ are the Clebsch-Gordan
jF qt

combinations needed in order to obtain the correct pseu-
doscalar, isovector, color-singlet properties of the pion
and to couple the baryon and pion isospins to give the to-
tal isospin Tt, projection t;

The second qiuintized notation used here ensures
the complete antisymmetry of the resulting state
~8~,g;T;,ti,a) under permutation of any two quarks

(Pauli principle). The Pauli principle was already built
into the baryon

~ 8& ), but now a new antisymmetrization
arises when the quark in the pion is exchanged with one
of the quarks in the baryon. Of course this type of effect
is completely ignored in calculations treating the pion as
an elementary field.

Now that we have specified the state ~BJ,n", T;,t;,a)
unambiguously, we determine the unknown coefficients
C; and P,J(a) in (2.10) by invoking the variational princi-
ple

'&8, iHiB, &

5C~' ~(8; ~8, )~
(2.27)

5

5$,'J (a)
'&8, ~H ~8, &'

=0 for all a,j,'(8, iB, )' (2.28)

where H is the total Hamiltonian (2.1},including the one-
gluon-exchange interaction. These equations give, respec-
tively,

&8 IH —EIB &C+X f d'a&8 IH —EIBIZ'T t a& (2.29)

(BJ.,~,T;,t;,a (
H E(8;)C;+g—f d a'(Bj,m", T„t;,a (H E(Bf,m; T;,t;„a')P—;J'(a')=0, (2.30)

where E is the total energy of the system in the state
(2.10):

'&8, (H (8, )'
d(8 [8 )d (2.31)

Since we wish to study the bound-state problem of a
baryon dressed by a pion, we regard these homogeneous
coupled equations as an eigenvalue problem: the eigen-
value is the total energy E and the eigenvector is the set

[C;,P;J(a)j. The eigenvector can only be determined up
to an arbitrary multiplicative constant corresponding to
the arbitrary normalization of the state (2.10). Equations
(2.29) and (2.30) yield a spectrum of discrete and continu-
ous eigenvalues E. However, the same equations could
also be used to study scattering problems (e.g., pion-
nucleon elastic scattering). In that case, the energy E and
the asymptotic form of P,&(a) for large a are given and
(2.29) and (2.30} are to be regarded as nonhomogeneous
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equations yielding P;~(a) (for small a), phase shifts, and
cross sections. We will not investigate scattering prob-
lems any further here, even though they are a nice appli-
cation of the generator-coordinate formalism.

III. SOLUTIONS OF THE
GENERATOR-COORDINATE EQUATIONS

In order to solve Eqs. (2.29) and (2.30) we must first
evaluate the two nontrivial matrix elements

&B,,~;T t, ,a iH —E iB, )

(because we neglect vacuum-polarization effects) and

i 8; ) is an eigenstate of Ho, the first of these two matrix
elements only involves the OGE operator H':

(B,,~;T, , t, ,aiH E—iB, )=(BJ,~;T, , t, ,aiH'iB, ) .

(3.1)

This shows that the OGE interaction is entirely respon-
sible for creating the pion in our approximation. After
writing the OGE interaction H' explicitly in terms of the
quark-field operator ]II, as in (2.2), and expanding that
quark field in the appropriate basis, Eq. (3.1) gives two
terms:

(Bj,n , T;, t-;,a
i
H E

i
Bj—,n; T;,t;,a') .

Since the states
i 8; ) and

i Bl,ir-, T„t;,a) are orthogonal

(a, ,~;T, , t, ,aiH'iB, )=A'(a) +W'(a), (3.2)

~"(a)=a,g &8, i(b»)'a, 'iB, )
k„l

C C

X g C]", , f d'r f d'r' Q, (r a)y" —it]( (r) G„„(r r') P—»(r')y" g (r'a)
t, m , m

(3.3)

is represented by the direct diagram of Fig. 2, and

~'(a)=a, g &BJ i(b»)'(b» )'b,'b, iB, )

X g C,
" f d r f d'r' f d'r"[g, ir"]|i~(r"—a)]

if), mq, m~

C

X g (r)y" — g (r—a) G„„(r—r') p» (r')y" f~ (r') (3.4}
L

corresponds to the exchange diagram of Fig. 3, and results directly from the antisymmetnzation discussed above The
evaluation of thee two diagrams is lengthy and will not be reproduc~ here, but some general fmturm can b, obtained
immediately using symmetry arguments. Since the operator H is invariant under rotations in spin, isospin, and color
spaces, and the pion is a pseudoscalar, isovector, color-singlet object, it is easy to see that P' (a) and P"(a) must have
the general form

