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We present a comprehensive partial-wave analysis of the processes nN~Prsa, Xiii ~/psst, and

EN~Ppsa in the three-flavor Skyrme model, with Prs an arbitrary pseudoscalar-octet meson and 8
l+ 3+

a I octet or 2 decuplet baryon. Overall, we find good, poor, and mixed agreement, respectively,

between the model and experiment for these three types of processes. We pay particular attention to
assessing the independence of our results from the details of the Skyrme Lagrangian. We also ex-
amine the effect of including a third light flavor on the linear relations between experimental
mS ~mN and mS~~A partial-wave amplitudes that are predicted by two-flavor soliton models of
the nucleon. Although the emphasis throughout is on a detailed qualitative comparison with nature,
we also present Skyrme-model predictions for six processes such as mN~EX and EX~gX for
which experimental partial-wave analyses are unavailable.

I. SUMMARY AND OUTLINE

In this paper we present a comprehensive partial-wave
analysis of the processes nN~Pp+, EN~Pp+, and
EN~Pp+ in the three-flavor Skyrme model, ' with /ps
denoting an arbitrary pseudoscalar-octet meson and 8 a

1 +
octet or —, decuplet baryon. As our approach to

3+

meson-nucleon scattering in both two-flavor and three-
flavor soliton models of the baryon has been discussed in
detail elsewhere, a fresh introduction hardly seems neces-
sary (see Refs. 7—13 and also Refs. 14 and 15). We
should, however, underscore our two principal approxima-
tions: (1) Our results are valid only to leading order in
1/N„where N, is the number of colors of the underlying
gauge group (2) our group-theoretic formalism assumes
unbroken SU(3)ti,„„,' ' furthermore, our numerical
phase-shift computations are carried out in the limit of
massless mesons, i.e., exact chiral symmetry.

In our work on the two-flavor Skyrme model, we found
excellent agreement with experiment for the mass spec-
trum of nucleon and b, resonances. [Masses of the nu-
cleon and b, resonances agreed on the average to within
8% of their experimental values after optimizing the pa-
rameters f and e that appear in the Skyrme Lagrangian,
Eq. (1), below; the results are summarized in Fig. 1(b) in
Sec. III.] However, given the severity of the second ap-
proximation above, we will refrain in the present three-
fiavor analysis from making similar quantitative state-
ments about the spectrum of strange baryons in the
model. Such statements would be of dubious value until a
kaon mass is introduced. Instead, we shall concentrate
here on the qualitative behavior of the partial-wave ampli-
tudes, and on patterns of size and sign alternation between
amplitudes. Unlike mass predictions, such features are
comp/etely independent of the values of the Skyrme pa-
rameters f and e: a different choice of parameters would
not alter the shapes of the amplitudes, only their parame-
trization as a function of energy.

We have located experimental data for 165 partial-wave
channels' corresponding to the processes m.N ~N,

mN —+eh, @%~AN, mN —+LA, mN ~It'X, EN —+EN,
EN~Eh, It'N~KN, I(N —+@X, j'N~mA, KN~gA,
I( N~mX', and EN~Eh. A detailed pictorial compar-
ison to the Skyrme model is presented in Secs. III—V.
Several of these processes have been subject to more than
one partial-wave analysis; in these cases we usually select-
ed the most recent one to compare to the Skyrme model.
This choice was not without repercussions: often there
was serious disagreement between independent analyses,
and a different selection would have modified the results
of our comparison accordingly. We shall bring up differ-
ences between various experimental analyses when the
Skyrme model sheds light on the issue.

It is admittedly unusual to discuss such a wide variety
of processes in the context of a single work. We have
done so in order to emphasize the essential unity of these
processes in the Skyrmion approach. In light of the
length of this paper, we have designed this section to serve
as a summary and/or outline of our principal findings.

It is conventional to test models of the baryon spectrutn
by checking the signs of the various amplitudes against
experiment. The results of this comparison are summa-
rized in Tables I—XIII. In these tables, each inelastic am-
plitude has been assigned a + or —according to whether
it first journeys appreciably into the upper or lower half
of the unitarity circle, and a zero if this is unclear. 4s We
have labeled the channels in the standard fashion: AN
channels are denoted by 1.2q 2J whereas KN and EN chan-
nels are labeled by I.l 2J, where I. is the meson's orbital
angular momentum, and I and J stand for total isospin
and angular momentum. For processes where the final
baryon has spin —, (Tables II, VII, XII, and XIII), the ini-
tial and final meson angular momenta L and L' need not
be equal, but can differ by two, hence the notation
I-I 21,u o«LI, 2J.

In addition to signs, Tables I—XIII present numerical
ratings from 1 to 4 which represent our assessment of the
degree of qualitative agreement between the Skyrme model
and experiment, with a 1 being the best and a 4 the worst.
The criteria we employed in arriving at such a score are
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TABLE I. ~N ~mX (see Fig. 1). Skyrme model vs experiment. Inelastic channels are assigned a +
or —according to whether the amplitude first journeys significantly into the upper or lower half-plane,
and a 0 if this is unclear. The values 1—4 represent the degree of qualitative agreement between the

model and experiment, with a 1 being the best and a 4 the worst (see text for details).

Channel
Two-flavor

Skyrme
Three-flavor

Skyrme Channel
Two-flavor

Skyrme
Three-flavor

Skyrme

P}3

P33

D3s

F3s

619

H}9

H39
H311
I1 }1
I I }3

I3»
I313

&»s

&3}S

TABLE II. mX~mb (see Fig. 2). See caption of Table I.

Channel

PP„
PP}3
PP31
PP33
DD}3
DD}s
DD33
DD3s
FF}s
FF17
FF3s
FF37
SD}1
SD3}

PF}3

FP}s

Expt.
Two-flavor

Skyrme
Three-flavor

Skyrme

the following: Does the Skyrme amplitude have the same
general shape as its experimental counterpart? Does it
point in the same general angle in the unitarity circle?
Are distinctive features (e.g. , cusps, loops, repulsive
behavior) mimicked correctly'? Are the magnitudes of the
curves comparable? Do the graphs share a + or-
designation? To score a 1, the answer must be "yes" to all
of these questions, with sizes agreeing to within 30%. A
2 guarantees that the + or —assignxnents will agree, and
that the shapes are similar, but the magnitudes can differ

TABLE III. mN ~gX (see Fig. 3). See caption of Table I.

