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pp~(g, 'Pi }~@,rl, ~y, yy are found from Fig. 2 by re-

placing X with P or 'P„P with rj„and e+e with yy.
The joint angular distributions for these processes are dif-
ferent but it is straightfonvard to find

W(8;8', p')=+8~g~ g d~(8)dg„(8)AO . (3)

J+1
.2—a; =1, (7b)

p, ,p'=+1

For simplicity we define a normalized, joint angular
distribution,

W(8;8', y') =C
2+2+ 2

so that the total rate is normalized to unity

f dQdQ'W(8;O', P')=1 . (5)

We also define a constant R, which measures the fraction-
al contribution of the helicity-one initial production pro-
cess:

28)
0'+2

(6)

The factor of 2 appears because helicities +1 contribute
equally.

For each transition, we obtain the joint distribution

W(8;O', P') (all are independent of P) in terms of observ-
ables I E; ) and elementary trigonometric functions.
These I K, J can be expressed in terms of the helicity am-
plitudes A; which in turn can be written in terms of the
multipole transition amplitudes a;. These amplitudes are
normalized to one,

and by convention a
&

is taken to be positive. The general
relation between the two sets of amplitudes is

' 1/2

A„=g ak
2k +1
2g'+ 1

and we shall list the particular relations for each transi-
tion. It is important to note that the helicity and mul-
tipole amplitudes for different transitions are independent,
e g , A. o. (X2)&AO(Xi), a2(X2)&a2(Xi), R (Xi)~R('Pi ).

The most information is obtained from determining the
full distribution from experiment but this is not always
possible. We may, however, gain some information from
the integrated distributions

W(8) —=f d P d O' W(8; O', P'),

W(8') =—f dQ dP'W(8;O', P'),

W(P') =f d Q d (cos8') W(8;O', P'),

which we calculate for each transition as well.

PP ~X2~1'4

These results have been published previously but for
completeness and to correct a misprint we have

{F4~2

15
W(8;8', p') =.K+Kz cos 8+Ki cos 8+(K4+E5 cos 8+K6 cos 8)cosz8'

+(K7+Ks cos 8+K9 cos 8)sin 8'cos2$'+(Eio+K» cos 8)sin28sin28'cosP',

where the eleven observables ( K; I are given by The partially integrated angular distributions are, up to a
normalization constant,

8Ki ——2Ao +3Az —R(2AO —4Ai +At ),
—,K2 ———2AO +4Ai —A2 +R (4AO —6Ai +A2 ),
SK3 (6Ap ——8Ai +—Az )(3—M),
SK4 ——2AO +3A2 —R(2AO +4Ai +A2 ),
—,Kg ———2Ap —4Ai —A2 +R(2Ao +6Ai +Ay ),
SK6 ——(6AO +SAi +A2 )(3—5R),

4K7 ——V 6(R —1)AOA2,

4K8 ——W6(4 —6R )ADA 2,
4K9 ——v 6(M —3 )ADA 2,
(4/W3)Kio ——ADA i +V 3/2A, A2

—R (2ADA i+&3/2A i Ap),

4~3Kii ——(M —3)(3AOAi+&3/2AiA2) .

W(8}=W(ir/2)( 1+a cos 8+P cos 8),
—A2 +2Ai —2AO +R(A2 —3Ai +4AO )

3A2 +2AO +R( —A2 +2Ai —2AO )

(3—5R)(A2 —4Ai +6AO )

3A2 +2AO +R( —A2 +2Ai —2AO )

W(8') = W(n. /2)(1+a' cos 8'),
1 —3A)

1+3j

W(P') = W(m/4)(1+a" cos2$'),

a"= —AgAO/~6 .

(12a)

(12c)
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For this process, a&, a2, and a3 correspond to E1, M2,
and E3 transitions, respectively, and

&U. Pp (&0 n')

a i ——V'1/10A0+ V'3/10A i +V'3/5A 2,

ay =&1/2AQ+ &1/6A i
—&1/3A 2,

a3 =V'2/5AO —&g/15A, +&1/15A2 .

The inverse transformation is

Ao ——v'1/10a i +&1/2ai+ &2/5a i,
A i

——Y3/10a, +v'1/6a2 —v'8/15a i,
A2 ——v'3/5a i —v'1/3a2+ v'1/15ai .

(13)

(14)

64m.

