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We revive a quark-parton model of multiparticle production in which Koba-Nielsen-Olesen
(KNO) scaling at energies up to the CERN ISR results from the Bjorken scaling of quark
longitudinal-momentum distribution functions in hadrons. KNO-scaling violation in total inclusive
data at and above ISR energies is ascribed to the onset of gluon-gluon collisions as a new (rising)
component of the total inelastic cross section. A new multiplicity formula is obtained, and excellent
agreement is obtained for the KNO function and all moments of multiplicity distributions up to
CERN SppS Collider energies. Tentative predictions for the Fermilab Tevatron Collider and Super-
conducting Super Collider energy ranges are presented, and the uncertainties of such extrapolations
discussed. We also discuss the question of KNO-scaling violation in non-single-diffractive as op-

posed to total inclusive data.

I. INTRODUCTION

The discovery of clear two-jet events at the CERN
SppS Collider! has recently provided brilliant confirma-
tion of the QCD parton picture of hard hadron collision
processes at the very large momentum transfers
(Q2~10° GeV?) where perturbative QCD is expected to
provide a reliable description of the underlying constitu-
ent scattering. Jet angular distributions are well described
in the parton c.m. frame by an expression of the form

do dé

dx dx,d cosf %f'(xl Vi(x2) dcosf ’

(1.1

where the sum runs over parton species, f;(x) is the prob-
ability of finding a constituent i of the proton with
longitudinal-momentum fraction x at the appropriate
large Q2 and the caret denotes the parton-parton dif-
ferential scattering cross section.

This remarkable success of the QCD parton model in
describing hard-scattering processes in very-high-energy
hadron collisions is indeed gratifying, but should not ob-
scure the fact that such processes actually comprise a tiny
fraction of the total pp cross section. The remaining,
overwhelming fraction of the pp events corresponds to
low-momentum-transfer processes, where perturbative
QCD is inapplicable. In the description of such processes,
we must rely on phenomenology, which may or may not
be closely inspired by soft QCD folklore.

Clearly, somehow, the bulk of the hadron collision
cross section should reflect the internal structure of had-
rons, and, in fact, parton models of low-momentum-
transfer processes have met with a measure of
phenomenological success.> Most important is the success
of the additive quark model® in predicting ratios of cross
sections: the prediction® o(mp)/o(pp)=% of the additive
quark model is well verified over the entire energy range
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for which data is available, i.e.,, up to the end of the
CERN ISR energy range where we encounter the rise of
the total pp cross section [experimentally, in fact,
o(mp)/o(pp)~+]. The explanation of this success of the
additive quark model is possibly the most important ques-
tion to be addressed by a future theory of soft QCD.
Another interesting result is due to Goldberg* who sug-
gested that the relatively fast decrease of the Feynman-x
spectra of mesons in the proton fragmentation region be a
reflection of the valence-quark structure functions of the
initial proton: the x distribution of a pion in the fragmen-
tation region is expected to reflect that of a valence quark
which it shares with the incoming proton. Hence with

x da?™"

P—h(y) = 2
Fr=x) o dx ’

we have
FP=m (x) ccuy(x) (1.2)
and
FPm(x)  dp(x)
Frmt(x) p(x)

(1.3)

both predictions in excellent accord with experiment?®’
[where g,(x) is the valence structure function of the
quark ¢ in the proton].

In this paper, in the spirit of the additive quark model,
we develop a parton model for multiplicity distributions
of hadrons produced in high-energy pp and pp collisions.
The basic idea was outlined more than a decade ago by
Eilam and Gell,® who showed that Koba-Nielsen-Olesen
(KNO) scaling’ followed from the Bjorken scaling of
quark structure functions in a parton model of multiparti-
cle production, provided the total multiplicity grows as a
power of s. Such behavior («s'/#) is in fact in good
agreement with data up to ISR energies. In the interven-
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ing years, the importance of the gluon content of the pro-
ton was established indirectly through the analysis of
deep-inelastic lepton-proton collisions: gluons carry about
half the proton momentum, although the gluon distribu-
tion is still very uncertain, especially at small x and Q2
(note that this uncertainty has little effect on the small-x,
large- O behavior of gluon distributions as calculated via
the Altarelli-Parisi equations).

We shall assume that the total inelastic pp and pp cross
sections reflect the presence of both quarks and gluons in
the proton. In particular, we shall ascribe the rising part
of the cross section to the onset of gluon-gluon processes,
a suggestion made by many people over the years.> Thus,
we write at ISR energies and beyond

Oinel(8) =04 +0g(s) , (1.4)

where o, is the part due to gq collisions at low (sub-ISR)
energies where the additive-quark-model predictions for
cross-section ratios are verified. The gluon part is as-
sumed to grow as In’(s /sy ): the scale sq is a few hundred
GeV?, and may perhaps be understood as corresponding
to the onset of resonant glueball production.’” For exam-
ple, we would expect a new threshold at

X1X28 '—"AlG2 N (1.5)

where M is some glueball mass. With X~+, say, on the
average and My =2 GeV, this suggests s, ~200 GeV? or
so. In fact, the average particle content of ISR and SppS
events seems to indicate'® a slow rise in the relative num-
ber of 7 mesons which could be dominant decay products
of glueballs: this question deserves further experimental
study.

The onset of a rising gluon-gluon inelastic cross section
serves to explain the observed violation of KNO scaling
seen in the total inclusive SppS data.'! Another important
point is the energy dependence of the total charged multi-
plicity which is well fit by a simple s!/* form at low ener-
gies, which however does not successfully extend to collid-
er energies. This effect is also explained in terms of the
increasing importance of gluon-gluon processes, for which
the available energy for particle production is on the aver-
age less than in a quark-quark collision, because the
gluons are typically found at smaller x than valence
quarks. A consequence of this picture is the expectation
that the additive quark model of cross-section ratios is ex-
pected to fail at very high energies, due to the differing
gluon contents of mesons and protons. This question can
be investigated using a fixed-target setup at the Fermilab
Tevatron and perhaps the Superconducting Super Collider
(SSC).