Channel Expt. Skyrme

F

G}g

substantially (e.g. , by a factor of 3 or 4); alternatively, the
sizes might be in close correspondence while the shapes
are rather different. For a 3, the two graphs must lie in
either the same or adjacent quadrants (so the signs can
disagree); there is usually some additional feature of simi-
larity, for example, an energy range over which the shapes
of the amplitudes are in rough correspondence, but on the
whole the agreement looks no better than random. For a
4, the agreement is truly dismal; typically such graphs
point in opposite directions. The reader is encouraged to
glance at a few plots chosen at random from Secs. III—V
in order to gain a "feel" for this (admittedly subjective)
scoring system.

nX processes. As is apparent from Tables I—V, the re-
sults for mN processes are, on the whole, surprisingly
good. Elastic mX scattering as calculated in both the
two-flavor and three-flavor Skyrme models (the two ap-
proaches differing even for nonstrange processes) was ex-
amined previously. ' In general, the three-flavor model
constitutes an improvement over the two-flavor model.
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TABLE IV. mX~EA (see Fig. 4). See caption of Table I. TABLE VI. EX~EN (see Fig. 6). See caption of Table I.

Channel Expt. Channel Skyrme

S11

D1S
FIS
~17

619
H19
+111

TABLE V. mX~KX (see Fig. 5). See caption of Table I.

Channel Expt. Skyrme

S31

D1S

D3s
+1S

H19

H39

However, in both cases there are serious discrepancies
with experiment in the S and P waves, as reflected in the
preponderance of 3's and 4's in these channels. The most
severe of these is the failure of the model to reproduce the
strongly resonant behavior observed in the P~& and P33
channels, associated with the Roper resonance and with
the b„respectively. These problems are due to the fact
that, in leading order in 1/X„certain states such as the
Roper resonance and the b, are in fact degenerate with the
nucleon, and hence could not show up as resonances above
threshold. Thus, these are most likely failures, not of the
model itself, but rather of our leading-order analysis.

In contrast, for D waves and higher, with the exception
of the D35, the agreement is quite impressive. The main
source of disagreement in the high waves (L &4) is the
overly large size of the Skyrme-model curves, which is
primarily due to the limited number of inelastic channels
that we are allowing for (Pisa only); this situation is im-

SO1

~11
PO1

Po3

P11

Do3

Dos

D13

~os
Fo7

Go~

GO9

H19

proved when the Skyrme model is enlarged to the three-
flavor case. ' Significantly, both the two- and three-
flavor Skyrme models mimic the "big-small-small-big"
pattern that characterizes the behavior of the four in-
dependent experimental amplitudes IL] 2L, ], L, zr+],
L3 3L ] L3 2L y] ) for each value of pion angular
momentum L &0; for example, the F» and F37 ampli-
tudes take a much greater excursion through the unitarity
circle than do the F]7 and F35 curves. ' '3 We shall see
this explicitly in Sec. III.

For the inelastic processes mX~m. b, mX~gX,
7rE~KA, and 7' EX, the sign agreement between the
Skyrme-model and experimental amplitudes is, respective-
ly, 100%, 80%, 80%, and 85%. Such numbers are cer-
tainly competitive with traditional algebraic coupling
schemes such as SU(6)~ as well as with the nonrelativistic
quark model, although unlike the Skyrme model, which is
a full-fledged dynamical model, these approaches concern
themselves only with the behavior of the amplitudes at
resonance energies. As in the elastic case, the lower par-
tial waves in the Skyrme model are often in disagreement
with experiment, whereas the I' waves —which are the
first not to mix with the Skyrmion's rotational and
translational zero modes —represent the model at its best.
Clearly, a careful treatment of the zero modes, which
would enable us to trust our analysis in the lower partial

TABLE VII. KN ~Kh (see Fig. 7). See caption of Table I.

Solution A Solution B Solution C Skyrme

PP11
PP13
DD13

DS13
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TABLE VIII. KE~KE (see Fig. 8). See caption of Table I.

Channel

~01

511
~01
~03

P13
D03

Dos

Fos
FO7

F17
G07

G09

617
619

TABLE IX. EN~mX (see Fig. 10). See caption of Table I.

Channel

~01

~11
~01

~03
~11
P13
DO3

Dos

D1S
+os
+07
F1S
I'17

Go7

Gog

617

Expt. Skyrme

waves, would be of the utmost importance.
KN processes. The situation is quite the opposite for

KN scattering (Tables VI and VII). The agreement for
both KN ~KN and KN ~KB is dismal. The reason for
this is not hard to understand. KN processes occupy a
special role from the point of view of the quark model,
since resonances in these channels (unlike KN) cannot
correspond to qqq, but rather qqqqq states. Not surpris-

ingly, in nature, the majority of amplitudes show no hint
of a resonance, and are in fact repulsive (that is, curve
clockwise). The existence of any such resonances is still
an open question, with the most recent analysis favoring
such states in at least two channels. In contrast, there is
nothing particularly "exotic" about EX scattering in the
Skyrmion approach, for reasons we shall discuss below.
Consequently, most of the Skyrme-model graphs evince

TABLE X. EX~n.h (see Fig. 11). See caption of Table I.

Channel Expt. I Expt. II
Skyrme

vs I vs II

~l 1

Dls
FlS

TABLE XI. EX~qA (see Fig. 12). See caption of Table I.

Channel

~01

~oi
P03

&03
805
~05
~07
607
609

Expt.

the usual resonant behavior: anticlockwise curves and
Breit-signer peaks in the speed. In Sec. IV we shall
speculate on whether the (apparent) existence of KN reso-
nances in the real world might be construed as evidence
for the soliton nature of the nucleon.

KN processes. Finally, the Skyrme model gives mixed
results in describing KN scattering (Tables VIII—XIII).
On the level of individual graphs, the model works less
well for KN than for mN scattering; this is perhaps a
consequence of our having set nix ——0, which is a much
more severe approximation than setting m =0.
Nevertheless, in certain important respects, the agreement
is quite pleasing. Most notably, for the processes
EN~EN and KN~nX, the model successfully repro-
duces a pattern reminiscent of nN~rrN that character-
izes the four independent experimental amplitudes for
each value of I; specifically, in the model as in nature,
the Poi, Doq, Fos, and 607 amplitudes travel significantly
further through the unitarity circle than do their counter-
parts. %e shall return to this "big-small-small-small"
pattern in Secs. V and VI. The sign agreement for
EN~rrX, KN~irA, KN~rIA, KN~~X', and
EN ~Eh is 65%, 64%, 67%, 67%, and 55%, respective-
ly. Agreement in the last of these processes is extremely
poor.

