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Bjorken s hydrodynamic description of the space-time evolution of the central rapidity region in

ultrarelativistic heavy-ion collisions is extended to incorporate the chemical processes which affect
the strangeness abundance. Scaling hydrodynamic equations which contain the rate equation for
strangeness production and annihilation both in the plasma phase and in the hadron gas phase are
integrated numerically assuming an almost adiabatic first-order phase transition from plasma to
hadron gas. It is found that if a plasma is initially formed the resultant E/m ratio will be enhanced

by about a factor of 3 from that in pp collisions. However, this ratio is still smaller than that in an

equihbrium hadron gas and hence cannot be considered a direct signal of plasma formation.

I. INTRODUCTION

Heavy-ion collisions at ultrarelativistic energies offer a
unique opportunity to explore the large-scale properties of
quantum chromodynamics, in particular, of its phase
structure at high temperatures and densities. ' It is ex-
po:ted that at sufficiently high beam energies the pro-
duced matter will initially take the form of a plasma of
unconfined quarks and gluons. This plasma would im-
mediately begin a rather complex evolution, culminating
in its decay into ordinary hadrons. This poses a very dif-
ficult question: How can we unambiguously confirm the
creation of the plasma in an experiment? Can we find any
relics of plasma formation in the final decay products?

It has been proposed by several authors that an
enhancement in strange-particle production would be one
signal of quark-gluon plasma formation. In pp collisions
strange-particle production comprises only about a tenth
of the total multiplicity. In a quark-gluon plasma in
equilibrium, on the other hand„ the abundance of strange
quarks and antiquarks is expected to be highly enhanced.
This is mainly because the s-quark mass ( m, =150 MeV)
is comparable to the expected temperature of the plasma.
In the baryon-rich plasma which may be formed from
compressed nuclear matter in the nuclear fragmentation
region (or in "stopping-regime" collisions at lower ener-
gies), ss pairs would be more abundant than u and d be-
cause of the Pauli blocking of light-quark pair creation.
It has been argued that the relaxation time to reach
chemical equilibrium in the plasma is sufficiently short
that chemical equilibrium will indeed be achieved in a
heavy-ion collision and enhanced strangeness abundance
will be reflected in the final particle composition.

In the baryon-free central rapidity region, however,
essentially all particles are produced after the collision. In
this case a more natural assumption is that the initial state
of the plasma will already possess flavor composition

close to that in thermodynamic equilibrium. Consider for
example a dynamical model in which the plasma constit-
uents are produced by the quantum creation of qq pairs
from the vacuum by the confining color-electric field. In
such a model the suppression of strange-particle produc-
tion in pp collisions is explained by the small tunneling
probability of ss pairs, due to the large s-quark mass. Ap-
plying this model to nucleus-nucleus collisionss' suggests
that the mass suppression mill be less important because
of a stronger background color field, which will also in-
crease both the total multiplicity and the energy density
and hence will work in favor of plasma formation. In this
model the plasma would be created close to thermo-
dynamic equilibrium. It is indeed unlikely, in view of the
flavor blindness of @CD, that the plasma will be born at a
very high temperature ( T y&m, ) but with flavor composi-
tion considerably in violation of flavor-SU(3) symtnetry.

In order to test such conjectures experimentally, we
have to describe the dynamical evolution of the plasma
into a hadronic final state. The key question is, how is
the supposed symmetry in the initial flavor composition
reflected in the observed particle spectrum? As has been
noted by Glendenning and Rafelski, s the Elm. ratio may
be sensitive to details of the expansion. In particular, the
number of pions reflects the entropy of the system. At
late times, most of the entropy may reside in pions, and
for this reason, even if the number of ss pairs is conserved
in the expansion stage the Ejn ratio will not necessarily
become very large. On the other hand, if thermodynamic
equilibrium is maintained throughout the expansion of the
system, the flavor composition of the emergent hadrons
will reflect only the freeze-out conditions. To make this
issue more quantitative, there are two competing dynami-
cal processes to be understood: how the system deviates
from chemical equilibrium as it cools and hadronizes, and
how the system reacts to return to equilibrium.

In a preceding paper' (henceforth I) we formulated a
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QCD kinetic theory for the chemical reaction processes
which affect the flavor composition of the quark-gluon

plasma. The rates of production and annihilation of
strange-quark pairs were computed in lowest-order QCD
perturbation theory. The hydrodynamic equations cou-
pled to the rate equation were then solvmi for a high-
temperature homogeneous plasma and the relaxation time
to reach chemical equilibrium in such a system was corn-
puted. The purpose of this paper is to apply this descrip-
tion to the dynamical situation which we expect to en-

counter in the central rapidity region of ultrarelativistic
heavy-ion collisions. Our study is similar to the work re-

cently reported by Kapusta and Mekjian, " but it differs
in several important points, as we shall see.

Now let us briefly review the standard picture for the
space-time evolution of very-high-energy (E, & 50 GeV
per nucleon) nucleus-nucleus collisions. " ' Prior to
the collision two Lorentz-contracted nuclear pancakes ap-
proach from opposite directions along the light cone,
t =+z (see Fig. 1). After the collision at t =z =0 two
highly excited nuclear pancakes, containing most of the

baryon number, recede along the same light-cone lines,
leaving a highly excited volume in between. The excited
region will soon decay (materialize) into individual excita-
tions of fundamental quanta, supposedly unconfined
quarks and gluons rather than hadrons, which form an ex-

panding plasma. The collisions among these excited
quanta may bring the system into local thermodynamic
equilibrium and, if so, the hydrodynamic expansion fol-
lows. The prehydrodynamic regime of the matter evolu-

tion has been studied in a semiclassical transport theory, '

extended to incorporate particle formation. '

The evolution of the central rapidity region appears al-

most invariant under longitudinal boosts as long as one is
not too far away from the pp center-of-mass frame. In
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FIG. 1. A space-time picture of an ultrarelativistic nucleus-
nucleus collision in the pp center-of-mass frame. The I.orentz-
contracted target and projectile nuclei approach along light-cone
trajectories and coHide at the origin of the coordinate system.
The hadronic matter (initially quark-gluon plasma) of the cen-
tral region is formed between the two receding excited nuclei,
and reaches thermal equilibrium on or before the hyperbola at
~= '~ t —z =~0. The subsequent hydrodynamic expansion

j'2 2

preserves the Lorentz-boost symmetry of the initial conditions.

this paper we assume that hydrodynamic expansion of the
plasma starts at a certain proper time r=+t z—=so
with Lorentz-boost-invariant initial conditions. This sym-
metry in the initial conditions will be preserved by the hy-
drodynamical evolution of the system if it is not broken
significantly by chaotic fluctuations' generated by the
dynamical hadronization transition, and mill eventually be
reflected in the final particle distribution as a central ra-
pidity plateau.

In Bjorken s hydrodynamical description of the longitu-
dinal expansion' and in its later extensions, ' ' local
thermodynamic equilibrium is assumed to be maintained
throughout. This implies that there is only one indepen-
dent thermodynamic variable (e.g., temperature or entro-

py) for baryon-free hadronic matter. ' As we have seen in

I, however, if the system is not in chemical equilibrium
with respect to its flavor content there appears another
thermodynamic variable, which can be taken to be either
the s- (or s-) quark density n, or the s-quark chemical po-
tential p. (p gauges the deviation of the system from
chemical equilibrium; it should not be confused with the
chemical potential coupled to baryon number, which is as-
sumed to be zero in the baryon-free central region. ) In the
next section we extend Bjorken's description of the one-
dimensional longitudinal hydrodynamic expansion to in-
corporate this new feature explicitly. The hydrodynamic
equations which contain the rate equation for the s-quark
current are introduced and examined in the scaling limit.