In what follows, we shall make extensive use of quark
and gluon distribution functions, and there is a question
as to which average Q2 is the appropriate one for soft
hadron collisions. One often immediately thinks
Q%~(p,)*~(400 MeV)?, a rather small value which
would seem to preclude the use of the parton model. In
fact, the appropriate Q2 can be somewhat larger, as
demonstrated by Pokorski and Wolfram,'? who proposed
a simple, direct, empirical method for its determination.
Suppose the c.m. momenta of the initial hadrons in a

high-energy collision are p; and p, so that the final ha-
dronic systems have momenta p,+Q and p,—Q. If we
now assume (1) that | Q | <<Vs and is at most slowly
varying with Vs (as suggested by the data), and (2) that
on the average the various components of Q, are compar-
able (recall that in Feynman’s parton picture of inelastic
hadronic collisions'? the “wee” four-momentum exchange
has a nonzero longitudinal component), then the invariant
masses of the produced hadronic systems will be

M*~2p-Q=~Vis |Q |, (1.6)

whereas M? can be directly calculated, say in the forward
(y > 0) hemisphere, via

M2=Eto!2_PLtot2 (1.7)
with

dN
E= d“p,m,coshydy , (1.8)
tot f dzpldy pim, ly dy

dN .
Pr= | ———d?p,m sinhydy , (1.9)
Ltot fdzpldy pim; y ay

and where the total transverse momentum vanishes by
definition. The available rapidity range is O0<y <Y /2
with Y =In(s /m,,z) and the transverse mass
m, =(u?+p,2)2~ |p, | for pions. With the reasonable
approximation that the hadrons are produced fairly uni-
formly over most of the rapidity interval, we then get

E~ [ d%, |p, | h(y =0)sinh(y 20~V /2,
dzPl

(1.10)

dN
Pro [ dpy |1 | 5 —h(y =O)[eoshly/2)—1],
1

(1.11)

where h(y =0) is the height of the rapidity “plateau,”
slowly rising with increasing Vs. It is now simple to cal-
culate M? from Eq. (1.7), with the result

M2 =h(y =0){p, )Vs (1.12)

whence, comparing with Eq. (1.6), we get the empirical es-
timate

|Q | =~h(y=0)p,) .

Both h(y =0) and {p, ) are slowly increasing functions
of V/s and Eq. (1.13) indicates that, over a wide energy
range, the appropriate Q2~ 1 GeV? hardly changes at all.
This value may serve to justify the incoherence assump-
tion underlying the additive quark model since, with the
proton radius R,~1 F, we get QR,>1. We also note
that perturbative QCD violations of Bjorken scaling are
irrelevant to parton models of soft hadronic processes.
The result, Eq. (1.13), also suggests an interesting specula-
tion: it may be possible to estimate the magnitude of the
total pp and pp cross sections using a formula of the form
(1.4) by calculating og(s) from (1.1) with the energy-
dependent empirical minimum momentum transfer | Q |
in Eq. (1.13) to cut off the Coulomb divergence of the per-

(1.13)



34 KOBA-NIELSEN-OLESEN SCALING, ITS VIOLATION, AND . .. 2027

turbative gluon-gluon cross section. This could serve to
justify the phenomenological ansatz adopted by Gaisser
and Halzen in Ref. 8.

The plan of this paper is then as follows. In Sec. II we
review and expand on the Eilam-Gell model of KNO scal-
ing, as relevant only up to energies where the pp total
cross section begins to rise: only quark-quark collisions
are relevant here, the motivation being the success of
the additive quark model of cross-section ratios in that
energy range. We obtain analytic expressions for the
KNO-scaling function and for the dispersion
D,=({n?)—(n)?!/? which are found to be in excellent
agreement with data up to Fermilab or CERN SPS ener-
gies: in particular, we derive the Wroblewski relation'*
D, « ({n)—ng), which works very well indeed.

In Sec. III the model is extended to include the effects
of gluons as the origin of KNO-scaling violations seen at
the high end of the ISR energy range and at the SppS Col-
lider. We also propose a new multiplicity formula which
agrees well with data at all energies.!* Extrapolated to
very high energies, this formula implies larger charged
multiplicities than the conventional phenomenological fit

(n)=a+blns +cln’ .

Our considerations apply to the total inclusive inelastic
data: we show that these data at different energies do not
in fact imply a strong violation of KNO scaling. In Sec.
IV we address the question of the effect of the removal of
the so-called single-diffractive-dissociation events from
the data [resulting in the so-called non-single-diffractive
(NSD) sample]. We show how this somewhat arbitrary
cut results in KNO distributions which exhibit much
more KNO-scaling violation for a very simple reason, re-
lated to the behavior of the average charged multiplicity
(n) for increasing c.m. energies.

In Sec. V we offer predictions for Super Collider ener-
gies (Tevatron Collider and SSC): these depend signifi-
cantly on the choice of high-energy parametrization for
Ooi(s). Section VI serves to summarize our results and
conclusions.

II. KNO SCALING AND THE ADDITIVE QUARK
MODEL UP TO ISR ENERGIES

In this section, we develop and extend the Eilam-Gell®
picture of KNO scaling in pp collisions at low (sub-ISR)
c.m. energies, resulting from the Bjorken scaling of quark
distribution functions in the framework of the additive
quark model. We reiterate that, in this energy range, and
motivated by the empirical success of the additive quark
model for cross-section ratios, the inelastic cross section is
attributed to only one quark-quark component.

The basic ansatz is similar in form to Eq. (1.1), namely,

1 dUinel

=Af(x;)f(x;), (2.1

Oinet dx1dx, Fx)f ez
where A is a normalization constant to be fixed later, and
f(x) is the valence-quark distribution function (in what
follows, we do not distinguish u(x) from d(x) for the

purpose of obtaining simple analytic formulas: we have
also carried out the calculation with different u and d dis-
tribution functions, as will be discussed shortly). The en-
ergy available for particle production is simply the total
parton c.m. energy

F=xx,5 . (2.2)

The remaining quarks, spectators in the incoming pro-
tons, are dressed by an unspecified mechanism related to
confinement (string formation and breaking, etc.). Event
by event, we assume a narrow multiplicity distribution for
particles produced by the basic parton collision:

n'=k(x1x2s)°' . (2.3)

The reason for the prime in Eq. (2.3) is that one should
also include the leading particle contribution to the
charged multiplicity in a given event. To do this, we as-
sume that the spectator quarks can be dressed by u or d
quarks with equal probabilities p /2, or by a strange quark
with probability 1—p. It is not difficult to see that this
leads to ++p additional charged leading baryons. Note
that this would also give A°/p =(1—p)/p which is experi-
mentally found'® to be about 5, so that p~0.7—0.8. We
shall accordingly take the number of charged particles
produced in a given event to be

n=n'+ngy np=1.3. (2.4)

Our remaining considerations, e.g., in the derivation of
the KNO-scaling function, always involve n'=n —n,. It
has in fact long been known'® that such an n’ was a better
variable for discussion of multiplicity distributions than
simply n.