It should be kept in mind that, for most of the process-
es summarized in these tables, the experimental curves do
not represent the data directly, but result instead from a
multiparameter fit of the differential cross section to the
squared sum of partial-wave amplitudes. Such a fit in-
volves a complex, model-dependent, and frequently ambi-

guous statistical analysis, or "solution, " of multibody fi-
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Channel

PPol
PPo3

PP L3

DDo3
DDos
DD13

FFos
FFo7
FF1s
FF(,7

TABLE XII. KN ~aX (see Fig. 13). See caption of Table I.

Channel

~Dol

D~o3
DS I3

PFo3
PFI3
FPos
FP)s
DGos
DGls
GDo7

GD),7

TABLE XIII. EX~Eh (see Fig. 14). See caption
of Table I.

Channel Expt. Skyrme

PPI3

DD)s
FF)s

FFI7
GGI7
GG I9

DSI3
PFI3
FP„

GDI 7

nal states. (For example, re, must be disentangled from
plV. } In fact, for processes with relatively low statistics,
not only can two experiments differ substantially from
one another, but two solutions of the same data can
disagree (cf. Table VII and Fig. 7, for example). In light
of this, it is noteworthy that the Skyrme model does best
for the processes that are relatively well established (e.g.,
irltl ~irltl, @lid ~n 6, KN~Klii}, and worst for those that
seem the least well understood (e.g., Klieg ~KB and
Kiil~KE). It would be interesting to see whether, ten
years hence, there will be any noticeable improvement in
agreement between the model and experiment for these
latter processes.

Before proceeding to the specifics of our analysis, we
would like, once again, to express our wonderment that so
much detailed structure of the meson-nucleon S matrix—
much of it in reasonable accord with nature —can emerge
from a simple meson Lagrangian with no explicit quark
or nucleon fields. The moral is that this structure must be
largely determined by the symmetries of the effective I.a-
grangian alone (By this w. e mean, not just the familiar
chiral symmetries, but also the peculiar "K-symmetry"
characterizing hedgehog solitons, as reviewed in Appendix
B.) It is surprising that effective Lagrangians have so

much to say far beyond the "soft-pion" energy regime to
which they are normally applied.

The remainder of this paper is organized as follows. In
Sec. II we review the formalism for meson-nucleon
scattering in Skyrmion models of the nucleon. Sections
III, IV, and V are devoted to a pictorial comparison be-
tween the model and experiment for mN, KN, and KlV
scattering, respectively.

In Sec. VI, which we consider the theoretical heart of
the paper, we explore the degree to which the predictions
of the Skyrme model, both successful and unsuccessful,
can in fact be considered model independent (i.e., indepen-
dent of the precise details of the Skyrme Lagrangian, but
based only on the familiar "hedgehog" form of the soli-
ton, as reviewed below). In particular, we shall focus on
sign predictions for inelastic processes, and on the "big-
small-small-big" and "big-small-small-small" patterns
mentioned earlier. The question of model independence is
a crucial one; for, if the soliton approach to baryon phys-
ics is ever to be honed into an accurate calculational tool,
Skyrme's Lagrangian will eventually have to give way to a
more realistic model involving many more low-lying
mesons. In the course of our investigation we shall dis-
cover what we believe to be the secret behind much of the
Skyrme model's success in describing the scattering data.
As a consequence, we shall be able to delineate a large
class of models which, we believe, would enjoy compar-
able overall success. We hope that this might usefully
constrain the model-building efforts currently under way.

In Sec. VII we leave the special case of the Skyrme La-
grangian behind, and examine instead the consequences of
assuming that the optimal low-energy effective Lagrang-
ian of nature (which we do not know) possesses solitons of
the same "hedgehog" structure as in the Skyrme model.
It has been shown in the context of two-flavor Skyrmion
physics that this assumption implies the existence of
energy-independent linear relations between experimental
mX~mX and mX~mA partial-wave amplitudes. ' In
general, these relations are well satisfied by the experi-
mental data, with certain exceptions in the lower partial
waves. ' Section VII examines to what extent inclusion of
a third light flavor modifies these relations; we focus, in
particular, on the peculiar role played by the %ess-
Zumino term. We shall find that all but one of these rela-
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tions emerge virtually unscathed in the three-flavor for-
malism. We also discuss some new linear relations
designed to test the conclusions of Sec. VI.

In order to make this paper relatively self-contained,
Appendix A depicts some intermediate results of our nu-
merical analysis, Appendix 8 contains a derivation of the
three-flavor scattering formalism first presented in Ref.
12, and Appendix C gives explicit formulas for the
group-theoretic expressions we have used. Finally, Ap-
pendix D contains the Skyrme-model graphs for the six
nN ~gpsa and KN ~gpsa processes for which an experi-
mental partial-wave analysis in the resonance region has
yet to be done, namely, mN~gh, ~X—+j:X', EN~gX,
EN —+gX', EX~X:-, and EN~X:-'. W'e very much
hope that this paper will provide fresh impetus for such
work.

II. BASIC NOTIONS

This section is devoted to a brief review of the meson-
nucleon scattering formalism in soliton models. The aim
is to pave the way for the detailed comparison that fol-
lows between the Skyrme model and experiment. (The
casual reader eager for results should skip directly to Sec.
III.) Since we shall be contrasting the two- and three-
flavor versions of the Skyrme model in Secs. III, VI, and
VII, we shall sketch both formalisms here.

The Skyrme Lagrangian is given by'

2

Tra„U a&U'
P

Tr[(B„U)U, (B„U)U ] +W
32e

with U an SU(2) or SU(3) matrix in the two-flavor or

2E
exp g ir'o', two-flavor case,f
exp

2r
three-flavor case,

in (1).
To study meson-nucleon scattering in this model, one

simply breaks up the Goldstone fields m or P' into two
pieces: a spatially varying c-number piece, i.e., the Skyr-
mion, and a fluctuating piece, which we identify with
physical mesons. Calculating the meson-nucleon T ma-
trix~9 then reduces to a problem of potential scattering,
from which partial-wave phase shifts can be extracted in
the usual manner. In addition, it is necessary to fold in a
little group theory, as we now describe.