( T'1 t;r
i T)tj )5' (a)=]] (a)g I,2 8, grk(rg 9 8;),

(2T, +1)'" (3.5)

(T'lt;r
i Tltj), A» A], , (tr»Xoi)(ct)g Iy28j+ 1k(f&BR](lzi+K&RR](Ri+&]]](a)B))(2TJ+1)'" '

»~t
(3.6)

BJ 8; = ——', for k~l (3.7)

and the VA'gner-Eckart theorem, the matrix element
(BJ.,n-, T;,t;,a i

H E
i 8; ) can be writ—ten as

(B,,~;T, , t, ,aiH iB, )

where the sums over k and I are over quarks and R (a),
Ri(a), R'i(a), and Ri(a) are scalar functions of the
magnitude of a only. Using the result

where a is the rn component of the unit vector a in the
spherical basis, (f i f) is a soliton overlap factor, and
the functions Sil(a) only depend on the scalar quantity a
and on the total spins and isospins, not on the magnetic
quantum numbers. There are only three different func-
tions S~t(a) in our ease, given by

S]v]v(a)=10R (a) ——,[R](a)—R2(a)], (3.9)

S~t,(a) =8~2R (a)+ 16~2
3

X [—2R i (a)+R i(a)+3R &(a)], (3.10)

(S'ls, m iS,s, )alllk(fix if ) 1 S ( ) (3 g) Saa(a)=20R (a) ——", [Rt(a)+R2(a)] . (3.11)
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77&
irk

1&

(3.14)

The solution of this integral equation has the general form

, (S'Is;m iSisi)
+ 1)i/2

(3.15)

Using the matrix elements [(3.8) and (3.13)] just de-
rived, the second generator-coordinate equation (2.30)
(also called the Hill-Wheeler equation) becomes

(S'is;rn
~ Sisi )

C (f if), Si(a)
(2S +1)'"

+I dna'[m'(a, a') Eq—i(a,a')]a' y&i(a') =0 .

FIG. 2. The direct OGE diagram.

To evaluate the second matrix element

(B~,n-, Ti, t;,a
~

H —E
~ B~,n;T;, t;,a') we have shown that

antisymmetrization terms of the kind discussed above are
small and can be neglected. Their inclusion would com-
plicate the algebra but not add any serious conceptual dif-
ficulties. In that approximation the matrix element in
question has a very simple diagonal form

(B~,n-, T;,t;,a
~
H —E

~
B),n", T;,t;,a')

=(Bi
~ Bi )[4 (a,a') —Erl(a, a')] . (3.12)

The Hamiltonian piece depends on SJ and T& only,
through the OGE interaction (it splits the nucleon and b.).
Both functions A i'(a,a') and )(r,aa} actually depend only
on the difference a —a' or the magnitudes a and a' and
the angle between a and a'. Their angular dependence
can be expanded in Legendre polynomials

(BJ, ,T;,t;, iH 'E iB', ;T—;,t;, ')

=&B; ~BJ & y FI(a cI')[~j(a,a') —E7),(a,a')] .
l=0

(3.13)

where the radial function Fi(a) depends only on the total
spins and isospins, not on their projections [like Si(a)].
We have four unknown functions FzN (a), F~a(a),
Fas(a), and Faa(a). Note that FJ(a) is not necessarily
symmetric in i,j.

The only remaining unknown quantities C; and Fi(a)
are solutions of the eigenvalue problem

C, (B, iH —EiB, )

f a daF;i(a)S;i(a}=0, (3.16)
2S;+1 3

C;&f If&S~i«)

a' da'[A 'i(a, a') —Erl i(a, a')]F&i(a') =0 .
3 0

(3.17)

Solving these equations numerically in a straightfor-
ward way, i.e., by discretizing the a and a' axes and using
an ordinary integration scheme, leads to numerical insta-
bility. Such problems are characteristic of Fredholm in-

tegral equations of the first kind, of which (3.17) is an ex-
ample. They are caused by the fact that any arbitrarily
large, high-frequency function is killed by the smooth ker-
nel after integration. The instabilities build up in the
solution in the form of large oscillations with a higher and
higher frequency as the grid size becomes finer and finer.
An elegant solution to this numerical problem was pro-
pos& by Phillips19 and Tikhonov. 20 In matrix notation
(3.17) has the general form of a linear system

i&k' i&k ~ 7l&

i 448b45 J

g
I

(3.18)

where f is the unknown function. This equation can be
derived from the varlational principle

(3.19)

~here the norm
I I I [

is de~»ed»

IIFII'= J da J«'F(a)F«). (3.20)

FIG. 3. The exchange QGE diagram.