A major difficulty in studying the space-time evolution
of the quark-gluon plasma arises from our uncertainty of
the hadronization mechanism. Several attempts have been
made to obtain a plausible scenario of plasma hadroniza-
tion, including a macroscopic description within the con-
text of fluid mechanics' ' and microscopic model calcu-
lations based on phenomenological descriptions of color
confinemen. It is not our purpose here to study the
consequences of all these different scenarios; such an ex-
tensive study should wait until full multidimensional hy-
drodynamic calculations become available. Instead we
shall adopt a simple plausible model for plasma hadroni-
zation which consists of the following assumptions and
approximations.

(1) It is not known at this time whether there is a phase
transition separating the high-temperature quark-gluon
plasma from the low-temperature hadronic regime. The
various possibilities include a first-order transition, a
second-order transition, and a continuous crossover
without thermodynamic singularities. ' Our first assump-
tion is a sharp first-order transition, which allows us to
approximate the thermodynamics on either side as weakly
interacting, almost ideal gases.

{2) Our next assumption is that the passage from plas-
ma to hadrons is smooth, i.e., never far from equilibrium.
In the case of a first-order transition, this specifically ex-
cludes the possibility of supercooling and/or superheating
which lead to rather complex scenarios. ' ' Instead we
assume that the transition proceeds quasiadiabatically,
developing a "uniform mixture" of plasma and hadron
gas via the Maxwell construction. This means that we
calculate extensive thermodynamic variables in the transi-
tion region by averaging the volume fractions taken up by
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plasma and by hadron gas. This assumption imp1ies that
there is little difference between assuming a first-order
transition and assuming a steep continuous crossover.

(3} Our next hypothesis concerns the effect of the had-

ronization process on the chemical equilibrium and is,
therefore, a key ingredient in the calculation. We assume
detailed balance in the mixed phase with respect to those
hadronization processes which conserve the number of s
quarks, and we neglect ss pair creation in the hadroniza-
tion. Since the chemical potentials of the light quarks and

gluons are always kept at zero (because of the assumed
fast rate of the reactions which change their numbers),
this implies that the chemical potential of a given species
of meson is equal to the sum of the two chemical poten-
tials of its qq constituents. Hence the pion chemical po-
tential vanishes and the kaon chemical potential becomes

equal to the s-quark chemical potential. This relative
equilibrium is consistent with the assumption of a
quasiadiabatic hadronization transition. In the mixed

phase, the chemical reaction rate for the creation or an-

nihilation of ss pairs is calculated by taking the volume

average of the rates in the plasma and in the hadron gas.
The numerical resu1ts are presented and discussed in

Sec. III. We choose initial conditions for the hydro-
dynamic equations which meet the requirements of the
uncertainty principle and which give a final total particle
multiplicity roughly consistent with the currently avail-

able cosmic-ray data. We first display the time evolution

of the system in the absence of chemical reactions, and

show how the system deviates from chemical equilibrium

by cooling and undergoing hadronization. Contrary to
naive expectations, a shortage of s quarks arises as the
system goes through the hadronization transition, charac-
terized by a fall of the s-quark chemical potential into
negative values. This is due to the small strangeness!
entropy ratio of the equilibrium quark-gluon plasma in
comparison to that of the equilibrium hadron gas, a quite
amusing fact first noted by Redlich, and more recently

by I& apusta and Mekjian. " In other words, as the plasma
hadronizes the large amount of entropy originally carried

by thermal gluons and light quarks goes into extra pions;
this results in a E/m ratio which, to our surprise, turns
out to be less than that of an ideal gas of pions and kaons
in equi1ibrium at the transition temperature.

This means that inclusion of chemical reactions will

lead to overall production, rather than annihilation, of ss
pairs during the mixed phase. In fact, the mixed phase is
where all significant chemical production takes place.
For one thing, the mixed phase is long-lived because the
large entropy of the plasma has to be taken up by expan-
sion as conversion to the low-entropy hadron gas takes
place. For another, our estimate of the chemical reaction
rate in the hadron gas implies that the K/m ratio mill

change very slowly after completion of the hadronization
transition. We find an eventual value of the K/n. ratio
significantly larger than that observed in high-energy pp
collisions. This result is not strongly dependent on the
hypothesis of chemical equilibrium in the initial plasma.

We discuss the significance of our results in Sec. IV.
The enhanced strangeness signal unfortunately does not
prove that a plasma was formed, since a high-temperature

hadron gas in equilibrium will yield a still larger IC/nr. a-
tio. Nevertheless, any effects of equilibration of the
strangeness abundance point toward a long lifetime for
the high-temperature fiuid in the central region, which is
indirect evidence of plasma formation. Various effects
which wil1 dilute the E/m ratio, such as resonance pro-
duction and entropy generation through viscosity, have
yet to be studied.

II. SCALING HYDRODYNAMICS
WITH THE RATE EQUATION

In this section we discuss the equations of relativistic
hydrodynamics and the incorporation of the chemical
processes which change the flavor composition of the ex-

panding central region. We review the basic formalism
obtained in I and Bjorken s one-dimensional scaling an-
satz in the context of the early, plasma phase. We then
discuss the chemical kinetics of the hadron gas which will
be created later by the hadronization of the plasma. Fi-
nally we set forth our treatment regarding the evolution of
the mixed phase which exists while the system undergoes
a first-order confinement phase transition.

(2.2)

In the absence of dissipation, the energy-momentum ten-
sor is written in terms of the proper energy density e(x),
the pressure p(x), and the local fiow velocity u "(x) as

T""=—g""p (x)+[e(x)+p (x)]u "(x)u "(x), (2.3}

and the s-quark current is given in terms of the proper s-
quark density n, (x) as

n,"=n, (x)u "(x) . (2.4)

The two terms on the right-hand side of (2.2} represent,
respectively, the production and annihilation rates of ss
pairs per unit volume. %'e have assumed that the net
baryon-number density and the net strangeness density,
n, (x) n, (x), are—always zero.

We calculated in I the reaction rates on the right-hand
side of (2.2) as functions of the temperature T =1/P and
the strange-quark chemical potential p, =p, =p. Taking
into account only the binary processes g+g~~+s and
q+q~ +s (where q =u or d), the result is

Rs,;„—Ri, ——(e ~" 1)I(T,p), — (2.5)

where the reduced collision integral I(T,p) is the sum of
contributions from gluon and quark-antiquark processes:

I ( T&P ) =Ish&on+Iquark

with

(2.6)

A. Evolution in the plasma phase

We discussed in I the evolution of the quark-gluon plas-
ma when it is in local equilibrium except for the relatively
slow chemical processes which change the number of s
(and s) quarks. Semiclassical kinetic theory implies that
the system is governed by the hydrodynamic equations

(2.1)
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1 dpi cf p2 6f p3

(2n)'2E, (2 )'2E, (2 )'2E (2 )'2E,

&&fs(S'»fz V z)f.(pi )f-, V 4) exp[P«i+E2)], (2.7a)

4' 6f 6f Gr3

(2m) 2Ei (2m. ) 2Ei (2n) 2Ei (2m) 2E4

&&f,(pi )f;(pz)f, (I i)f-, (ii4) expÃ«i+E2)] . (2.7b)

Since I is positive definite, Eq. (2.5) shows explicitly that
when p &0, indicating an excess of s quarks, we have ss
annihilation, while when p &0, signifying a deficiency, we
have production. Detailed balance of the two inverse pro-
cesses is achieved when p vanishes.