Consider first the case of two-flavor scattering, which
suffices for the study of the nonstrange processes
nN~mN, mN~mh, and nb, ~md The .

qu. antum num-
bers needed to describe such processes are the following:
the initial and final pion angular momenta L and L', the
initial and final spin (or isospin) representation of the
baryon s and s', which equal —,

' for nucleons and i for
4's; and the total pion-baryon isospin and angular
momentum I and J. The T matrix describing such pro-
cesses in the Skyrme model can then be shown to be '

three-flavor model, respectively. Here, the first term is
the usual nonlinear cr modd familiar from soft-pion phys-
ics; the second serves to stabilize a finite-size soliton, or
"Skyrmion, " which is our candidate nucleon; and the
third, the Mess-Zumino term, reflects the presence of
anomalies. The traditional identification of the Gold-
stone fields comes from setting

EIJ EIJ
T( I LsIJ I -+

I
L's'IJ

I ) =( —1)' '[(2s + 1)(2s'+ 1))'~ g (2K+ 1) '
(2)

The expressions in curly brackets are 6j symbols, and the
sum over E extends over all integer values consistent with

I
L —1I &K&L+1 and IL —1I &K&L'+1. The

quantities rxL, L, which are functions of pion energy co, are
the "reduced amplitudes" of the model, obtainable numer-
ically from a phase-shift analysis about the classical soli-
ton solution of the Lagrangian. (In contrast, we shall
refer to the boldface T's as "physical amplitudes. *') Al-
though these reduced amplitudes have been presented pre-
viously, ' we display them in Appendix A in a form
more suited to our purposes.

Although, in Eq. (2), K plays the part of a dummy in-
dex, it actually has an interesting physical interpretation.
Speciflcally, K can be viewed as the vector suin of the
pion s angular momentum and isospin in the unphysical
frame in which the pion scatters, not from a nucleon, but
rather from an unrotated soliton of the "hedgehog" form.

[A hedgehog soliton is one in which the c-number piece of
the pion field, an isovector, is proportional to 'P; cf. Eq.
(81) in Appendix 8 below. ] This frame is "unphysical" in
that a nucleon properly corresponds to a rotating
hedgehog soliton in the Skyrmion approach (see. Ref. 61)
In the unphysical frame, K is conserved, but I and J are
not, whereas in the physical frame, with a rotating Skyr-
mion, it is I and I that are conserved, and K is not. More
details on the meaning of K can be found in Refs. 7—15,
as well as in Appendix 8 below.

The three-flavor analog of Eq. (2) is of the same general
structure albeit a little more complicated. The three-
flavor scattering processes that we are focusing on are
special cases of the general quasielastic process

Asa A'sB',
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where /Ps and )ps are pseudoscalar-octet mesons and 8
and 8' are —, octet or —,

'
decuplet baryons. The

meson-baryon system in either the entering or exiting
channel for such a process can be fully characterized by
the following set of quantum numbers: the orbital angu-
lar momentum L of the meson; the spin s and flavor rep-

resentation R of the baryon [i.e., ( s,R ) = ( —,', g ) or
( —', , 10)j; the total meson-baryon angular momentum J;
and the total SU(3)a,„,„quantum numbers

IR„„y,I„„I„„,F„,J (see Ref. 50). As in the two-flavor
case, the physical T matrix can be expressed as a superpo-
sition of reduced amplitudes

T( I LsRRtot2'ItotIztot Ftot J I IL s R Rtotl' ItotI tot Ftot&I )

, [(dimR)(dimR')]'~
ckmRto,

~ v

KiJ EiJ
g g g (2i+1)(2K+1)

I IX I i K

r

R tot'V R' 8 R 8 R totX

i, l+F s'1 IY sl IF i, l+F

This expression, whose derivation is reviewed in Appen-
dix 8, requires some explication. The quantities in
parentheses are SU(3) isoscalar factors, tabulated by
DeSwart. ' The pair [IY) is summed over t 1,0I, IO, OI,
and t —,', +1]. The index K assumes integral values when

I IYI = I 1,0) or IO, OI and odd-half-integral values when

IIY I = [ 2, + 1 j, while the index i assumes odd-half-

integral and integral values, respectively, in these cases.
In addition, these sums are constrained by the various tri-
angle inequalities implicit in the two 6j symbols, as a
consequence of which we find the following contributing
reduced amplitudes for physical processes

I 1,oI f1,oI fo, oIAsII~Asa with L =L: I'rL+ i,LL ~ 'rLLL ~ 'rLLL ~

I 1/2, 1 I I 1/2, —1 I7I +i/z LL rL+i(2 LL j all contribute.
PpQ~P'pQ' with L'=L+2: only vjrL ), K =(L

+L')/2, contributes. Furthermore, by time-reversal in-
variance, ' it follows that rkL i. =~,rLL

7, S 11,0)
i

1,0I

Useful closed-form expressions for the group-theoretic
coefficients in Eq. (3) that multiply these reduced ampli-
tudes are given in Appendix C (Ref. 53).

It turns out that the reduced amplitudes rjrLL' and
') are numerically quite close to one another for all

energies. It is therefore convenient to introduce the
linear combinations

+KLL 2 ( +kLL rkLL-+ i f 1/2, 1I f 1/2, —1I

E=L——, or L+ —, ;
1

these are depicted in Appendix A. It happens that, in the
particular case of the Skyrme model, these are the only
new quantities that one needs in order to pass from the
two-flavor to the three-flavor formalism. Specifically, the
amplitudes ~p~L turn out to be trivial,

&PiL!(~)=0
while the quantities vgz j(m) are identical to the two-
flavor reduced amplitudes rkL L (~) thit appear in Eq. g).

From the discussion in this section we can make the
following observations.

(1) Since all physical amplitudes for processes with

L'=L+2 are proportional to the single reduced ampli-
tude ~gL f =v I'LL) with K = (L +L')/2, it follows that all
such amplitudes for each ualue of K are necessarily propor
tional to one another. The group-theoretic coefficients of
(2) and (3) furnish the relative magnitudes and signs of
these amplitudes for the two- and three-fiavor model,
respectively.

(2) Processes with L =L' are more complicated from a
group-theoretic standpoint, since in general they are ex-
pressed as a superposition of eight reduced amplitudes.
However, from the graphs in Appendix A, we see that,
with a few exceptions in the lower artial waves, the three
reduced ampiirudes Irf"jLL, g',,'), gL+ „2LL] Uary

much more dramatically as functions of energy than do the
other fiue amplitudes I TL+] LL BALLL 7L+ig2 LL,

f1o fo oj +

~L in LL ~L+ig2LL —I an" consequently p«»de the dom
inant contributions to the physical Skyrme model amp-li

tu des.
(3) Lastly, we ought to point out that Eqs. (2) and (3)

are valid for any soliton model of the baryon, not just
Skyrmes, in iohich the soliton is a "hedgehog" configura-
tion. The only model-dependent input is the precise
values of the reduced amphtudes.