Phillips and Tikhonov proposed to regularize this equa-
tion by replacing it by the more stable

[[il&f gii +AM(f)]=0, —
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' F ( ')+~;&f lf»;, ( )
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0

[PF)(P}] , FJ(P-) =0 . (3.24)
P dP' ' P'
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IV. HADDRONIC PROPERTIES
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TABI.E I. Summary of hadronic properties in the case a=51.6, b = —799.9, c=4000, and g=14.8,
and comparison between the MFA and the pionie dressing calculations.

Property

k (nucleon)
I, (h)

(pion)
o;, (N, h)

(pion)
Nucleon mass
N-h, splitting
Pion mass

vvith a,
with a,*

(r')'~' (proton)
&r') (neutron)

gw

D

1736 MeV
271 MeV

1330 MeV

0
0
0
0

0.69 fm
0

0.97
045 fm-'

%'ith pion

1 ~ 14
1.11
1.18
2.72
3.17

939 MeV
293 MeV

252 MeV
140 MeV

0.14
0,27
0.28
0.17

0.83 fm
—0.08 fm'

0.86
—0.09 fm

Experiment

939 MeV
293 MeV
140 MeV
140 MeV
140 MeV

0.28
0.59

0.83 fm
—0.12 fm'

1.26
small

%(Ar)=A, ' %(r) (4.2)

f(A,r) =A, 'f(r) . (4.3)

Starting with these scaled functions, we can treat the
dressed nucleon problem by solving the Hill-Wheeler
equations and determining the new ground-state eigenen-
ergy E(A,). The scale A, is then determined by requiring E
to be stationary

comparison with the mean-field calculation of Goldfiam
and Wilets~ for the same set of parameters. Where experi-
mental values are available, they are also given.

The results presented there go one step beyond the sim-
ple generator-coordinate method, which is a perturbative-
like treatment building upon the mean-field solutions.
But instead of a full self-consistent treatment, some of the
effects of the pion cloud on the quark and soliton fields
have been incorporated by considering a simple rescaling.
For a given set of soliton bag parameters we can define
new quark and soliton fields, scaled according to their di-
mensions. Let us denote them by ~p and f(f=a—tJ„):

the same value of a, as for the baryon case, one would
find a pion that is 80% too heavy.

The comparison of hadron masses in the MFA and
pionic dressing calculations shows a substantial reduction
in mass from the MFA. This is especially true for the
pion, where the reduction is about a factor of 10. When
compared to the mean N-b, mass, the N-b, splitting is in-
creased when pions are included (almost doubled). This is
in qualitative agreement with other pionic dressing calcu-
lations such as the cloudy bag model (CBM), '5 where it is
shown that a large fraction of the N-5 mass difference is
due to the pion cloud.

The nucleon-nucleon-pion and N-6-pion coupling con-
stants are quantities that were not accessible in the MFA,
but that we can now compute. To do so, we first con-
struct a state

~ Bj,m; T~,t;,k) consisting of a baryon
~ BJ )

dressed with a pion of good momentum k:
~

n i, ),

~ Bj,m-, T;,t;,k) =Nk J d ae'" ~B,n-, T;,t;,a), (4.5)

where Nk is a normalization constant required to satisfy

(4.4)
(BJ,m; T;,t;,k i B, ~;T;,t„k)=Q . (4.6)

This will tell us in a very crude way (using only one de-
gree of freedom) how inuch the pion cloud shrinks or di-
lates the bag. The results of Table I show a shght increase
in bag size coming from pionic effects.

When the general formalism described in Sec. III is ap-
plied to the case where no baryon is present, i.e., for a free
pion, one obtains a simple center-of-mass projection„ in-
cluding OGE effects. The value of A, for that case is also
greater than 1 (dilation). In order to get the physical pion
mass we were forced to use a slightly greater value of the
strong coupling constant than for the baryon case. The
resulting a,' is an effective couphng constant that simu-
lates higher-order gluoa exchanges. However, as shown in
Table I, it is not much greater than a, . If one were to use

x J a2da ji(ka)(f
~ f)S;,(a) . (4.&)

Comparing this result to the Chew-Low theory and tak-
ing the zero-momentum limit, one can identify the cou-
pling constants f~~ and f~a .

f~~ = — V2mm i~2 J a2daa(f
~
f)SN~(a), (4.8)

In general Nk can depend on k, and 0 is the volume in
which we normalize the plane wave (box normalization).
The general BBrr vertex can be computed using (3.8):

(S'ls;m
i Sjsj )

u,'J =4mXkk
( 2S + 1 )

1 /2
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TABLE II. Quark and piomc contributions to magnetic moments (in nucleon magnetons} in the case a=51.6, b= —799.9,
@=4000,and I= 14.8.