From the above, we write
P,= In 1 dojne

Oinel  Tinel QN

=4 [ dxidxof (x)f (x2)8(n' =k (x1x29)%) . (2.5)

Note the § function, narrowest of all distributions, essen-
tial to the derivation of KNO scaling which follows, as we
will explain. From (2.5) we get, by integration over x,,

4 dxl n' 1/a—1
b=t = || ™Y
X fU(n'/k)V%/x,s) . (2.6)

Now note that

fdn nP,
(n)="F——
fdn P,
f dx,dxzk (xlxzs)“f(xl)f(xz)
=n0+ (27)
J dxidx,f(x)f (x3)
that is
(n)=(n")+no, (n')=ks*(x*)? (2.8)
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with
f’dx x%f(x)
(x%)="07——— | 2.9)
[ axfx
From (2.8) we have
kl/as=<nr>1/a/(xa)2/a (210)
and so
A dx ’ 1 /ay La\2/a
Po=—"— [ ZXf0f((n'/{n"))/*(x )2 /x)
kas X
1/a—1
% |
k
—_ 4 _41 1/a 1/a—1 a\2
_a<n,)f S (Ve mp! e xe)? @
where we have defined
p=2z'(x%)?, (2.12)
z'=n'/(n') . (2.13)
Finally we obtain the KNO-scaling form®
¢(zr)§<na>Pn=§pl/a—l<xa>2
" d.
Xfpl/a—f—f(x)f(p”“/x). (2.14)
Note that when x; =x,=1,
n' ks® 1
<n> max ksa<xa)2 <xa>2 ( )
so in fact
p=2"/Zp=2"/k . (2.16)

The lower limit of integration in Eq. (2.14) follows from
the fact that p'/®/x <1 for the formalism to make sense.
Note also that, in order to have a nonsingular behavior of
Y(z') as z'—0, it is required that if f(x) is of the form
x791—x), then ¢ <1—a. This also ensures that {(x%)
is finite, which is also clearly necessary. At this point, we
see why the 8 function in Eq. (2.5) is crucial to the deriva-
tion of KNO scaling, namely, that ¢ is a function of
n’'/{n'): any other choice (e.g., a Gaussian of width &)
would introduce a new parameter with which to form
another ratio n'/§, thus violating KNO scaling.

Lastly, the normalization A is fixed via the convention-
al normalization of the KNO-scaling function

[ dzwz)= [ dzz'piz)=2 (2.17)
which yields
2
a=2/|[axren] . 2.18)

Equations (2.14) and (2.18) completely determine the
KNO-scaling curve once a is fixed [From Eq. (2.8) and
data] and f(x) is known.

At this point, we note that (n ) ~s'/* is known to give
an excellent fit to low-energy multiplicity data: in the fol-

lowing, we shall accordingly choose a=+. This in no
way commits us to the Landau hydrodynamic model. In
fact, such a power law can easily arise from the following
very simple picture (necessarily nonperturbative) of gq ha-
dronic system decay. Consider an initial “fireball” of in-
variant mass W, which splits into two systems (e.g., as
favored in the framework of the 1/N expansion), each of
invariant mass W,;=W/c, where c¢ is a fixed number.
Let the process continue, resulting in a tree, until L steps
have occurred. At the final step, W, =W/cl=W,,
where W, is some minimum resonance mass. Then the
final multiplicity is

n~2k (2.19)
with
1 w
L=—1In|— 2.20
Inc " W, ] ( )
so that
In2/Inc
w
~ |75 2.21
n W, ( )
If ¢ =4, for example,
n~wl2 st/ (2.22)

This is an old argument (see, e.g., Polyakov!” in a com-
pletely different context) and shows that a power-law
behavior for the multiplicity is perfectly reasonable. It is
not however obtained from the perturbative QCD jet cal-
culus.

A closed analytic form for ¥(z’) is easily obtained with
the following naive choice for the valence-quark distribu-
tion:

N,
vx
where N, is a normalization constant. Using Eqgs. (2.14),
(2.15), and (2.18), the result is

Wz )= 5 (p2—1)+9p*(p*—1)

—4Inp[p"2+ 1+ 9% p*+ D]},

(1—x)3,

flx)=

(2.23)

(2.24)

where we recall that p=z'/K. The normalization factors
are easily calculated. For example, (x'/*) is given in
terms of Euler beta functions as the ratio

B(3,4)  (3)s  (3)1ss

1 1
(xy="2" 24 __74 2.25)
B(5,4) ($)s (Thy

where the Pochhammer symbol (gq), is defined'®

(@)a= ﬂl‘%)"—) . (2.26)
In fact one easily finds (x!/*) =% whence

K=(x*)2=18 2.27)
ie.,

Zlanat.25 (2.28)
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in this case. The overall normalization factor in Eq.
(2.24) follows similarly from the definition (2.18).

We show in Figs. 1(a) and 1(b) (on a linear and semilog-
arithmic plot, respectively) a comparison of the analytic
formula (2.24) with a compilation!® of total inclusive (i.e.,
including the so-called single-diffractive component) Ser-
pukhov and Fermilab data. Also shown, as a dotted
curve, is the result which follows from the numerical in-
tegration of Eq. (2.14) using the valence quark distribu-
tions (at low Q2 given by Eichten, Hinchliffe, Lane, and
Quigg.?’ We see that the agreement with the data is excel-
lent. The difference between the two curves can serve as
an estimate of the theoretical uncertainty in the practical
application of Eq. (2.14). Note that this model does not
distinguish “diffractive” and “nondiffractive” events. In
fact, it is most naturally applied to the total inclusive in-
elastic data, with no “single-diffractive” subtractions. We
will return to this point in Sec. IV.