We will make frequent use of these observations
throughout the remainder of the paper. We turn now to a
channel-by-channel comparison of the Skyrme model T-
matrix with experiment.

III. mN SCATTERING

%'e begin with the elastic case mX~mX. This process
has been studied before in the context of both the two-
flavor ' ' ' and three-flavor' *' Skyrme models; in
particular, the reader is referred to Ref. 7 for a discussion
of the spectrum of baryon resonances in the two-flavor
model. Elastic mN scattering is extremely well understood
experimentally, as evidenced by the close agreement be-
tween the three principal partial-wave analyses (Refs.
19—21). As such, it represents a crucial test for the
Skyrme model.

Figure 1(a) displays the 30 experimental nN~mN. .
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partial-wave amplitudes for 0 &L & S (Ref. 20) and
6&1- &7 (Ref. 19) juxtaposed with both the two- and
three-flavor Skyrme-model graphs. For completeness,
we have also summarized the results of our mass spec-
trum calculation ' in Fig. 1(b). We consider the overall
degree of agreement impressive. Obviously, for G waves
and higher, the Skyrme model graphs are much too
large; this is primarily due to the fact that, in our for-
malism, we are not allowing for the large variety of inelas-
tic processes that dominate these channels in nature. In
this regard, the three-flavor Skyrme model, which allows
for final states involving strangeness such as EX, consti-
tutes a clear improvement over the two-flavor model. In-
clusion of a third flavor can also be seen to improve the
agreement in the Pls, Psl, and D» channels.

The case of the F waves is more subtle. Although the
three-flavor curves do not appear at first glance to be in
quite so close correspondence with nature as their two-
flavor counterparts, they actually constitute an improve-
ment: a "speed analysis" reveals the emergence of a

second resonance in both the FI& and the Fi7 three-flavor
amplitudes, in agreement with nature (see Ref. 13 for de-
tails).

Most of the severe disagreement between the model and
experiment is concentrated in the lower partial waves,
especially the S3$ I J] P33 and D35 channels. As dis-
cussed in detail in Refs. 7 and 8, this is probably a failure,
not of the Skyrme model Per se, but rather of our
leading-order analysis in 1/N, (Ref. S8). It is illuminat-
ing to summarize the situation for these four "problem"
channels.

(i) The b [i.e., the P»(1232)] is degenerate with the nu-

cleon in the large-N, limit; they are split in mass only by
terms that scale like 1/N, (see Ref. 61). Consequently,
the 5 does not—indeed, cannot —show up as a resonance
in a leading-order two- or three-flavor analysis such as
ours. 9 It is interesting that, beyond the energy range as-
sociated with the 6, the experimental and Skyrme-model
amplitudes appear to be in quite reasonable agreement
(note the cusplike behavior in each case).
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FIG. 1. {a) mX~mX: Comparison between the two- and three-flavor Skyrme models and the experimental solutions of (i) Ref. 20
for I. &5 (1.08 &E, &2.40 GeV) and {ii) Ref. 19 for 6&L &7 (1.08 &E, &2.50 GeV). The plots show Im(T) vs Re(T) for each
channel. Channels are labeled by L21~, where I. is the pion angular momentum, I is the total isospin, and J the total angular
momentum. Note the change of scale for the experimental graphs with I.&4. (b) Spectrum of X and 6 resonances: Skyrme model
vs experiment. The experimental masses (indicated by dots) and uncertainties are taken from Ref. 20, except for the N(1882} F~5 and
the four I- and E-wave states, which are taken from Ref. 19. The Skyrme-model predictions of Refs. 7 and 13 are indicated by
crosses. In general, the two- and three-flavor predictions are identical; the exceptions are the %{1882)F» and the 6 (2350) F37 which

only exist in the three-flavor Skyrme model (Ref. 13). Resonances have been assigned stars in accord with the Particle Data Group,
ranging from four stars for the best established down to one star for the least well established states. The most recent analysis (Ref.
21) finds no evidence for the %{1700)P~ I, but instead finds a state near 1500 MeV. Also sho~n are the four observed three- or four-
star resonances which have no Skyrme-model counterparts in our analysis, namely, the X(1650) SII, the N(1440) P&1, the X(1675)
D ]3 and the b ( 1 890) S» . The Skyrme-model values for mz and m z are obtained from Eq. (9) of Ref. 61, using our "best-fit" pa-
xameters (e =4.79,f =150 MeV).
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(ii) Similar disagreement plagues the P» channel,
where the Skyrme-model amplitude stands in stark con-
trast to the classic resonant behavior that appears in na-

ture, associated with the Roper resonance at 1440 MeV.
In light of the qualitative similarity between the P» and

P33 amplitudes in both the Skyrme model and experi-
ment, we proposed somewhat optimistically in Ref. 7 that
the same I/X, corrections that are expected to produce a
low-lying Skyrme-model resonance in the P33 channel
(i.e., the 6) are likely to produce a low-lying resonance in
the P» channel too (i.e., the Roper resonance).

At the time, this scenario left us somewhat in a quan-

dary, for the following reason. A speed analysis reveals
that the Skyrme-model P~I amplitude in both the two-
flavor and three-flavor cases contains a weak resonance
before the cusp, at approximately 1430 MeV (Ref. 60).
On aesthetic grounds, it would certainly be hard to justify
identifying this tenuous state with the robust Roper reso-
nance seen in nature; indeed, as just mentioned, we pre-
ferred to equate the Roper resonance with a Skyrme-
model state that we hoped would emerge in the next order
in 1/X, . This left us no choice but to associate the
Skyrme-model state at 1430 MeV with the next-excited
state observed in this channel, which is traditionally as-
signed a mass of 1700 MeV. The large discrepancy be-

tween these two values stood out as one of the most disap-
pointing results in a generally successful Skyrme-model
spectroscopy [see Fig. 1(b)]. Interestingly, the experimen-

tal situation for this channel has since changed: the most
recent mE experimental partial-wave analysis ' finds that
the next-excited PII state is, in fact, nearly degenerate
with the Roper resonance, and therefore in much closer
agreement with the Skyrme model. %e should note
that, from the point of view of Skyrmion physics, these
two nearly degenerate states arise in very different ways:
the Roper resonance (like the b, ) is split from the nucleon
only by an energy of O(1/N, ), while its partner has an
excitation energy of O(1). The observed near degeneracy
is an accidental consequence of the fact that, in the real
world, X, is not a very large number.