Contracting (2.1) with the fluid four-velocity gives

= T&„(ou")+2pB„(n,u"), (2.8)

where in deriving the second line we have used the ther-
modynamic relations

e+p = To +p, n, +p n, = To'+-2p n, ,

de= Tdo+ 2p dn, .
(2.9)

With the rate equations (2.2) and (2.5), we derive an equa-
tion for the entropy current:

B„(cru")= 2Pp(e '~"—1)I(T,p) .— (2.10)

u "(x):(y, yv) =(—tlr, O, O,z/r),
so that u, =z/t and the fluid rapidity is given by

(2.11)

1 t+z
y =arctanh(u, ) =—ln

2 t —z
(2.12)

Other choices for the fluid rapidity, related to (2.12) by
y'=y+f(r) for any function f, are also allowed by
Lorentz invariance. Our choice is motivated by the
inside-outside cascade picture for the underlying dynam-
ics of particle formation.

Using u„B"r=1 and B~"=1/r, we readily flnd

+—= 2Pp(e ~" 1)I(T,—p), —
dt

@(pig tl~
=(e ~—l)I(T,p, ) .

T

(2.13a)

The right-hand side of this equation is always positive, in
accordance with the second law of thermodynamics; when
the system is in chemical equilibrium, namely, p=O, en-
tropy is conserved.

Bjorken's scaling ansatz presumes invariance under
I.orentz boosts in the beam (z) direction, and demands
that all local thermodynamic quantities be functions only
of the proper time r=&t z The—fiu.id four-velocity is
taken to be

Equations (2.13) are the basic equations for our analysis.
Their physical meaning becomes clear if we rewrite them
as

d (or)
dr

d(n, r)
d~

= —2rPp(e ~"—1)I( T,p, ),

=r(e ~"—l)I(T p) .

(2.14a)

(2.14b)

These equations give the rates of change of the entropy
and the s-quark number contained in an expanding
voluiile V = Vo )( ( r/ro).

We note here that or and n, r are also proportional to
the entropy and the s-quark number per unit rapidity To.
see this we calculate the entropy and the number of s
quarks contained in a cylindrical volume at a given time t,
which are given, respectively, by

S(t)= f dz f d ro(t, z)u = f dymR or, (2.15a)

N, (r)= f dz f d rn, (t,z)u = f dymR n, r, (2.15b)

where we have used the relation (dy/dz), =t/r and fixed
the transverse radius of the cylinder at the initial radius R
of the colliding nuclei, neglecting the transverse expansion
of the system. From this we find

dN,
=mR ov =mR n ~.

Sf' 6fp'
(2.16)

In order to solve the coupled differential equations
(2.13), we need information from the equation of state,
which gives n, and cr as functions of T and p, . We em-
ploy, both for the plasma and, below, for the hadron gas,
an ideal gas equation of state. We note that use of the
semiclassical kinetic equation usually leads to an ideal gas
approximation to the thermodynamic quantities which
appear in the hydrodynamic equations. ' This is because
kinetic theory treats the particles as free particles between
collisions; interactions are taken into account only in col-
lisions, where particles change momenta and internal
quantum numbers. The ideal gas approximation for the
equation of state is thus inherent in all Boltzrnann-type
kinetic theories, and systematic improvement would re-
quire development of a more elaborate quantum transport
theory. This is far beyond the scope of the present study.

The entropy density o, of a relativistic ideal gas is
given by
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gg= — gpln gp+ 1+ gp ln 1+ gp
(2~)

(2.17)

where

f, (p)=[ exp(P+p +m, Pp—, )+1] (2.18)

~q+~s =4(&s+ ~ &q)a 8 e (2.19)

is the thermal distribution function of species a with mass

m, and chemical potential p, . In the above expressions
the upper sign refers to bosons and the lower sign to fer-
mions. For light quarks and gluons, the masses and
chemical potentials of which vanish, the integral in (2.17)
yields the simple formula

B. The cheaucal reactions in the hadron gas

Once the temperature of the system reaches the transi-
tion temperature T,„, the expansion of the system takes
place isothermally, gradually converting dense plasma
into dilute hadron gas. We first examine the chemical
processes which are active in the hadron gas component.

%e will treat the hadron gas as being composed entirely
of pions and kaons. We assume that the two species are
in local thermal equilibrium with each other and with the
plasma component of the system. Isospin invariance and
particle-antiparticle symmetry imply that

Ij~+ =p =p 0——pro= pg and that p + ——p~= p .
To estimate the reaction rates in the hadron gas we as-

sume that changes in the kaon number are due predom-
inantly to the following binary processes:

o(T p)=oq(T)+as(T)+o (Tp) (2.20)

We note that the p dependence of the entropy density
comes only from o, and is therefore weak.

Similarly, the s-quark density is given in the ideal gas
approximation by

where yz
——2XSX1X1 and y~ =2X3X2X2 are the

products of spin, color, isospin, and particle-antiparticle
degeneracy factors. The entropy o, carried by the mas-
sive s and s quarks has to be evaluated numerically. The
total entropy density rr is hence given, in the pure plasma

phase, by the sum of these contributions:

~++~ ~~K++K

~'+~ ~K'+K'
~ +~ K++K-,

~++~ mL++K

+~ mK +K

(2.23)

n, (T,p)=6 J 3 f,(p),
(2n )

(2.21)

which again can only be evaluated numerically.
With these relations between (cr, n, ) and ( Tp), it is now

straightforward to solve (2.13) for T(r) and I4(r) with

given initial conditions T(ro) and p(ro). As we shall see
later the system cools very rapidly in the plasma phase,
essentially according to

The gain and loss rates for these reaction processes can be
calculated as for the chemical processes in the plasma.
The sum of the gain and loss terms for each process is
written in terms of a reduced collision integral as in (2.5)
with prr taking the place of p on the right-hand side. (We
set p =0, as explained in Sec. II C below. ) For example,
for the first process in (2.23),

T(r)=T(0)(ro/r)' '. (2.22)

Hence this pure plasma era lasts only for a short period. where the reduced collision integral is defined by

rJ pi ~72 "Pi ~14
(2m) 2Ei (2n) 2E2 (2m) 2Ei (2n) 2E4

&&f~(pi)f~(p2)fK(p3)fx(p4) exp[P«i+Ex)] .

The other processes in (2.23) are governed by similar ex-
pressions. Since the chemical potentials of all kaons in-
volved in these processes are equal, the total reduced col-
lision integral for all the hadronic processes may be ex-
pressed as

(2.26)

phenomenological approach to the reduced collision in-
tegral. First we approximate the pion and kaon distribu-
tion functions in (2.25) by classical Boltzmann distribu-
tions, viz. ,

P(p'+m 'i'"—

where IH(T,pz) is the sum of collision integrals for all
processes (2.23).