Note that the relatively baroque form, Eq. (2.24), is
quite different from the various formulas proposed to date
in the literature (see, e.g., the reviews listed in Ref. 21). It
is remarkably successful to highest Fermilab energies, and
contains no free parameter, once the power law of the

multiplicity and the form of the valence-quark distribu-
tion function are fixed from other considerations. In fact,
the shape of the KNO-scaling function obtained in this
way is quite sensitive to the behavior of f,(x) near x =0
and 1. Any choice other than the naive one [Eq. (2.23)]
will usually fail to reproduce the data shown in Figs. 1(a)
and 1(b). The fact that the quark distribution function
obtained from deep-inelastic scattering can be used here in
the description of largely low-p, phenomena can be un-
derstood on the basis of the Pokorski-Wolfram!? estimate
of the typical momentum transfer in “soft” hadronic col-
lisions | Q | ~hA(y =0)(p,) (reviewed in Sec. I above),
which shows that {p, ) is not the appropriate scale, and
which justifies the incoherence assumption used here as
well. These considerations serve to highlight the distinc-
tion between the picture of hadronic collisions presented
here, and that of the proponents of the dual parton model
(see, e.g., Ref. 22) who argue that the appropriate power
of (1—x) to be used for valence quark distributions
should be 1.5. There, this smaller power reflects the cru-
cial role played by diquark systems in the formation of a
chain, whose breakup involves gg pairs from the sea, with
the final state described quantitatively using fragmenta-

y(z’)

0.8+

'=n’/Kn’">

FIG. 1. Evidence for inclusive KNO scaling in z’ through the Serpukhov and Fermilab energy ranges. Data from the fixed-target
experiments listed in Ref. 19 cover the laboratory momentum range from 50 to 405 GeV/c. The two theoretical curves correspond to
expectations from quark distribution functions taken from the naive quark-parton model (solid line) which we use throughout this ar-
ticle or Eichten, Hinchliffe, Lane, and Quigg®® (dashed line). They represent the uncertainty of our parameter-free prediction, shown

on a linear scale in (a) and on a semilogarithmic scale in (b).



2030 SERGE RUDAZ AND PIERRE VALIN 34

tion functions. The physical picture we favor is quite dif-

: _ 1ct , ; (x2) =(3)20/(3)2q » (2.31)
ferent, with the diquarks remaining after the basic constit-
uent collision, simply producing forward jets, the effects (XD =(3)g/(3)q - (2.32)
of which are removed by leading particle subtraction. . ,
Another simply calculable quantity is the dispersion To obtain D,, we replace n'=n —ny,
D,=({n?)—(n)»)'2. To proceed, first write Dy [ —ng)?) —{n —ng)? |'”?
(Dy)*=(n")—(n")? (n') (n—ngy)?
=(ks®({x?**)*—(x9)"Y), (2.29) (n?)—(n)? 172 03
whence (n)*—=2no(n)+ny? ’
, 172 hat
D 2a\2__ (,a\4 so tha
2 _ | 4=7) <4" 1 —c, (2.30) . 122
(n") (x%) 2n, no
D,=C(n) 1—< >+-—~2 =C({n)—ngy),
where again, in terms of the Pochhammer symbols [Eq. n (n)
(2.26)], (2.34)
5

FIG. 1. (Continued).
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5 - n°= '.3 -1
—== ng=09
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D 3| ]
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-
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FIG. 2. Data for the dispersion D, as a function of the aver-
age charged multiplicity as obtained from Ref. 10 compared to
the derived Wroblewski relation [Eq. (2.35)] for various values
of no.

which is in fact the Wroblewski relation.!* The constant
C appearing in Eq. (2.34) i 1s E)remsel calculable from Eqs
(2.30)—(2.32), so that 2y =% and (x*)=13,
which gives C =0.594. The final formula is thus

D;=0.594({n ) —ny)=0.594(n") (2.35)

as postulated by Wroblewski. This formula is compared
in Fig. 2 with total inelastic data up to Fermilab/SPS en-
ergies (from a compilation in Ref. 10), for no=1.3 (solid
line) and ny=0.9 (dashed line) which is the most up to
date best fit value (see Ref. 11). The latter value gives a
perhaps slightly better fit to the low-energy points, but in
both cases, agreement with the data is quite good, as seen
in Fig. 2. The low-energy points have such a low value of
(n’) (less than 3) that our model may not really be applic-
able there. Consequently, in the rest of the paper, we shall
stick with the value ng=1.3.

We now turn to an extension of this picture to the re-
gion of rising cross sections, ascribed to the onset of ef-
fects due to gluon-gluon collisions. The presence of two
components in the inelastic cross section in fact leads to a
modification of the simple power-law behavior of the
charged-particle multiplicity [Eq. (2.8)] as well as to an
inevitable violation of KNO scaling with increasing c.m.
energy.

III. GLUONS AT THE ORIGIN
OF KNO-SCALING VIOLATION

As we have mentioned in the Introduction, many au-
thors® have ascribed the rise of the total cross sections
after Fermilab energies to the increased activity of gluons
inside hadrons. Since the parton model requires the

gluons to have a different distribution than quarks, it is
natural, in our picture, to expect that the scaling curve
typical of quarks at low energies, as described in the
preceding section, will evolve slowly into a different scal-
ing curve typical of gluons at asymmetric energies. We
shall, in this section, quantify the manner by which this
change occurs.

Faced with a variety of possible parametrizations?® of
the inelastic cross section (or the total cross section if
0./0 remains constant), we choose the simplest possible

one
S
So

i} 3.1)
So

with s,=243.6 GeV>. This is of the same form (and with
the same sg) as the total cross-section parametrizations of
Bourrely and Martin?*

Cinel(s)=32.6+0.321In?

=0'0+011n2

Oror(5)=139.2340.43 In? (3.2)

S
0

consistent with a qualitative saturation of the Froissart-
Martin?® bound. Together, these equations imply a slow
rise of 0 /0, as we reported by the UA4 and UA1 Colla-
borations.?® Below s, we identify these parametrizations
as representing the quark component o,(s) only, thus re-
covering the scaling demonstrated in Sec. II. Above s,
these equations are interpreted as

o(s)=04+0(s) (3.3)

with o, being the energy-independent first term of Egs.
(3.1) and (3.2).

Conventional naive-parton-model wisdom would re-
quire that f,(x) o« (1—x)°/x at Q% of a few GeV?, which
would violate our requirement that ¢ <1—a for a well-
defined small z’ behavior. However the low-x, low-Q?
behavior of f,(x) is not known. Theoretically this
remains the central problem of soft QCD. Experimental-
ly,?® no data exists below x =0.01 and only sparse data
between 0.01 <x <0.1. We feel, therefore, at liberty to
cut off f,(x) in this allowed region at 0.01<x¢ <0.1.
Furthermore, for simplicity, we will restrict the small-x
behavior to follow that of f,(x), as was proposed by
Eichten, Hinchliff, Lane, and Quigg.”° Requiring con-
tinuity at xc, we thus have a one-parameter phenomeno-
logical gluon distribution

fo(x)=3(1—x)*/x, forx>xc,
172 . (3.4)

folx)=
£ fg‘(xc)y

Xc

for x <x¢

For our applications, such a simple parametrization will
suffice. Only more measurements at different collider en-
ergies would help us pin down more effectively the form
of fg(x).