(iii) Another area of severe disagreement between the
Skyrme model and experiment is in the S3I channel,
which is repulsive near threshold in nature but attractive
in the Skyrme model. Again, this discrepancy is an ar-
tifact of our leading-order I/N, analysis. Specifically, the
repulsive threshold behavior of the S3& amplitude,
predicted by the Weinberg- Tomozawa two-soft-pion
theorem, emerges in the Skyrme model only at order
1 /E, (Refs. 8, 63, and 64).

(iv) Finally, the poor agreement between the model and
experiment in the D35 channel deserves some comment.
It is clear that from Fig. 1 that, in the Skyrme model, the
D35 amplitude is nearly as big as the D», while in nature
it is by far the smallest of the four D-wave amplitudes.
Furthermore, the resonance masses of the four D-wave
states are nearly degenerate with one another in both the

X

~ 2.0
gf X

x,

)(
x x

x

x x

FIG. 1. (Continued).
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two- and three-flavor Skyrme models, ' while in nature

the D35 state at 1940 MeV is 200—300 MeV higher in
mass than its three partners. It is interesting to specu-
late as to the reason for these discrepancies between the
model and experiment.

It happens that the Di&(1930) is of particular interest
from the quark point of view, since, in the language of
SU(6), it is the only state present in the Lq„„z——1 56 that
is not contained in the Lq~,k ——1 70; as such, it serves as a
"marker" for this multiplet. Now, in nature, the

Lq~,~
——1 56 is substantially higher in mass than the

I.q„„k——1 70. However, there is a well™known problem
that plagues naive bag-model spectrum calculations:
namely, the physical quark excitations corresponding to
this multiplet turn out to mix with the (unphysical)
translational zero modes of the center of mass of the sys-
tem, which also generate an I.q», k

——1 56. The result of
this mixing is to lower the predicted mass of the multiplet
to a phenomenologically unacceptable level.

It is likely that a similar phenomenon is taking place in
our Skyrme-model calculations. One would therefore ex-
pect that a proper "factoring out" of the Skyrmion's
translational zero modes would raise the mass of the
Skyrme-model prediction for the mass of the D35 im-

proving the agreement with experiment. Hopefully, the
overall size of the Skyrme-model curve in this channel
would be diminished as well. (Of course, the other S- and
D-wave states would also be expected to be modified, to
the extent that they, too, contain admixtures of the
I.q,g ——1 56.)

Fortunately, the other mX~mX partial waves pose no
such problems. It is particularly striking that both the
two- and three-fiavor Skyrme models reproduce the "big-
small-small-big" pattern found in nature, whereby, for in-

stance, the E» and I"37 amplitudes take much larger ex-
cursions through the unitarity circle than do the I'~7 and
Fi5 curves; furthermore, in the model as in nature, the
first amplitude is almost always bigger than the last:

Experiment Skyrme Model
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FIG. 2. mX~mh: Comparison between the two- and the three-flavor Skyrme models and the experimental solution of Ref. 22
(1.34 &E, & 1.91 GeV). Channels are labeled by LI.&z 2J, with I. and I.' the incoming and outgoing pion angular momenta, respec-
tively. Three-flavor Skyrme model results are depicted by solid lines, two-flavor results by dotted lines. An asterisk here {and hence-
forth) denotes amplitudes which were found to be small and/or poorly determined by the available data, and were therefore not in-
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Experiment
-04 0 0 4

0.4

Skyrrne Model

-0.05 0 0.05
0.05

F~5 ~I'37, etc. We shaH return to this phenomenon in
Sec. VI, where we shall argue that both the Skyrme model
and the optimal two- and three-flavor effective Lagrang-
ians of nature (which we do not know) lie in a large class
of models which can be expected to display a big-small-
small-big pattern.

A technical aside is in order concerning our parametri-
zation of energies. Each of the Skryme-model graphs de-

picted in Fig. 1(a) extends froin threshold to an excitation
energy of 2ef, where e and f are the two independent
parameters that enter into the Skyrme Lagrangian, Eq.
(1). It is not clear to us how best to convert this energy
into GeV's, especially in light of our having set
m =rnid ——0 in our phase-shift calculations. However,
for purposes of comparison with experiment, an excitation
energy of 2ef~ can be thought of as corresponding rough-
ly to a total center-of-mass energy of 2.5 GeV (Ref. 7).
We emphasize once again that the shapes of the Skyrme-
model curves are completely independent of the values of e

and f, apart from the issue of determining precisely
where the tails of the curves should be cut off. For sim-
plicity, we sha11 cut off all Skyrme-model graphs present-
ed in this paper at 2ef (although the experimental cut-
offs vary).

Let us turn to the process ~% ~re, . Of all the inelastic
processes that we shall survey, this one is by far the best
understood. As a measure of this, the recent partial-wave
analysis of Manley et al. , which is based on a quarter-
million +AN events, is in good overall agreement ~ith the
three principal analyses that preceded it.

Figure 2 displays the experimental m.N~mb, solution
drawn from Ref. 22 compared with the two- and three-
fiavor Skyrme-model predictions. As in the elastic case,
the agreement is surprisingly good. In fact, there is 100%
agreement between both the two- and three-fiavor models
and experiment in the signs of the rrN~n. h amplitudes.
We find the correctly rendered minus sign in the DDIi
channel especially gratifying, in view of the fact that all
other PP, DD, and FF graphs lie in the upper-half plane.
It is also noteworthy that, in both the model and experi-
ment, the FI'~5 amplitudes circle around much more than
the EF35 and I'I"'37 curves.

For channels where I.=1.', it is clear that the three-
fiavor model improves significantly on the two-flavor
model as regards the magnitudes of the curves. However,
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we have added a detached arrow in the experimental 5» chan-
nel to indicate the expected behavior of the amplitude if one
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the reverse is true when L'=L+2: in these channels, the
three-flavor curves are uniformly smaller by a factor of
5~10/36=0. 4 than their two-flavor counterparts, which
were already smaller than experiment. %e shall see when
we discuss the processes KX~Kh, KX~m X', and
EX~Eh that the Skyrme model systematica)1y underesti-
mates the sizes of the amplitudes with L'=L+2 compared
to those with L'=L.

In the remainder of this section, and in Secs. IV and V
to follow, we shall examine processes that involve strange
particles. As a result, whenever we refer to the Skyrme
model, we shall mean the three-flavor version necessarily.