In the absence of any solid knowledge of the hadronic
matrix element in (2.25), we shall take a more

PPg —P(P +P8g )f~(p)=e e

Then (2.25) reduces to the classical expression (see I)
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~( )~( )~+~— g+Z- 3f~Pl f~PZ
sity in the mixed phase as

0 =fog+(1 f)o—H,

n, =fng+(1 f—)nz .

(2.34)

(2.3S)

(2.28)

Approximating o.U&2 by its average in the relevant energy
regime, we get

'2
gpss n~

K+K-U» & '

where n is the total pion density (i.e., summed over iso-
spin). An alternative reduction of (2.2S) gives

d p) dp2
~+~—~~+K ——

)3 )3
fK P 1 fK P2

X&~+~ + U12

(2.30)

with ng=nz++n~ +n&0+n«. The total reduced col-
lision integral (2.28) can thus be approximated either by

(2.31a)

or by

Here ug and n~ are the entropy density and the s-quark
density in the plasma component as given by (2.20) and
(2.21) at temperature T„,

og ——cr&(T«)+os(T«)+cr, (T«,p),
fig = tlat(T«„P ),

(2.36)

(2.37)

and nH and aH are the s-quark density and the entropy
density of the hadron gas:

~H =nK —( T«juK)+~KO( T«pK )

~H=o'n(T«~p~)+&K(T«~pK) ~

(2.38)

(2.39)

where cr and 0~ are the entropy densities carried by
pions and kaons, respectively. As for the plasma phase,
we will use the ideal gas relation for the entropy and kaon
number density of the hadron gas.

In order to obtain a closed system of equations, the
chemical potentials in the hadron gas must be related to
those in the plasma. To do this we postulate a very fast
hadronization process which converts the unconfined
quarks and gluons into hadrons without creating or an-
nihilating ss pairs. Examples of relevant reactions are

(2.40)

3 2/IH= s llK && + — + -UlZ & (2.31b)
E+~~u +s+X, (2.41)

where we have assumed that the collision integrals for all
processes (2.23) are roughly equal. In the following
analysis, we will use the formula (2.31b), with the kaon
density nK computed from the ideal gas expression

nK(TI K)=4f,fKU»)
d p (2.32)

(2m )'

where fK is the Bose-Einstein distribution. We will dis-
cuss estimates for the hadronic cross section in Sec. III.

C. Evolution in the mixed phase

We are now able to give a detailed prescription for
describing the mixed phase. The basic idea is to use the
Maxwell construction both for the equation of state and
for the chemical reaction rates, averaging over the plasma
component and the hadron gas component according to
their respective volumes.

Let f(r) be the fraction of the volume occupied by
plasma at time v. We define v& to be the time when the
temperature reaches the transition temperature T„and
hadronization begins, and ~~ to be the time when the had-
ronization transition is completed. Thus by. definition

f(r)=1 if r&rg
=0 if VQ&H (2.33)

F«&g & «&H, f(~) should decrease monotonically froln
I to 0. We write the entropy density and the s-quark den-

where X refers to extra gluons, light qq pairs, or collective
plasma excitations (e.g. , color plasmons) involved in the
reactions. We assume that the processes in which X con-
tains extra ss pairs are negligible. If we demand that local
detailed balance with respect to (2.40) and (2.41) be main-
tained in the mixed phase, then the pion and kaon chemi-
cal potentials must be related to the quark and gluon
chemical potentials by relations such as

P~+ =Pu+PP+Px ~

Pg+ =Pu+Pg+Px ~

(2.42)

(2.43)

(2.4S)

Inserting these conditions into (2.38) and (2.39) we express
all thermodynamic quantities in the mixed phase as func-
tions of the plasma volume fraction f and the s-quark
chemical potential p.

The chemical reaction rate in the mixed phase is also
given by the average of that in the plasma and that in the

where p,z is the sum of the chemical potentials of the ex-
tra gluons and qq pairs. Since the light-quark and gluon
chemical potentials vanish, it immediately follows that

p~ ——0 and hence that

(2.44)

(as promised) and
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hadron gas. The hadronization processes themselves
preserve the strange-quark number, as we assumed, and
hence contribute nothing. %'e have written the chemical
reaction rates both in the plasma and in the hadron gas in
terms of reduced collision integrals [see (2.5} and (2.26)]
using the same chemical potential p [according to (2.45)].
Thus we can proceed with the calculation in the mixed
phase by simply writing the collision integral I which ap-
pears on the right-hand side of (2.13) as

three massless flavors [see (2.19)]. Thus (3.3) becomes

4 dN/dy
mR'

(3.4)

dN/dy 3 d& h/dy =2.5A fm
mR 2 mR

(3.5)

High-energy cosmic-ray events yield the empirical rela-
tion

I =fI~+ (1 f)I&—(mixed phase) . (2 46) whence

Here Ig is the reduced collision integral in the plasma,
given by (2.6), while IH is its counterpart in the hadron

gas, given by (2.31). We are now able to determine the
evolution of the system in the mixed phase by solving
(2.13).

III. NUMERICAL RESULTS AND DISCUSSION

In this section we present numerical solutions to the hy-

drodynamic equations (2.13). After a discussion of initial
conditions, we show the evolution of the system in the ab-

sence of the flavor-changing chemical reactions in order
to provide a background for their inclusion. We then

proceed to include the chemical reactions in the plasma
and in the hadron gas.

A. Initial conditions

Toro& 1 . (3.1)

This relation follows from the assumption that the
thermal fluctuations cannot be smaller than the quantum
fluctuations in the initial state; since this is only a rough
statement, we do not choose to fix the right-hand side of
(3.1) more precisely. Another constraint comes from the
empirical knowledge of dX/dy in cosmic-ray events. The
final total multiplicity is related to the total entropy at the
time that the particle number is frozen out by

r

dN 1 dS (3.2)
dy 4 dy f

As seen from (2.14a) and (2.15a}, the entropy per unit ra-

pidity dS/dy n'+ err is roughly a constant of motion in

the scaling hydrodynamic expansion. This implies that ~0
and To have to satisfyz6

o( To~go)'ro-4—dX/dy (3.3)
m.R

in order to reproduce a given final particle multiplicity
dX/dy. For To ~~m„we assume the massless ideal gas
relation ao-aToi, with a =4(47.5}(n /90) =20.8 for

The initial conditions consist of three parameters: the

proper time vo for the hyperbola r=ro where the initial

conditions are imposed, and the temperature To, and the
s-quark chemical potential JMo on this hyperbola. We first
discuss constraints on these parameters stemming from
the uncertainty principle and from the observed multipli-

city of secondaries in cosmic-ray events.
One constraint on To and ro follows from the uncer-

tainty principle:

T r =0.5A'~ fm (3.6)

Combining (3.1) and (3.6) gives independent constraints

T, & 140''" MeV,

v )143 ' fm

(3.7)

(3.8)

8. Evolution in the absence of chemical reactions

We first present results obtained by setting I =0 in
(2.13) in order to show how the system deviates from
chemical equilibrium when the chemical reaction process-
es which change the s-quark number in the system are ab-
sent. In this case both the total entropy and the number
of s quarks are conserved: cr and n, decrease as 1/r and
hence dS/dy and dX, /dy are constant. The time evolu-
tion of the temperature T, the plasma fraction f, and the
s-quark chemical potential p are plotted in Fig. 2 as func-
tions of r/~o The hydr. odynamic equations with I =0
are invariant under the scale transformation 7~A~, which
implies that the time scale for the expansion is set simply
by the initial time ~0. %e set To ——340 MeV and po ——0 at
~=ro and choose several different values for the transition
temperature T„. The s-quark mass is fixed at rn, =150
MeV.