A two-component model for multiplicity distributions
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will yield a two-component expression for the observed
average charged multiplicity (n ). It is easy to see what
form this expression must have if we assume that, event
by event, the collision is either of gg or gg origin. We
then have to incoherently superpose two multiplicity dis-
tributions F;(n'), i =q or g, to form the total multiplicity

distribution
F(n')=F,(n')+Fy(n') . (3.5)

Each of these topological cross-section distributions is
normalized to the appropriate cross section

zFi(n’):O’[ (3.6)
-
and has its own average multiplicity
zani(nI)zﬁ;'U,‘ (37)
with
Ai=k(x%);’s" (3.8)

(x*), as before and (x*), now well defined by the cut-
off procedure (3.4) and smaller than (x%), because of the
predominance of glue at smaller x. Hence, we define the
“relative inelasticity” parameter:

(x*), |*
(x%)q
Taking the average of (3.5) we have

S wE)
zF(n amelzz'n

n

n= <1. (3.9

(ny=-">

(3.10)

Zn ‘o,

Umel i
where we have used the fact that
S F(n)=3 3 F;(n’)

n' i n'

by (3.3). This can be rewritten as the weighted sum

(n')y=7gPy+7 P,

=0, +0g =0inel

(3.1D

with the energy-dependent probabilities

a,4(s)

s)=—4— P,(s)=
9 Uinel(S) &

ogl(s)

3.12
Uinel(S) ( )

of the event being initiated by quark or glue collisions,
respectively. Inserting (3.8) and (3.9) into (3.11), we final-
ly get

04(s)+n0g(s)

’ =B a
<n ) : Uinel(s)

(3.13)

with B =k (x%) %

The formahsrn to construct ¥(z’) from {(n’')o, /Cin is
the same as before. Each contnbutlon is given by equa-
tions of the same form as (2.14) with an appropriate mean

7i; (instead of (n’')) and an appropriate K; [as in Eq.
(2.15)] for each process i =g or g

ﬁ;on;=% 9;;:::0 (3.14)
with
Gip)=pi’*~ ‘fl,af,(x )filpi”®/x) ‘i" . (3.15)
The ith scaling variable is just
0<p;= n =z—i’gl (3.16)
niK; K

and the requirement that each process gives mean multi-
plicity 7 ; is equivalent to requiring that

)i
—L“—)-K,- =1, (3.17)
I;
where the maximum allowed values for z; are given by K;
L&, (3.18)
= -, = —_> .
q9 <xa)q2 g (xa) 2= 7

and the normalization integrals I;" are just
1
1;x>:f0l Y i(pdp;
I,-m——-fo Zilpipidp; -

The total ¥(z’)
(2.17) is then

(3.19)

subject to the normalization conditions

. ’ I
¢<z')=2zi——<f 2 —~— %) . (3.20)
i Tinel N ]’.(“
Note that the maximal value of z'=n'/{n’) occurs for
x,=1=x, and has a common value K (s) for both pro-
cesses

K(s)= KqUinel _

+mog  og/M+o0,

by (3.13) and (3.18). Clearly as s—O0, oj,q—0, and
K(s)—K,, while as s—ow, Opg—0, and
K(s)—>K;>K,. The signal for the onset of gluon-
initiated processes is thus the appearance of large z’
events despite the fact that (x%), < (x%),. One should
however remark that the functions ¥;(p;) become too
small to be measurable experimentally well before
p=2z'/K —1 or equivalently

K (n")
K; #n;

Kgainel

(3.21

pi=p —1

for each i =gq,g. This explains why the experimentally
observable ¥(z’) does not extend all the way up to K(s).
Indeed, if f,-(x)oc(l—x)"i at large x, one can show that
this implies
' 2427

Yi(z') < (1—p;°) (3.22)
which becomes negligible at smaller p; as n; increases.
Hence the glue contribution will remain less important

as p;—1
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than the quark one at large z’ even at relatively high ener-
gies.

We shall fix the parameters of our model a, x¢, and B
in the most straightforward way.

(1) From Sec. II we know that a=+ provides a good
low-energy KNO-scaling curve. Only small variations are
allowed (@ =2.45) and these are discussed in Sec. V. Note
that the low- and high-energy limits of (3.13) are

Bs?%, fors <sg,

{(n')= (3.23)

B7s?%, ass— oo .

The standard extrapolation of Bs® which was consider-
ably too large at high energies is thus naturally reduced by
a factor 17 < 1. Various fits of the type in (3.13) are dis-
cussed elsewhere.!®

(2) The value of x (and thus of n) is determined by the
KNO inclusive curve at the SppS since the collider is the
only machine where the glue has become (relatively) im-
portant.

(3) The value of B is fitted to data on (n)=(n')+1.3
at all energies.

We find that a=+, xc=0.03 (thus 7=0.658) and
B =1.40 provide a good fit to (n) and ¥(z') data at all
energies. In Fig. 3, we show #(z’) data through the ISR

energy range on both linear [Fig. 3(a)] and semilogarith-
mic [Fig. 3(b)] graphs, together with the “scaling” curve
at a typical energy (taken to be Vs =52.8 GeV) and its
decomposition into the main quark component and the
small glue contribution. Because this increasing glue con-
tribution is still quite small at the ISR, the data “scales”
within the experimental errors. Figures 4(a) and 4(b)
display the situation at the SppS energy of V's =540 GeV,
which, being the highest energy attained up to now, has
the largest glue contribution and a more significant scal-
ing violation than at the ISR. Just as we could analytical-
ly perform the integration leading to ¥,(z’) of Eq. (2.24),
we have been able to obtain a similar (but much more
lengthy) expression for 1, (z’).

The main point that we want to stress here is that the
same mechanism which lowers the multiplicities {n ) ex-
pected in a pure Bs® parametrization leading to KNO
scaling must have 7 <1 (as glue does) and thus generates
scaling violation by increasing the values that n’'/(n’)
can attain. The mechanism by which our model generates
extra events at large z’ is thus quite straightforward but
unconventional. Adding a gluon contribution with
fig <@y lowers the expected (n’) and this leads to
z'=n'/{n') reaching larger values. Normalizing ¥(z')
does not remove these large z' events but does alter the

2.00
175
1.50
1.25-
.00+
>
075+

0.50

0.25+

(a)

-

0.00% —
o) |

T T—M
2 3 4

2'=n'/7<n">

FIG. 3. Evidence for inclusive KNO “scaling” in z' through the ISR energy range using the data of Breakstone et al. (Ref. 27).