Figures 3 and 4 display the Skyrme model juxtaposed
with experimental solutions for the processes @%~re
(Ref. 26) and nN~EA (Ref. 28). In general, the
Skyrme-model graphs are too small for the former, but
too big for the latter. For nN~riN, the agreement is
poor for the lower partial waves (L &2) but quite respect-
able for the higher waves (L )3). Probably, this is large-
ly due to the fact that the S, P, and D waves in the model
are highly sensitive to 1/lIr, corrections, as mentioned
earlier. However, the issue is clouded by the fact that the
two most recent experimental analyses for this process are
themselves in severe disagreement with one another for
these waves. The overall degree of agreement is some-
what better for nAr~EA. Here, the most noticeable
feature of the model is the sign alternation characterizing
the plots; this pattern appears to be present in nature as
well, albeit in a more ambiguous manner.

Figure 5 depicts the process m Ar ~EX (Ref. 29).
Despite the scale difference between the Skyrme model
and experiment in the D, 6, and 0 waves, the agreement
generally is quite good. It is interesting to compare the
experimental graphs of Ref. 29, which are the ones
displayed in Fi . 5, with the results of previous partial-
wave analyses. These earlier analyses; based on an
order of magnitude fewer events, required several addi-
tional strongly coupled resonances in the lower partial
waves. Furthermore, the four solutions presented in Ref.
31 and the two solutions given in Ref. 32 are all charac-
terized by positive F35 and I'37 amplitudes, and they
predict that the F35 amplitude should be larger than the
F37. On all of these counts, the Skyrme-model results ar-
gue strongly in favor of Ref. 29.

Unfortunately, the analysis of Ref. 29 is restricted to
isospin- —,

' channels. In the isospin- —,
' sector, there is no

visible agreement among the previous studies although on
the whole the Skyrme-model graphs seem closest to those
of Ref. 32.

The comparison with the Skyrme model sheds light on
an interesting observation made by the authors of Ref. 29.
They regard the fact that their partial-wave amplitudes lie
almost entirely in the lower-half plane as compelling evi-
dence against the existence of '*exotic" 27-piet resonances
in these channels. ' This claim is based on the observa-
tion that, in the isospin- —, channels, the 27 couples to
+%~EX with a sign opposite to that of the IO; a strong-
ly coupled exotic resonance would therefore be expected to
spoil the observed homogeneity in sign. However, the
Skyrme model provides a counterexample to this claim.
For, as we shall see in the following section, the model ac-
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Note that experimental and Skyrme-model plots for 6 waves
are shown on different scales.

tually features an overabundance of resonances in the 27.
Nevertheless, in the isospin- —', channels of mN~EX,
these exotics are outweighed by the stronger resonances in
the 10, which are nearly degenerate with those in the 27
(Ref. 72). The net result is that the Skyrme-model ampli-
tudes, too, favor the lower-half plane, as can be seen in
Fig. 5.

The issue of exotic resonances in the Skyrme model is
the topic of the following section.

IY. It.N SCATTERING

We turn, next, to the case of El' scattering. The
isospin-0 and isospin-1 channels of ES correspond to
pure 10's and 27's of SU(3)tI,„„.Consequently, a EE res-
onance, although not forbidden, cannot be composed of
three quarks, but must consist instead of four quarks and
an antiquark in the simplest case.

The existence of such resonances has been the subject of
considerable controversy over the last two decades. The
most recent partial-wave analyses tentatively favor
such states in the P~3 and D03 channels, and perhaps in
the Po~, P~~, Dos, and D~s channels as well. It is interest-
ing to see what the Skyrme model has to say on the
matter.

Figure 6 illustrates elastic KX scattering in the Skyrme
model juxtaposed with the results of the two latest
partial-wave analyses. ' The overall degree of agree-
ment between the model and experiment is poor. This
should not come as a surprise, for the following reason. It
turns out that the three-flavor Skyrme model with N, =3
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contains as rotational excitations of the canonical
"hedgehog" soliton [Eq. (Bl) below] an infinite tower of
baryon multiplets beyond the usual spin- —,

' octet and
spin- —,

'
decuplet. This tower includes, in particular, a

spin- —,
' 10 and spin- —,

'
and spin- —', 27's. Each of these

multiplets would naturally be expected to have excitations
of higher angular momentum, just at the usual octet and
decuplet have; such states would manifest themselves as
resonances in EN scattering. In short, there is nothing
exotic about JCN processes in the Skyrme model; this is
confirmed by the multitude of obviously resonant
Skyrme-model amplitudes in Fig. 6.

It is instructive to consider an analogous situation in-
volving the two-flavor Skyrme model. It is well known
that this model contains states with I=J=

g 3

that emerge as rotational excitations of the hedgehog. '

The two lowest-lying multiplets are naturally identified
with the nucleons and 6's, respectively, while the states
with I =J)—, are traditionally labeled "artifacts of the
model" and swept under the rug. Thankfully, isospin
conservation forbids these states from appearing in the s
channel of mN scattering, so that they do not really cause
a problem. However, one can consider the gcdanken ex-
periment of m+5, ++ scattering, which is pure isospin —,.
From the quark point of view, this is an exotic process
just like KN scattering, and we would expect to see a high
proportion of repulsive amplitudes. In contrast, in the
Skyrmion approach, there is nothing exotic about this
channel, since isospin- —', states exist. One would therefore
expect (and we have explicitly verified) that nearly all the
Skyrme-model graphs for m+6, ++~m+6++ evince the

usual resonant behavior.
The moral is that the Skyrmion approach can hardly be

expected to yield accurate information about KN scatter-
ing, as these processes directly probe those states that one
would prefer to dismiss as unphysical artifacts of the
model. This having been said, it is interesting to speculate
about whether those exotic states that do seem to be
present in nature reflect in any way the Skyrmion-type
properties of the nucleon. We offer the following cautious
observations.

(1) Although the four P-wave Skyrme-model ampli-
tudes appear to be repulsive, close inspection reveals thai
the Po& and P~3 amplitudes actually curve anticlockwise
before the cusps. Therefore, they might be interpreted as
very weak resonances superimposed on a strongly repul-
sive background. It is interesting to note that these are
the same two P-wave amplitudes that curve anticlockwise
in nature.

(2) The Dc& channel is the most prominent of the D-
wave curves in the Skyrme model, and it is the most plau-
sibly resonant D-wave channel in nature as well.