In the pure plasma phase (ro(7. &gati), the temperature
of the system decreases very rapidly, reaching T„at ~~.
The simple formula

T(~)= T(0)(ro/r)' ' (3.9)

obtained for the massless ideal gas in equilibrium
(o=aT ) turns out to fit very well in spite of the in-
clusion of the massive s quarks with their nonzero chemi-

It is interesting to note that an A+-'~ dependence of these
initial conditions is predicted by a flux-tube model with a
random walk ansatz for the color charging mechanism.
For central collisions of lead nuclei the inequalities (3.7)
and (3.8) give the upper bound To ——340 MeV for the ini-
tial plasma temperature and the lower bound ro=0. 6 fm
for the time when the hydrodynamic expansion starts. In
light of the uncertainty in (3.1), these bounds might be re-
laxed by a factor of 2.

We argued in the Introduction that if the initial tem-
perature of the plasma is sufficiently high compared to
the s-quark mass in the plasma ( m, =150 MeV), then the
initial flavor composition should be close to the equilibri-
um composition. Therefore we set (to begin with) p, o

——0
which corresponds to complete chemical equilibrium in
the initial state. We will vary p, o later to see how the final
results depend on this hypothesis.
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cal potential. Hence r(2 is approximately determined by

rg ——rp(Tp/T„) .
In the mixed phase, the temperature of the system stays

constant while the plasma fraction in the system decreases
from 1 to 0. Upon completion of the phase transition at
&=~8, the system starts to cool again in the pure hadron

gas phase. Since no-. ~ ' at all times, we have

350 '—''l

300—

I I I I I I IIl

hemical reactions

200—

150 —(a)
( IIIl I I I I I I I Il

10
r/r,

100

I I I I

l

1,0
I I I I I II I I I I I I I

6ITll cB1

Q 4

0.2 —
( )

Q 0
1 100

I I I I I I Il I I I I I I I I

-100
I I I Ll I IIl , l

10 100
r/ro

FIG, 2. Time evolution of (a) the temperature T, (b) the
volume fraction f of plasma, and (c) the s-quark chemical po-
tential p, , in the absence of flavor-changing chemical reactions.
The initial conditions are To ——340 MeV and po ——0 at v=~o.
The solid curve is for the transition temperature T„=200MeV,
awhile the dashed curves are for T„=180MeV, 160 MeV, and
140 MeV. [The sequence of curves is top to bottom in Fig. 2(a),
and left to right in Figs. 2(b) and 2(c).j

o(r=rg)
o(r=rH)

(3.10)

We can see from the figures that rH/r&-10, reflecting
the large entropy of the plasma compared to the hadron

gas at the transition temperature.
The time evolution of p shows how the system deviates

from complete chemical equilibrium because of cooling
and hadronization. Initially, as the plasma cools, p in-

creases. This increase turns into a rapid decrease as the
system enters the mixed phase at r=rt2 and p eventually
becomes negative when T„g 150 MeV. The chemical po-
tential reaches its minimum when the phase transition is
completed at r=rH and from this time on it again in-
creases monotonically.

To understand this behavior, recall that positive p
means an excess of s quarks in the system compared to
the number in the chemical equilibrium, and negative p
means a shortage. The initial excess of s quarks arises be-
cause of the falling temperature: The equilibrium s-quark
density n,~(T} decreases exponentially, because of the fi-
nite s-quark mass, while the entropy density of the sys-
tem, dominated by the massless particles, decreases only
by the power law o ~ T ~ I/r. Since n, /o is conserved
in the absence of chemical reactions, this leads to the ex-
cess of s quarks in the expanding plasma. This behavior
is repeated later, in the evolution of the pure hadron gas.

The decrease in p in the mixed phase, culminating in a
shortage of s quarks, is rather puzzling at first sight.
Indeed, the shortage peaks at r=rH when the system is
entirely a gas of pions and kaons. This looks peculiar
since one would think that the plasma is strangeness rich
compared to the hadron gas because of the small s-quark
mass in the plasma.

Why is this so? The crucial quantity in this calculation
is not n, itself but the ratio n, /tr of the s-quark density to
the total entropy density. In the absence of chemical reac-
tions, this ratio is conserved during the expansion and the
phase transition. One finds that in the equilibrium plas-
ma this ratio is much smaller than in the equilibrium gas
of pions and kaons at the same temperature for T„&150
MeV (see Table I; this important fact was noted by
Redlich, and Kapusta and Mekjian"). There are two
reasons for this. One is the quark degeneracy factor: In
the plasma, there are twice as many light-quark states as
s-quark states, while in the hadron gas there are four kaon
states to the three pion states. The more important reason
is that the plasma carries a lot of entropy in the form of
thermal gluon excitations, while the color degrees of free-
dom are frozen in the hadron gas phase. (To see the im-
portance of the two effects we show in Table I the n, /o
ratio in the plasma excluding the gluon entropy. } The ex-
ponential Boltzmann factor due to the E rt mass differ--
ence does not dominate the n, /o ratio for T & ni, .

Since the entropy is conserved during the hadronization
transition, the entropy lost through the confinement of
the gluons and quarks must be regained by the production
of large numbers of mesons. One of our assumptions con-
cerning the phase transition is that the number of K's pro-
duced is determined entirely by the number of strange
quarks present in the plasma. Thus the extra mesons can
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TABLE I. Equilibrium n, /o. ratio in plasma and hadron gas. n, in the hadron gas is defined by the

sum of the number densities of K and K .

Plasma
(without gluons}

Hadron gas

0.0241
(0.0366}
0.0378

180

0.0236
(0.0359)
0.0337

0.0230
(0.0350}
0.0290

140

0.0221
(0.0338}
0.0236

only be pions. This causes a significant dilution of the
KIIr ratio, which comes out smaller than the equilibrium
hadron gas value: The conservation of entropy via pion
production brings about a shortage of kaons in the hadron

gas.
This result, though obtained in the absence of the

chemical reactions, has important implications: ~atever
the rate of the chemical reactions, their inclusion should
result in ouerall production, rather than annihilation, of ss

pairs in the course of the expansion

C. Inclusion of chemical reactions

Now we switch on the chemical reactions which create
and annihilate ss pairs and kaon pairs, and see how the
above results change. In the plasma, we evaluate the col-
lision integrals (2.7) via QCD perturbation theory, as
described in I. There is ambiguity in the choice of the
running coupling ct, (Q ), since the momentum transfer

Q depends on which diagram one uses for its defini-
tion. We take Q to be the average s-channel Q at the
temperature T. This may be evaluated roughly as

1o'- =
3 o~p —oqq 2 mb .

Assuming factorization

(3.14)

Sqo'- = o'-
$$ Sq

oqq
(3.15)

we note that the s and s must annihilate into d and d.
Thus the total ss cross section of 1.5 mb gives an upper
bound for this process. Given the rough nature of quark
additivity, we will take this value as the most probable
one, and vary it to see its implication for our results.