The solid curve represents the prediction at

=52.6 GeV and it is decomposed into the energy-independent quark component

(short-dashed line) and the much smaller energy-dependent (scale-violating) glue component (long-dashed line). We again show the
good overall agreement on the linear graph (a) and the good large z’ agreement on the semilogarithmic graph (b).
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overall shape of the curve for all z’.

The resulting (n ) fit is quite satisfactory as can be seen
in Fig. 5 where the energy range extends up to the Tevat-
ron Collider. The dashed curves are meant to indicate
“error bars” for our prediction, corresponding to
xc=0.03+0.01 best fits to (n) with a=+ still. At the
SppS energy of Vs =900 GeV, for example, we predict
(n)=37-38. Lowering a to 0.245 can result in lowering
(n) at that energy by about 1 unit. At Vs =2 TeV, we
predict similarly (n)=54—57 and 51—54, respectively,
assuming o,,(s) to continue to qualitatively saturate the
Froissart bound. Any slower increase of oy(s) would in-
crease our estimate of (n ) at higher energies.

Another important but more technical point should be

made at this time. Because of Egs. (3.17) taken together
with the definitions in (3.19), the maximal z; values K;
are independent of the normalizations of the distribution
functions f;(x). This entails that K (s) is also independent
of the normalizations of the f;(x) and that the same holds
true for 7 ;o,; of (3.14) or ¥(z') of (3.20). This depen-
dence upon the shape of the f;(x) [or the &;(p;)] and not
their normalization, is due to our requirement that the
strength of each contribution be normalized to its contri-
bution to the experimental o, and that furthermore its
first moment give 7 ; which is also an experimentally fit-
ted quantity, given that (3.11) or (3.13) must reproduce
the data.

We have also checked that normalizing the quark and

(b)

\ ﬂ

10 T T

L
2 3
z'=n"/<{n">

FIG. 3. (Continued).
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glue contributions in ¥(z’) as they appear in (3.20) via the
ratios 0;/0;qe to the ratios o; /o, instead, does not affect
our results and leads to an imperceptible difference in any
of the preceding figures. We can thus, in a first approxi-
mation, ignore the clear increase in 0, /0y, seen by UA
(Ref. 26). It is instead the increase of oy(s), which we as-
cribe to gluons, which is responsible for KNO-scaling
violation. The increase in /0, may have the same ori-
gin, but we would consider it a consequence rather than a
cause of KNO-scaling violation.

A side-by-side comparison of Figs. 3 and 4 reveals that
the inclusive data does not strongly violate KNO scaling.
This mild violation can be restated in terms of the mo-
ments C;

. {(n 'f)

' gy =L
Ci=(z"7) )]
which are seen in Fig. 6 to slowly vary with energy. Note
that, at low energies, our prediction is parameter free
(given a=%) and that, at all other energies, it depends
only on one parameter xc (or 7), given that B is deter-
mined from data once 7 is known. The coefficients C;
were obtained exclusively from experiments where the o,
are tabulated;?® they are in general larger than the usual

(3.24)
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Cj=(n’)/(n) which are themselves larger’’ than the
corresponding coefficients for the non-single-diffractive
(NSD) data. We should stress that it is this NSD data
which shows the largest KNO-scaling violation and we
turn to understanding this phenomenon in the following
section.

IV. THE QUESTION
OF NON-SINGLE-DIFFRACTIVE (NSD) DATA

It has long been argued that KNO scaling should apply
better to inelastic data with single-diffractive-dissociation
events removed, resulting in scaling of the so-called non-
single-diffractive (NSD) inelastic data. Breakstone
et al.?’ have found that NSD events satisfied KNO scal-
ing within experimental errors through the ISR energy
range, while UAS (Ref. 30) has found a very significant
KNO scale breaking in the NSD data at the SppS com-
pared to that of the ISR.

In our model such a removal of single-diffractive (SD)
events is artificial and we prefer to show the total in-
clusive data. We can however remove the SD events in a
simple way which we now describe. Our conclusions will
be that, subject to removal of the experimentally “ob-

— -
I
2

Ol —~

4

n’7<n">

FIG. 4. .The same quantities as in Fig. 3 are plotted now at the SppS energy of Vs =540 GeV. The data (from Ref. 11), as well as
the theoreylcal curve, are not compatible with the “scaling” curve displayed in Fig. 3, especially at large z’. For the theoretical curve,
the effect is most easily seen by the larger value of z’ that can be reached at the higher energy.
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served” SD component, the SppS NSD data is seen to
naturally break KNO scaling much more than the in-
clusive data does for the simple reason than {(n ) is multi-
plicatively less rescaled at the SppS than at the ISR.

Our subtraction method will again be taken to be the
simplest possible. We will test it with the ISR data of
Breakstone et al.?’ and then predict the SppS observa-
tions. Let us make the following simple experimental ob-
servation: an SD event is usually identified by noting the
absence in one arm of the detector (say arm 1) of any
charged particle (or seeing at most one leading particle
with a very large x). This means that the available x; for
the fireball production must be very small, less than a
given experimental cutoff xcg << 1. There are no restric-
tions on the observed particles in arm 2 or on the corre-

sponding x, value. It therefore seems, short of doing a
full Monte Carlo simulation, that enforcing a lower cutoff
limit on the integral in (3.15) would cutoff the undesired
SD events.