3
W(8;O', P') =Ko(1+cos 8'),

(21)

The Po decays only by E1 transitions and the q,
'

decays
only by M1 transitions for these processes so we have

ai=~o=
The absorption helicity state B& does not appear in

these processes because the Xo and g,
'

only have helicity
zero which implies R =0. Because of this, these states
can be created only if pp can couple to helicity-zero states.
The normalized joint angular distribution is

»1 Pp» y4

Formation of the Xi state takes place in either A, =O or
+1 pp helicity states and the decay multipoles are El or
M2. The joint angular distribution is given by

64rr'- 2 2 2

9
W(8;O', P') = Ki +K& cos 8+(K&+K4 cos 8)cos 8'

Ko ——1 —R =1

W(8) = —,
'

W(8') = —,(1+cos 8'),

W(P') =
2m

'

(22b)

(22c)

+K5 sin 28 sin28' cosP' . (15)

The five observable coefficients in the angular distribu-
tions are

These decays proceed by only one multipole, Ml for
g~yri, and El for 'P, myri„so we have

K, =A, '+ ,'R(A, ' —A—,'),
Ki ——(1——,R)(AO —A i ),
K= —A, + —,R,
K4 ——1 ——,R,
4K& ——A i Ao(3R —2);

W(8) = W(n. /2)(1+a cos 8),
(2AO —A i )(2—3R)

2Ai +R(2AO —Ai )

W(8') = W(m /2)(1+ a' cosi8'),

1+3)
EX =

j. —3A, ' '

(17a)

(17b)

a& ——Ho=1

For these states the angular distributions are

3
W(8;O', P')=(Ki+K2cos 8),

K) ——1 ——,R,
Kp ———,R —1;

W(8) = W(m /2)(1+a cos 8),

3R —2
2-R '

W(8') = —, ;

W(P') =
2m

'

(23)

(24)

(25a)

(25b)

(25c)

W(P') =
2m

' (17c)

For this process, a& and a2 correspond to E1 and M2
transitions, respectively, and

a i
——v'1/2( A o+A i ),

a2 ——&1/2(AO —Ai ) .

The inverse transformation is

Ao ——&1/2(a i +a 2 ),
Ai ——v'1/2(ai —a2) .

For g~yri„g'~yi)„and g'myri, '
transitions, the

angular distribution W(8) depends on R varying from
I+cos 8 for R =1 to sin 8 for R =0.

Because of C-parity conservation the 8, helicity state
does not enter into 'PI production. Since the 'I'& state is
formed by pure R =0, the decay-angular distribution is
uniquely sin 0.

UI. pp~tg~e+e
AND e+e ~/~A

ln the e e -initiated formation process the p is pro-
duced with helicity +1 but the final pp state may have
helicity 0 and + 1 so the angular distribution is given by
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g (8)= g (wy2)(1+a cos'8),

where

3R —2
2 —E

(26) appearing in Eq. (2»), obt»ned from a measurement of
the process pp~g~il, y. The angular distribution for
pp~f~e+e has been measured by R704 (Ref. 7) and
is consistent with a=0.6 but the statistics are too low to
make any definitive statement.

VII. CONCLUSIONS

a,„p,——0.60+0.08+0.03

which by Eq. (27) implies that

Z= ' +"=O.S9+0.03.3+a

(28)

(29)

By the principle of detailed balance, the angular distribu-
tion of the time-reversed reaction pp~ijt~e+e should
be the same as the forward reaction. In fact, the equa-
tions for these processes are identical and the R for the
forward reaction is equal, by time reversal, to the R for
the reverse reaction. This R should also be equal to the R

and 8 is defined to correspond to the pp initiated defini-
tion of Eq. (6) with 8; replaced by A;. This angular dis-
tribution has been measured to good accuracy in a recent
DM2 (Ref. 6) experiment which obtained

We have examined the kinematics of processes of the
form pp~(cc)i~(cc)zy. The angular distribution of the
decay products of the final cc state can be parametrized
by a small number of real quantities. Conversely, mea-
surement of these joint angular distributions allows a good
determination of a variety of well-defined quantities
which are susceptible to theoretical interpretation.

The heavy-quark model makes predictions for the vari-
ous transition multipoles and exclusive @CD calculations
should be able to account for the helicity absorption ra-
tios. Finally, the observed angular distributions, even in a
case where conservation laws mandate a unique result, is
of interest as a test of state quantum numbers. This
would be particularly important in verifying the existence
of the 'Pi state.
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