The relaxation times to achieve chemical equilibrium in

the plasma and in the hadron gas may be computed from
the formula

P1$
(3.16)

(see I) and the result is shown in Fig. 3. The relaxation

gives a total ss cross section of 1.5 mb. To obtain the
cross section for

K+(us )+K (su }~It+(ud )+it (du )

(s)=(2(+rn, +q )) =4(rn, + ', T)—(3.11)
I I I I I I I I I I I I

where (Qm, +q ) is the average s-quark energy and in

evaluating it we have used a nonrelativistic approxima-
tion. Hence we run the coupling constant according to 100—

a, (T)=
2m'

91n[(2m, +3T)/A]
(3.12)

For A = 150 MeV this choice gives a, =0.40 at the transi-
tion temperature T„=2M}MeV, while at T =300 MeV it
gives a, =0.34. We could just fix a, at one of these
values, since its variation is a higher-order effect, beyond
the precision of our tree-level calculation; nevertheless, we

will let it run with T. The running of the strange-quark
mass nI, is likewise an O(a, } correction, and we neglect
it.

The reaction rates in the hadron gas are determined by
the average empirical cross section IT + + [see Eq.
(2.31)]. A rough estimate of this cross section may be ob-

tained from the simple additive quark model as follows.
The measured pp total cross section, o -(s & 50
GeV )=40 mb, gives for the elementary qq scattering
cross section

10

I I I I I I I I I I I I

200 300 400
T (Mev)

o -=(—,
'

) o =4mb (light quarks) . (3.13}

From the Kp cross section, o~& ——20 mb, we deduce the
cross section for scattering of strange antiquarks:

FIG. 3. Relaxation time to chemical equilibrium [defined by
(3.15)] in the plasma (solid curve} and in the hadron gas (dashed
curve). The hadron gas relaxation time is computed using the
formula (2.311}with erg~ ——1.5 mb.
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time in the hadron gas is 3—IO times as long as that in the
plasma in the relevant temperature range. The flavor-

changing chemical reaction processes are more active in
the plasma than in the hadron gas.

We first note that the collision term breaks the invari-

ance of the hydrodynamic equations under the scale
transformation r~/Ira, nd therefore the solution, even

though plotted against v./~0, now depends on the initial
time ~o as well as on the initial temperature. Here we
present the results only for ro=0 6.fm which corresponds
to the lower bound for central Pb-Pb collisions. For
smaller ro the system will deviate further from equilibri-
um and there will be less variation in n, /o. . This is be-
cause the scaling expansion rate is still controlled by ~o..

I
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FIG. 4. T 1 t n the presence of chemical reactions in both the plasma and the hadron gas phases. Shown are (a) theime evo u ion 1

chemical potential p, (b) the scaled entropy density cr~~dS/dy, (c) the scaled strange-quark density n,~~, y, e
strangeness-to-entropy ratio n, /o, an e t e m ra io,/, d ( ) h I/: / ratio in the hadron gas component. The initial conditions are To ——40 MeV
and =0 at ~o ——0.6 fm. The dashed curve in (a) shows evolution of the chemical potential for the case without chemical reactions,
and is identical to the so i curve in ig. c. eh 1 d

' F 2( ) Th dashed curve in (e) is also for the case without chemical reactions.
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FIG. 5. Time evolution of (a) the chemical potential p, (b)

n, ~~dN, /dy, and (c) n /n for the same conditions as Fig.
4, except that o I;~ „is varied: 0 (dashed), 1.5 mb (solid; same
curves as in Fig. 4), 15 rnb (dash-dotted).

the earlier the expansion starts, the faster the expansion,
and hence the chemical processes have less time in which
to act. %e note that the hydrodynamic equations are in-
variant under the simultaneous transformations ro~/I. ro
and I~A, 'I, so that halving ro at fixed I has the same
effect as halving the chemical reaction rate at fixed ro

We present in in Fig. 4 the results of integrating the full
hydrodynamic equations (2.13). As we have noted, the
essential role of the chemical reactions is to bring the sys-

tern toward chemical equilibrium. In the present case the
system starts from chemical equilibrium and deviates
from equilibrium because of the expansion; hence the
chemical reactions compete with the expansion. This ef-
fect is clearly seen in Fig. 4(a) where we show the time
evolution of the chemical potential: p is pushed toward
zero by the chemical reactions.

Figures 4(b) and 4(c) show the time evolution of
o~~dS/dy and n, ~~dN, /dy, respectively W. hen the
right-hand sides of (2.14) are nonvanishing, neither quan-
tity is conserved. The entropy production due to the
chemical reactions is rather small, while dN, /dy increases
by about 20% by the end of the hadronization transition
and by another 10% thereafter (the extremely slow fall off
after the peak is presumably cut off by the transverse ex-
pansion of the system as we shall discuss later). In Fig.
4(d) we plot the time evolution of n, /cr. It is seen that
during the phase transition this ratio rises toward the
equilibrium ratio of the hadron gas and reaches
n, /can=0 03, wh. ich is between the plasma and hadron gas
equilibrium values.

The time evolution of the E /n. ratio in the hadron
gas component of the system is plotted in Fig. 4(e). It is
seen that this ratio starts from 0.4 and diminishes as the
hadronization proceeds. To understand this behavior we
first recall that in the present analysis the hadronized por-
tion is always assumed to be in chemical equilibrium with
the plasma, i.e., possessing the same chemical potential p.
Since p is positive when the hadronization starts, the
K /m ratio in the hadron gas is larger than the equili-
brium ratio. This ratio eventually comes down, reflecting
the overall shortage of strange particles characterized by
the negative value of the chemical potential.

%e compare in Fig. 5 the results obtained by turning
off the chemical reactions in the hadron gas. It is clear
that the hadronic chemical reactions, in spite of their
small rates, are just as important as the plasma chemical
reactions in increasing dN, /dy. This is because (1) p de-
viates from zero significantly only late in the mixed phase
and (2) the time scale for expansion, [d(lnV)/dr]
grows as ~ and is hence ten times as large at ~H as at vg.
Thus the increase in dN, /dy occurs mostly at the end of
the mixed phase when the system consists mostly of had-
ron gas.

In view of the uncertainty in the hadronic reaction rates
we also present in Fig. 5 the results of multiplying our as-
sumed hadronic cross section by 10 (this large hadronic
cross section is close to that used by Kapusta and
Mekjian"). A very large hadronic reaction rate keeps the
system very near chemical equilibrium [see Fig. 5(a)].
The II /n ratio [Fig. 5(c)] rises toward the equilibrium
hadron gas value at ~H, and then drops as the temperature
drops. The smaller the hadronic reaction rate, the more
indicative is the K/n. ratio of plasma formation: The
curve with zero I(E cross section has the smallest ratio,
reflecting the smaller value of n, /o in the plasma.

So far we have assumed complete chemical equilibrium
in the initial state by setting po ——0. The results of varying

po are shown in Fig. 6. It is seen that the chemical poten-
tial ends up following the saine curve whatever its initial
value. Likewise cr~ and the II. /m ratio end up within a
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FIG. 6. As in Fig. 5, but with cd~I(,- fixed at 1.5 mb and
varying initial conditions: po ——0 (solid; same curves as in Fig.
4), po ———500 MeV (dashed), po ———1000 MeV (dash-dotted).