Equations (3.20) and (3.15), respectively, become

. G (7)) TP
¢(Z')=22~—“‘<_n’-2‘~ zgi(P,'), 4.1)
i Oinel ﬁ; Iﬁ'“
Fip=p"' [ ffipe e @)
max(p; /% x~g) X

where the tilde refers to the usual quantities but for the
NSD data set only. The normalization integrals " are

(b)

-4
0 | 2
z=n"/<n

FIG. 4. (Continued).
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FIG. 5. Fit of the average charged multiplicity
(n)={(n')+1.3 as a function of energy from Vs =10 GeV to
the Tevatron energy range, using Eq. (3.13) and the parameter
values cited in the text. In addition to the data from all of the
references listed in Figs. 1, 3, and 4, we have added the cosmic
ray data of Ref. 28.
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FIG. 6. Data (Refs. 11, 19, and 27) for the first four nontrivi-
al moments Cj=(z") of the inclusive distribution as obtained
from the same references as for Figs. 1, 3, and 4 (C} =1 by defi-
nition). Error bars (when shown) are evaluated from the corre-
sponding ones for the C;={z/) (when these are given by the ex-
periments) by assuming that they are of the same percentage.
The experiments where we show no error bars have lower statis-
tics than the ones where we do show errors; hence the statistical
errors on these experiments would be even larger. At lower en-
ergies, where scaling holds, the magnitude of the theoretical er-
ror bands correspond to using the two-quark distribution func-
tions shown in Fig. 1.
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obtained by equations similar to (3.19) with integrand
% :(p;). Note that the integrals (4.2) and (3.15) differ only
for p; > x¢g, i.e., for

Z' > (K i /{n'))x& .

Given that the bracket has value ~4 and that, at the ISR,
only z’ <1 events are affected by the SD subtraction, one
roughly expects that xcgp~(+)'/*~0.004 which is a very
small number indeed. This same value must reproduce
the full ¥(z’) shape for all z’' and account for the experi-
mental ogp which one obtains in our model by comparing
IV and 1" and summing over the two components.

The result of this exercise at Vs =52.8 GeV is shown
in Fig. 7 compared to the full ISR data. One has correct-
ly reproduced the small z’ subtraction resulting in a osp
value of 5.5 mb (for xcz =0.005) which is in remarkable
agreement with the estimate of 15% SD events found by
Breakstone et al.?’ but slightly smaller than the values of
Conta et al.3® We have also obtained an (#’) which is
larger than (n') by 1.2 units (since >’ >1I*) in agree-
ment with the experiment. We have thus, through the
definition of =z’ which reads for the NSD data
z'=n'/(#"), obtained an NSD curve which ends earlier
in z' than the inclusive one, i.e., is narrower; because of
the normalization condition (2.17) it is also higher at the
maximum, as observed experimentally. It should also be
clear that the extent of narrowing is proportional to how
different (7’)/(n’) is from 1, since this ratio enters in
the ratio of the abscissas of the graphs of ¥(z’) and ¥(z’).
The larger this ratio, the larger the difference between the
“scaling” curves at any given energy. Since at the SppS
this ratio is much closer to 1 than at the ISR, the SppS
curves ¥(z') and ¥(z’) are much more similar to each oth-
er than those at the ISR are between themselves. Com-
paring a {g,;5(z") which is nearly as wide as yg,;5(z") with
a much narrower ¥;sr(z’) naturally results in claiming a
large KNO-scaling violation. The SppS curve shown in
Fig. 8 has a cutoff value of xcz =0.001, corresponding to
osp=23.8 mb and (#') —(n’')=1.9 which are within the
experimental errors for these quantities.

Because the glue contribution is concentrated at smaller
z' than the main quark contribution, such as is displayed
in Fig. 3 at the ISR, the cutoff procedure with xcz re-
moves a large fraction of it, resulting in a better agree-
ment with KNO scaling, as Breakstone et al?’ have
found.

Finally, since the determination of xcx depends crucial-
ly on the value of ogp, one has to discuss further the mea-
surements of ogp as a function of energy. It was found
that, at the ISR, single- and double-diffractive dissocia-
tion nearly saturated the Pumplin bound*?

Tie(S)

O4irs) < —0e(s) 4.3)

and could even account for the totality of the rise in
o.oi(s) (Ref. 31). However the recent value of ogp=5+1.5
mb found by UAS (Ref. 11) at the SppS is actually lower
than the measurements at the ISR. This casts a serious
doubt on our ability to estimate ogp(s) theoretically in a
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FIG. 7. Evidence for KNO “scaling” in z' of the NSD data through the ISR energy range (Ref. 27). The theoretical curve is
decomposed as for Fig. 3. Again the smallness of the glue contribution, which violates scaling through its energy dependence, insures
approximate scaling, which is even better than in Fig. 3 since removal of the SD events removes small z’ events where the glue is rela-
tively more important. Comparison with Fig. 3 also reveals that both the data and the theoretical curve (which are in excellent agree-
ment) are narrower after subtracting the (small-z’) SD events, as well as having a higher maximum, because of the identical normal-

ization conditions.

reliable fashion. In the next section, we therefore concen-
trate only on predictions for the inclusive ¥(z’) at Super
Collider energies.

V. PREDICTIONS FOR THE SUPER COLLIDERS

The predictions at higher energies depend significantly
on our high-energy parametrization for o(s). Choosing,
as we have done, the fastest qualitative energy dependence

compatible with the Froissart bound, tends to maximize
the energy dependence of all observables. This is only
theoretical prejudice on our part, since parametrizations
which asymptotically yield a constant o, are also allowed
by simultaneous fits of the forward elastic phase

pls,t =0)=Ref(s,t =0)/Imf(s,t =0)

and the total cross section o.,(s)xImf,(s,t =0) using
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FIG. 8. The same quantities as in Fig. 7 are plotted at the SppS energy of Vs =540 GeV (Ref. 30). By comparing with Fig. 7, we
note that removal of the appropriate number of SD events at each energy has increased the scaling violation. At large z’ this
translates into the theoretical curve reaching much higher values at the higher energy.

dispersion relations.?* Such a slower rising o,(s) would
result in a scaling violation which is not as strong as the
one we display in Fig. 9 for an o,(s) obeying Eq. (3.1).
These curves are the ones we predict at the Tevatron ener-
gy of Vs =2 TeV and the SSC energy of Vs =40 TeV
and they are shown with their decompositions into quark
and glue components. Note that the glue becomes impor-
tant over a larger region of z’ as s— oo but that the quark
contribution still dominates at large z’, as Eq. (3.22) dic-
tates. The complete evolution of the scale breaking in
¥(z') is shown in Fig. 10 for 5 c.m. energies Vs =53 and
540 GeV, 2 and 40 TeV and “infinite” energy.