"&n fp]n)"
"&s lu I

~' &'

"Quark
effects"

1.91
—1.37

1.58

Pion
(not modified)

0.10
—0.10

0.05

Pion
(modified)

0.95
—0.95

0.48

Total
(not modified)

2.01
—1.47

1.63

Total
(modlflied)

2.86
—2.32

2.06

Experiment

2.76
—1.91

3.25

f~a —— ~2m'm ~ f a da a(f ~ f&S~a(a), (4.9) &n lp ln & =po -T~
I
C~ I

where No is the k ~0 limit of Nt, . It is given by 16 2
~Nb, e —9~%—9~& ~

No — —f a da f a' da'bio(a, a ) (4.10) (4.14}

These results do not take into account the distortion from
a plane wave of the pion field as it comes close to the nu-
cleon or the b. A treatment allowing for such distortion
would require solving the scattering problem discussed
above. It has not been investigated here. These also do
not take into account multimeson effects, which might be
important.

Pz and Pa are the probabilities of having a nucleon
turn into nucleon + pion and d + pion, respectively.
They are given by

'&P lu I
~'&'=S o I C~

I

'+ ,",PN. +—,', Pa. —
3

11 2 1 5+ PQQ + 9M' + )g Mg

(4.15)

where JMo is the proton magnetic moment in the MFA and
P~a is defined in analogy with Pf (4.11) by

P„~ =— J a da f a' da'FNN(a)

1 4rr
P) ——— Q Ol Q QF~& 0'

X rI (ia, a') Fata( a) .

X rti(a, a')FN;(a')

if the eigenstate [Ctt,Fbi(a)] is normalized so that

(4.1 1)
(4.16)

If one looks at the pion contributions to these magnetic
moments [the last two terms of (4.13)—(4.15)], one finds
that they are surprisingly small as compared to the CBM,
for example. This is shown in Table II ("not modified"
columns), where by quark effects we mean the terms pro-
portional to }tt,o. This is due to the fact that the pionic
contributions are inversely proportional to the pion ener-

gy, and that in this calculation the mean-field pion we
start with is very heavy (1330 MeV in this case). As ex-
plained above, momentum projection and one-gluon ex-
change reduce that value to the physical pion mass (140
MeV), but the pion waue function still corresponds to a
mass of 1330 MeV. One can correct for that by doing a
simple energy rescaling. The results are sho~n in the
"modified" columns of Table II and turn out to be in
much closer agreement with experiment for the diagonal
matrix elements, but still too small for the Ml proton-b+
transition.

The nucleon axial charge (g„) is the least well-described
physical property of this model. It is always lower than
the experimental value gq ——1.26. Higher-order mesonic
corrections (like two pions or p meson} and center-of-mass
corrections are needed to bring it up to that value.

The last quantity we looked at is the divergence of the
axial-vector current of a nucleon. It would vanish identi-

1=
~
Ctt

~
i+gP~ (4.12)

The total pionic dressing probability is about 45% in our
model, which is slightly higher than the cloudy bag model
result (where it depends on the bag radius but is around
33%).

The neutron charge radius results entirely fmm the
pionic dressing here (it vanishes in the mean-field approx-
imation). As can be seen in Table I, the values we obtain
are in reasonable agreement with the experiment value of
&r &„=—0.12 fm, considering that other mechanisms
could be invoked to explain the negative charge radius
(such as the up-down quark mass difference}.

The proton and neutron magnetic moments as well as
the M1 proton-5+ transition are shown next in Table II.
They are all smaller in absolute value than the experimen-
tal quantities. Their expression in this model is

+ 9M@+ 9M',

d
&S I} IS & =so

I C~ I +—„P~.+ „Pa.+-0 go 16' 2
27
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cally in a chiral-invariant theory, and therefore constitutes
a nice test of PCAC. Figure 6 shows the radial depen-
dence of that quantity in both the mean-field appmxima-
tion, and in this dressed nucleon calculation for the case
c=4000 and f=3.1. As one can see, the surface peak of
the MFA, which is characteristic of PCAC-violating
models has been stmngly suppressed, even though the re-
sulting divergence is far from being very small for all
values of r. To get a better idea of the cancellation, we
computed the radial integral of these functions. Writing