IV. SUMMARY AND CONCLUSIONS

In this paper we have studied the time evolution of the
fiavor composition of the dense hadronic matter which
would be produced in the central rapidity region of ul-
trarelativistic heavy-ion collisions. %'e assumed that the

narrow range of values. The same behavior is seen in the
time evolution of n, /o This is n. ot very surprising be-
cause while the relaxation time in the plasma is compar-
able to the time scale of the longitudinal expansion, the
lifetime of the mixed phase is perhaps ten times as long.

hadronic matter is formed initially as a dense plasma of
unconfined quarks and gluons near ehemica1 equilibrium
and evolves according to the scaling hydrodynamics
through three distinct phases: namely, the pure plasma
phase, the mixed phase, and the pure hadron gas phase.

%e have extended Bjorken's hydrodynamic description
of the space-time evolution of the central rapidity region
so as to incorporate the kinetics of the relatively slow
chemical processes which change the s-quark abundance
in the system. Our hydrodynamic equations thus contain
the rate equation for the strangeness current which relates
the change in the strange-particle density to the chemical
reaction rates. It was shown that in the Lorentz-invariant
one-dimensional scaling expansion, these hydrodynamic
equations are reduced to the entropy equation and the rate
equation which couple through the collision integrals of
the chemical reaction processes. In solving the hydro-
dynamic equations, we used the results of a perturbative
QCD calculation of the chemical reaction rates in the
quark-gluon plasma, whereas the chemical reaction rates
in the hadron gas were estimated phenomenologically us-

ing the observed hadron cross sections. One crucial as-
sumption we made in converting the plasma to hadron gas
is that the hadronization is a very rapid process and con-
serves the abundance of ss pairs.

We found that the hadronization transition causes a
shortage of strange particles in the system and as a result
strange particles are produced by the chemical reactions in

the course of the expansion. This soinewhat surprising re-
sult was shown to be the consequence of the fact that the

strangeness/entropy ratio is larger in the equilibrium had-
ron gas than in the plasma. It is interesting to note that
the small strangeness/entropy ratio and the high chemical
activity of the plasma have the same origin, namely, the
high abundance of thermal gluon excitations, one of the
characteristic properties of the quark-gluon plasma.

To make predictions for the final E/m ratio from our
analysis, an understanding of the late stages of the expan-
sion is necessary. ln particular, the system must fall out
of equilibrium as densities and reaction rates drop. In the
present calculation we have kept the pion chemical poten-
tial always at zero. This means that the pion density is
adjusted to its equilibrium value at any stage of the hydro-
dynamic expansion. Although this may be a good ap-
proximation in the mixed phase where the pion gas is in
strong thermal contact with the plasma droplets, it may
not be valid in the pure hadron gas phase since the pro-
cesses which change pion number are very slow. (Similar-
ly, the photon gas in a blackbody is in equilibrium only
because of interaction with the walls. ) In fact the fastest
process which changes the pion number is the n.m~mmmm

reaction whose cross section is as small as that of the
mrr~~XK processes which we have shown to be out of de-
tailed balance. This implies that the pion will acquire a
nonzero chemical potential soon after the completion of
the phase transition and that a proper treatment of the
chemical evolution of the hadron gas requires an addition-
al rate equation associated with the slowly changing pion
number.

On the other hand, once the phase transition is over the
system would fall apart very rapidly via the transverse
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rarefaction wave which moves inward at the speed of
sound, c,=l/v 3. The time scale for this transverse rare-

faction, 8/c„ is in fact much shorter than the relaxation
time in the hadron gas (see Fig. 3). In contrast, our one-

dimensional scaling hydrodynamics should be a good ap-
proximation before w=~H since the transverse expansion
is slowed during the mixed phase: Sound waves cannot
propagate in the system and the shocklike discontinuity
can travel only very slowly. Hence both the pion num-

ber and the kaon number will most likely freeze-out short-

ly after completion of the phase transition. i'
For this reason we conclude that the final multiplicities

of pions and kaons should reflect their values at w=~H
We found that this K /n ratio is about three times as

large as that seen in pp collisions. At first glance, this re-

sult appears very encouraging for experimentalists who
are seeking signatures of plasma formation in high energy
heavy-ion collisions. However, this E/m ratio is smaller
than that which would emerge from an equilibrium had-

ron gas. Thus we are forced to conclude, along with

Kapusta and Mekjian, " that enhanced strangeness is not
a direct signal of plasma formation. The best that can be
said" is that the enhancement is a sign that the hadronic
fluid was sufficiently long-lived to allow the flavor com-
position to approach equilibrium. This is indirectly a sig-
nal of plasma formation, since the large entropy of the in-

itial state dramatically increases the time needed for ex-

pansion in order to dissipate that entropy as freely streun-
1ng particles.

It thus becomes crucial to understand the effect of in-

cluding resonances in the hadron gas. %hile it would ap-

pear that most resonances would be highly suppressed by
their large masses, it must be remembered that the density
of states increases rapidly with mass, and hence that the
resonances contribute significantly to the entropy.
Indeed, it was this observation that led Hagedorn to con-
clude long ago that we should expect novel physics at a
temperature of only 140 MeV. It is quite possible that
even entropy (as inferred from the expansion time) does
not distinguish between a hadron gas and a quark-gluon
plasma.

In any case, the E/ir ratio we predict could be easily
diluted by effects which we have neglected. Any further
source of entropy, such as viscosity and other transport
effects, would produce more pions in the same way as the
gluon entropy we found to be so important. Hadronic res-
onance states formed during the expansion may decay late
and also enhance the number of pions, since they are
favored by phase space. Certainly, these effects as well as
the transverse expansion and the different hadronization
mechanisms deserve more extensive study. The frame-
work we have presented, based on kinetic theory, can be
used without major modification to deal with these in-
teresting problems, as well as with the related problem of
charm production.

We make a final remark of a rather speculative nature.
The Maxwell construction we used for the dynamics of
the first-order phase transition is undoubtedly an oversim-
phfied scenario. If bubble formation and phase separation
occur on a large scale, the K/n. ratio will fluctuate about
its average value. Those bubbles of hadron gas which

form earliest are created at positive chemical potential,
and hence with a large local E/n ratio. The regions
formed later, on the other hand, have undergone super-
cooling and thus generated extra entropy density and ex-
tra final multiplicity. The fluctuations in the K/m ratio
should thus be observed out ofphase with the fluctuations
of total multiplicity in rapidity space. Of course, these
fluctuations could be smeared out by diffusion.
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APPENDIX

Our analysis differs from the earlier work of Kapusta
and Mekjian" (KM) in several respects.

(1) KM solved the entropy equation (2.13a) in the adia-
batic limit (I =0), neglecting the nonequilibrium chemi-
cal processes. The resulting thermodynamic profile was
used to integrate the rate equation. Our solution, on the
other hand, contains the effects of the chemical processes
on the evolution of the temperature and the entropy. As
is clear from Fig. 4(b), this effect is not significant, essen-
tially because the entropy is dominated by the light quarks
and gluons.

(2) KM used the result of Rafelsky and Miiller for the
chemical reaction rates in the plasma. We recalculated
the rates (see I) taking into account the effects of Pauli-
blocking and correcting numerical errors in Ref. 4. (See
also Ref. 34.) We used our new result in the present
analysis. Because of a mistaken factor of 2 in Ref. 4 and
a different choice of the strange-quark mass by KM, our
estimate of the relaxation time in the plasma (with a run-
ning QCD coupling constant) is about three times as large
as that used in Ref. 11.