These high-energy predictions could also be affected by

our interpretation of the only true parameter of our model
7 (B and a being given by (n) and lower-energy data).
We have taken it, up to now, to be a constant, a measure
of our present inability to measure fg(x) at very small x.
The cutoff value xc, which is in a one-to-one correspon-
dence with 7 (given a fixed a), could also be interpreted as
a manifestation of an energy threshold which has this par-
ticular value xc(s)=0.03 at the SppS, the only accelerator
whose data constrains xc(s) at the moment. If indeed
an energy threshold is behind the present value of x.(s)
at the SppS, n becomes an energy-dependent param-
eter n(s)=n(s)(s,/s)*% with s,;,=(540 GeV)? and
7(s;)=0.658. This affects through Eq. (3.13) the fit for



2040

(a)

10 T T T
2 3
z2'=n7<n>

FIG. 9. The solid curves are our predictions for the inclusive
KNO function at V's =2 and 40 TeV [(a) and (b), respectively].
The short- and long-dashed curves correspond, respectively, to
the quark and glue components, as in Figs. 3 and 4.

SERGE RUDAZ AND PIERRE VALIN 34

10°
107 \
N
DS
= \\\\\\\\
'"IO_Z“ \ \\‘\ \'-‘
\ \\\\\
VAR
\ \ ‘».\*
N \\ \\
1074 SR \\
\\ A \\
SRR
\ AR
_ L
o™ T T T T T
o) | 4 5

FIG. 10. The evolution of the KNO function as a function of
energy. Increasing energy is represented by an increase in the
number of short dashes. The energies shown are (in TeV) 0.05,
0.54, 2, 40, and “infinite.”

(n), which is now displayed in Fig. 11. The asymptotic
energy dependence is now much slower and of the form
{n)=BP;s*—Bs®,/[0In*(s/s¢)] as s—w. The re-
sulting energy-dependent cutoff x.(s) decreases as the en-
ergy increases above the SppS, resulting in an asymptotic
¥(z') with a sharp peak at very small z'. Clearly further
measurements at higher SppS energies would help us dis-
tinguish between the two possibilities.

Finally, we have discussed in another publication!® the
allowed modification of the power a. Its importance for
the KNO-scaling violation is only mildly quantitative.

60 S — —
50} .
40} .
€30+ . .
20} |
o] = .
10 102 103
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FIG. 11. A fit of the average charge multiplicity as a func-
tion of energy in the case of an energy threshold (see text). Note
the much lower values reached at higher energies as compared
to Fig. 5.
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The strength, shape, and origin of the violation are virtu-
ally unchanged.

V1. DISCUSSION AND CONCLUSION

The approximate validity of the additive quark model
and the simultaneously observed KNO scaling at low en-
ergies (below the ISR) strongly suggests that the observed
KNO scaling function ¥(z’) should be related to the quark
distribution function f,(x). Under the hypothesis of a
one-to-one power relation between observed (leading parti-
cle removed) multiplicity n’ and parton c.m. energy (§)!/2
involved in the collision, i.e., n'=k§* event by event, one
can derive an expression relating the two. We have ar-
gued that these distribution functions should be evaluated
at a low Q? and that Q2 evolution is negligible, a fact
confirmed by the s independence of the KNO function
below the ISR energy range.

Confronting the data with different distributions f,(x)
we find that our predictions for =4 (with their theoreti-
cal uncertainties) agree with Serpukhov and Fermilab data
within experimental errors. In particular, using the
naive-parton-model form, one can obtain a curious
parameter-free analytic form which reproduces well the
data. We also very simply derive the Wroblewski relation
which agrees well with the extensive data at these low en-
ergies.

There are several reasons to believe that the increase in
hadron-proton total (or inelastic) cross sections is due to
the increased activity of the gluons. Making this identifi-
cation one then expects, at asymptotically large energies,
to observe a new KNO function derivable from f,(x); at
any intermediate energy (such as at the SppS) one would
observe a transitory scale-violating situation. The overall
s-dependent ¥(z') is just obtained from the incoherent
sum of gq and gg scaling functions with respective s-
dependent weights given by their contribution to o, (s)
and their means obtained from a two-component fit to the
total charged multiplicity (n }(s). In order to define 7 ,
one needs to cutoff f,(x) at a very low value (x¢=0.03),
where experiments have very little to say. This constitutes
the only parameter of our model, given that the fits to
Oinells) and {n )(s) reproduce the data. At the ISR, when
this glue contribution is so small as to be within the exper-
imental errors, the agreement with the data is excellent.

The resulting high-energy values of (n)(s) are lower
than those expected from simple extrapolation of the
low-energy s!7* behavior, by a factor

p=((x"*) g /{x*), )

at asymptotic energies [cf. Eq. (3.23)], which is less than 1
because the effect of the glue is concentrated at smaller x
than for the quarks. The resulting scaling violation
predicted by our model compares successfully with the in-
clusive data. The excess of counts at large z’ is due to
{n)(s) being reduced compared to what one would expect

from a single quark-initiated power behavior which would
lead to exact scaling. The energy evolution of the mo-
ments {z'/) is also well reproduced.

In view of the much larger scaling violation observed at
the SppS for the NSD data as compared to the inclusive
data, we have implemented a simple experimental justifi-
able cutoff procedure at small z'. This procedure is
parameter-free given the experimentally measured SD
cross section that we have to subtract. The comparison
with the data is also quite good, both at the ISR (where
we test the validity of our simplistic subtraction scheme)
and at the SppS where the scaling violation is seen to be
stronger than for the inclusive data. We argue that a
large part of this effect comes from the small SD cross
section and the ensuing small difference between the
(n )’s calculated from both sets of data. At the ISR, the
two types of curves are very different because the ratio of
these (n )’s is large; at the SppS, this ratio is smaller and
the two types of curves are more similar. A small scale
violation in comparing inclusive data can thus be magni-
fied if one compares NSD data between ISR and SppS en-
ergies.

Finally we have presented our model predictions up to
c.m. energies of 40 TeV. Because the measurements at the
SppS energy Vs =540 constitute our only constraint for
our single parameter x. (or equivalently 7), several inter-
pretations for it are possible. We have explored two: the
first being, as before, a manifestation of our ignorance of
the exact small-x behavior and the second being due to
the existence of an energy threshold. Only further anxi-
ously awaited measurements at different collider energies
will help us pin down the small-x (small-z’) behavior as a
function of energy, independent of the very slow (negligi-
ble) energy evolution of the distribution functions.

Note added. After this paper had been submitted for
publication, we became aware of previous work which ex-
plored some consequences of the Eilam-Gell picture of
KNO scaling: S. P. K. Tavernier, Nucl. Phys. B105, 241
(1976); F. Takagi, Z. Phys. C 13, 301 (1982); 19, 213
(1983). We would like to thank F. Takagi for bringing
these references to our attention.
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