"(N
~
V g(r)

~
E)~=D(r)pi(P.R) (4.17)

c
CP

C

lo ) ) ) )
l

) ) ) )
l
» ) i

MFA result

D=— r~ r r. (4.18)

we define the global quantity (which has the units of an
energy)

0
0

I I ) I ) ) ) I l ) I I ) I )

0,5 I.Q t. 5
(u (in fm ')

I
) ) ) i

t
i i ) i

05-

C

D (r)
-- D(r)

-0.5—
) ) ) )

l 2
radius r (in fm)

FIG. 6. Radial dependence of the divergence of the nucleon
axial-vector current for the case e=4000 and f=3.1. Do(r) is
the mean-field result and D (r) the dressed calculation.

Note that the volume integral of the divergence of Q(r)
vanishes because of its angular p-wave dependence. Table
I shows the values of D in both the MFA and this calcu-
lation. The corresponding values are D=1.2S and 0.16
fm ' in the MIT and cloudy bag models, respectively
(with a bag radius of 0.9 fm}. This shows that our model
gives indeed a very strong cancellation of V g.

All the results presented so far have been obtained with
the static (o)=0) scalar and tensor propagators given by
Eqs. (2.6) and (2.S) while the correct treatment would re-
quire considering a complete set of gluon modes, each
characterized by a different frequency a). An approxi-
mate solution is the one mode approximation: one trun-
cates the sum over all gluon modes to one tenn, chosen to
be the best possible mode by requiring that it extremizes
the total energy. So in this approach e is treated as a
variational parameter. We have done an exploratory cal-
culation for one given set of soliton bag par)imeters (the
same as for Table I},that shows that in fact co =0 extrem-
izes (minimizes in this case& the total energy (see Fig. 7).
Moreover, the results are quite insensitive to a) in the vi-

cliuty of a) =0.

FIG. 7. The nucleon mass as a function of the gluon mode
frequency ra for the soliton bag parameters a =51.6,
b =—799.9, c=4000, g=14.8, and a, =2.72. The MFA result
for the saaie set of parameters is given for comparison,

The results shown in Fig. 7 were obtained by using the
frequency-dependent tensor pmpagator (2.7). To simplify
the calculation, only the co dependence of the dominant
direct diagram represented in Fig. 2 was considered. Note
that as o) becomes very large, all gluon effects should
disappear and we should recover the MFA results.

V. CONCLUSIONS

We have preaented a new model of the N and d allow-
ing for the presence of one pion in the ground state of
these baryons. Its distinctive features are that this pion is
treated as a quark-antiquark pair (created by a one-gluon-
exchange interaction), and that therefore no additional de-
gree of freedom is needed. We obtain the experimental
pion mass for reasonable values of the strong coupling
constant (both center-of-mass corrections and one-gluon-
exchange reduce the pion mass). The model is able to
reproduce many experimental static properties of the N
and d quite well.

We should stress that the ability to treat the bag as a
dynamical variable in the sohton bag model was crucial to
develop this calculation: we could not have done this with
the MIT bag model. Indeed, we needed to have an unam-
biguous mathematical model to describe the dynamics of
two colliding bags.

This calculation could be improved in many ways and
some of the approximations we have used relaxed. For
example, we could use a confined gluon propagator, calcu-
lated in a )r-dependent color-dielectric model instead of
the free pmpagator we have used. We could also consider
an adiabatic approximation, where the quarks would be
assumed to adjust instantly to new sohton field configura-
tions. %e have used, On the other hand, a sudden approx-
imation where the quarks do not react at all to changing
soliton fields. Neither of these approximations is a prior)'
better than the other (the real world lies somewhere in be-
tween), but their comparison would be interesting. An
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even better treatment of the quark fields would consist of
considering a large basis of linearly independent quark
states (for example, the eigenstates of a single bag) and di-

agonalizing in that basis. Moreover, to obtain a better
agreement with experiment, a complete treatment of the
center-of-mass problem is clearly needed. We believe that
these improvements might necessitate a readjustment of
the parameters of the model but probably will not affect
the generally good agreement with experimental data.

The one-gluon-exchange Hamiltonian 8' is the only in-
teraction creating the qq pion in our treatment. The
quark-o coupling term W» (1.4) also contributes to dia-
grams of the kind described in Figs. 2 and 3 where a soli-
ton quanta instead of a gluon is now being exchanged.

Such effects have not been considered here since they in-
volve higher-order perturbation effects (two quark-quark-
soliton vertices are required), or alternatively another, in-
termediate state in the ansatz (2.10}.
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