(3) Our estimate of the reaction rates in the hadron gas
is much smaller than that of KM. Specifically, the relax-
ation time in the hadron gas which is shown in Fig. 3 is
about an order of magnitude larger than that used in Ref.
11. This difference stems from the uncertainty in deduc-
ing the kaon annihilation cross section from observed ha-
dronic cross sections. %'e note here again that in our cal-
culation the relaxation time in the hadron gas phase is al-
ways longer than the relaxation time in the plasma.

(4) KM considered two different scenarios for the
course of the hadronization transition. In our work we
examined only one scheme which is essentially the same
as the "Maxwell scenario" in Ref. 11. %e emphasize that
the Maxwell scenario gives results that should not change
much if it turns out that there is no phase transition at all,
as long as ideal gas approximations are reasonably valid in
both the plasma and the hadron regimes.

(5) Probably the most important difference between the
two analyses is in the choice of initial conditions. KM set
the initial strange-quark density to zero and studied the
approach to chemical equilibrium in the subsequent ex-
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pansion. We postulated, on the other hand, that the plas-
ma is formed in the beginning with flavor composition
near chemical equilibrium. %'e attempted to learn how
this initial equipartitioning of the deposited energy among

the flavor degrees of freedom is reflected in the final ob-
servable particle composition. It appears that the results
(see Fig. 6) do not depend strongly on the initial condi-
tions.

'For a recent review, see Quark Matter '84, proceedings of the
Fourth International Conference on Ultrarelativistic
Nucleus-Nucleus Collisions, edited by K. Kajantie (Lecture
Notes in Physics 221) (Springer, New York, 1985).

~J. Rafelski and R. Hagedorn, in Statisticai Mechanics of
Quarks and Hadrons, edited by H. Satz (North-Holland, Am-

sterdam„1981) ~

T. S. Biro and J. Zimanyi, Phys. Lett. 113$, 6 (1982); Nucl.
Phys. A395, 525 (1983).

4J. Rafelski and B. Muller, Phys. Rev. Lett. 48, 1066 {1982);J.
Rafelski, Nucl. Phys. A418, 215c (1984).

5N. Glendenning and J. Rafelski, Phys. Rev. C 31, 823 (1985}.
6H. Bgggild and T. Ferbel, Annu. Rev. Nucl. Sci. 24, 451 (1974).
~A. Casher, H. Neuberger, and S. Nussinov, Phys. Rev. D 20,

179 (1979); E. G. Gurvich, Phys. Lett. 878, 386 (1979); B.
Andersson, G. Gustafson, and T. Sjostrand, Z. Phys. C 6, 235
(1980); N. Glendenning and T. Matsui, Phys. Rev. D 28, 2890
(1983).

ST. S. Biro, H. B. Nielsen, and J. Knoll, Nucl. Phys. 8245, 449
(1984); A. Biaks and %. Czyz, Phys. Rev. D 31, 198 (1985);
M. Gyulassy and A. Iwazaki, Phys. Lett. 1658, 157 (1985).

9A. Kermaa, T. Matsui, and B. Svetitsky, Phys. Rev. Lett. 56,
219 (1986).
T. Matsui, L. McLerran, and B. Svetitsky, paper I, Phys. Rev.
D 34, 783 (1986).

"J.Kapusta and A. Mekjian, Phys. Rev. D 33, 1304 (1986).
'2J, Bjorken, Phys. Rev. D 27, 140 (1983).
~3K. Kajantie and L. McLerran, Phys. Lett. 119$, 203 (1982);

Nucl. Phys. $214, 261 (1983); K. Kajantie, R. Raitio, and P.
V. Ruuskanen, ibid. $222, 152 (1983).

' G, Baym, B. L. Friman, J.-P. Blaizot, M. Soyeur, and %.
Czyi, Noel. Phys. A407, 541 (1983).

15G Baym, Phys. Lett. 1388„18(1984).
'6K. Kajantie and T. Matsui, Phys. Lett. )64$, 373 (1985).
'~M. Gyulassy, K. Kajantie, H. Kurki-Suonio, and L. McLer-

ran, Nucl. Phys. 8237, 477 (1984};L. van Hove, Z. Phys. C
27, 135 (1985).

'SThis is so even if one takes viscosity into account, which par-
tially incorporates the deviation from local thermodynamic
equilibrium due to nonzero mean free paths. See A. Hosoya
and K. Kajantie, Nucl. Phys. 8250, 666 (1985); P.
Danielowicz and M. Gyulassy, Phys. Rev. D 31, 53 (1985).

~9L. van Hove, Z. Phys. C 21, 93 (1983); B. L. Friman, G.

Baym, and J.-P. Blaizot, Phys. Lett. 1328, 291 {1983).
208. Banerjee, N. Glendenning, and T. Matsui, Phys. Lett.

1278, 453 (1983); B. Muller and J. M. Eisenberg, Nucl. Phys.
A435, 791 (1985).
J. Cleymans, R. V. Gavai, and E. Suhonen, Phys. Rep. 130,
217 (1986);B. Svetitsky, ibid. 132, 1 {1986).

22N. Glendenning, and T. Matsui, Phys. Lett. 141$, 419 (1984);
B.Friman, ibid. 1598, 369 (1985}.
K. Redlich, Z. Phys. C 27, 633 (1985).

24A. Casher, J. Kogut, and L. Susskind, Phys. Rev. D 10, 732
{1974);J. Bjorken, in Current Induced Reactions, edited by J.
G. Korner et al. (Lecture Notes in Physics, Vol. 56)

(Springer, New York, 1976), p. 93.
25In the presence of long-range interactions or some average

mean field acting on the particle, the kinetic equation is modi-
fied to include a term which is known as the Landau-Vlasov
term. %'e neglect such effects here. For a formulation of this
problem in a non-Abelian gauge theory, see U. Heinz„Ann.
Phys. (N.Y.) 161, 48 (1985).

26M. Gyulassy and T. Matsui, Phys. Rev. D 29, 419 (1984).
270. Miyamura, JACEE Collaboration report, in Ref. 1.

H. M. Georgi, S. L. Glashow, M, E. Machacek, and D. V.
Nanopoulos, Ann. Phys. (N.Y.) 114, 273 (1978); B. L. Com-
bridge, Nucl. Phys. 8151,429 {1979).
%e note our estimate for 0.~~ is about one order of magni-
tude smaller than that of Kapusta and Mekjian in Ref. 11.
B. Friman, K. Kajantie, and P. V. Ruuskanen, Nucl. Phys.
8266, 468 {1986);E. von Gersdorff, M. Kataja, L. McLerran,
and P. V. Ruuskanen, Phys. Rev. D 34, 794 (1986).

3'The effect of the transverse expansion on the evolution of the

flavor composition is investigated by K. Kajantie, M. Kataja,
and V. Ruuskanen, University of Jyvaskyla Report No. JYFL
9/1986 (unpublished).
E. Shuryak, Yad. Fiz. 28, 796 (1978) [Sov. J. Nuc(. Phys. 28,
408 (1978)];J. Cleymans and R. Philippe, Z. Phys. C 22, 2'7l

(1984)~

3 A similar mechanism has been suggested in the context of
strange-matter formation in the early Universe. See E. Wit-
ten, Phys. Rev. D 30, 272 {1984).

34P. Koch, B. Muller, and J. Rafelski, University of Cape Town
Report No. UCT-TP 29/1985, revised Feb. 1986 (unpublish-
ed) (to appear in Phys. Rep. ).