(3) Interestingly, there appears to be some unexpected
resemblance in the I'- and the 8-wave sectors between the
four EN ~K% experimental amplitudes and their
mX~mN counterparts [compare "experiment 1" in Fig. 6
to Fig. 1(a)]. In particular, in the P waves, the first and
fourth amplitudes for both processes curve anticlockwise,
while the second and third curve clockwise. Likewise, the
D waves are characterized by a pattern of "decreasingly
resonant behavior" across the four graphs in each process.
Consequently, it is conceivable that the same 1/N, correc-
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FIG. 7. EN~Eh: Comparison between the Skyrme model
and the three experimental solutions given in Ref. 38 (1.75
&E, & 2.02 GeV). Channels are labeled by I.I.I ~. Note that
experimental and Skyrme-model plots are shown on different
scales.

tions that are expected to improve the agreement in these
waves between the Skyrme model and experiment for
m E +n—X will do likewise for KN ~KX.

(4) Finally, we have come to expect reasonable agree-
ment between the Skyrme model and experiment in the I',
G, and H waves. It is unfortunate that the only such
channels for which experimental K%~K% amplitudes
have been presented, namely, the F», G&7, and H~9, are
predicted by the Skyrrne model to be small and rather
featureless (Fig. 6). A much more critical test of whether
the model has anything relevant to say about KN scatter-
ing would be the appearance of resonances in the F&»,
GO7, and H09 channels. An analysis of these channels can
be expected in the not-too-distant future. ~5

The process KN~K4 is understood much less well
than the elastic case. In fact, due to the dearth of data,
the authors of the only existing partial-wave analysis
were unable to decide among three possible solutions, each
of which gives a mediocre fit to the data (X2lDF=2.33,
2.33, and 2.68, respectively, for solutions A, 8, and C).
%e have depicted all three solutions in Fig. 7. Evidently
the Skyrme-model graphs bear no resemblance to any of
the three solutions, apart from a reasonable sign correla-
tion with Solution 8. Particularly disturbing is the fact
that, while those channels in which the kaon jumps by
two units of angular momentum contribute appreciably to
the experimental T matrix, they are suppressed in the
Skyrme model by roughly a factor of 25 compared with
the channels in which L does not change.

All in all, it is unclear to what extent, if any, the
Skyrme model has anything valid to contribute to our
understanding of KN scattering.
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FIG. 8. EN~ECN: Comparison between the Skyrme model and the experimental solution of Ref. 39 (1.48 &E, & 2. 17 GeV}.
Channels are labeled by I.q 2J.
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0.5 —
D~~

FIG. 9. Examples of the big-small-small-small pattern
displayed by the experimental ZÃ~ZN amplitudes (Ref. 39}.
The energy was cut off at the average resonance scale for the I'
and D waves (taken to be 1.75 GeV in both cases).

V. XN SCATTERING

We turn, finally, to an examination of KN scattering.
The elastic case KN +KN is -considered very well estab-
lished, with excellent agreement between the two most
comprehensive partial-wave analyses (Refs. 39 and 40).
Figure 8 presents the Skyrme model versus experiment3s
for this process. As in the case of mN scattering, there is
poor agreement for the S and P waves, but reasonable
agreement for the D waves and higher, with the F waves
being the best. The most obvious feature of the Skyrme-
model graphs is the 'big-small-small-small" pattern

characterizing the four independent amplitudes ILO 2L

Lo pi. + ], L ] 2L ], L ],2L + ] I

example, the Fo5 curve is larger than its Fo7, F&5, and F&7
counterparts. In general, this pattern characterizes the ex-
perimental graphs as well. The Po3 and D&s curves ap
pear from Fig. 8 to be semiexceptions to the rule; howev-
er, if one cuts off the energies at the "natural" resonance
scale for each value of L (which we take to be the average
value of the masses of the prominent resonances formed
in these channels), then the big-small-small-small pattern
shows up much more clearly. This point is illustrated in
Fig. 9 for the P and D waves.

A subsidiary pattern apparent from the Skyrme-model
graphs of Fig. 8 is a relative size ordering among the three
"small" amplitudes for each value of L )2: for instance,
Dos (D]3 (D», and likewise for the F and G waves.
And indeed, with the glaring exception of the 6», this
ordering holds for the experimental curves as well (Figs. 8
and 9).

%e turn next to the inelastic processes EN~mX and
KN~mA. Here there are areas of serious disaccord be-
tween competing partial-wave analyses. ' ' As can be
seen in Figs. 10 and 11, the agreement with the Skyrme
model is likewise less good than for elastic scattering.
Particularly disappointing in the case of KN~m. X (Fig.
10) is the discrepancy in the sign of the D]3 channel. In
contrast, the agreement in the F-wave sector is excellent.
Moreover, the Skyrme model successfully predicts a big-
small-small-small (or, perhaps more descriptively, a big-
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FIG. 10. KN~mX: Comparison between the Skyrme model and the experimental solutions of Ref. 39 (1.48 &E, &2. 17 GeV).
Channels are labeled by LI 2J. Note that experimental and Skyrme-model plots for L =0 are shown on different scales.
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small-medium-small) pattern for KS~mX, just as for the
elastic case.

In Fig. 11 we have juxtaposed the Skyrme-model
graphs for TCN~mA with the results of two independent
experimental analyses. ' ' Clearly the model is in better
agreement with Ref. 41 ("experiment I") than with Ref.

-O. 2 0 0.2
O. 2 -'

SOI

0 — r

-0.2—
O. 2 -'

POI

I

PO3

FIG 11 ZN~m'A: Comparison between the Skyrme model
and two experimental solutions: "experiment I" from Ref. 41
(1.55&E, &2.00 GeV) and "experiment II" from Ref. 39
(1.47&E, &2. 17 GeV), Channels are labeled by I.I,~. Note
that experimental and Skyrme-model plots for I.=0 are shown
on different scales.

39 ("experiment II") in the P and D waves, although in ei-
ther case the D~5 amplitude is in complete disaccord.
Conversely, the agreement is much better with Ref. 39
than with Ref. 41 in the S and F waves; however, for the

Fi7 channel, this is simply due to the fact that the authors
of Ref. 41 have cut off their analysis before the effect of
the X(2030) resonance could be felt. It is pleasing that the
Skyrme model renders correctly the relative signs between
the two graphs for each L for this process.

Figure 12 displays the Skyrme-model curves for
EN ~gh. Although an experimental partial-wave
analysis for this process has never been published in
graphical form, Rader er al. quote couplings at resonance
of approximately —0.04, —0. 1, and —0.05, respectively,
for the Do5, Fo5, and Go7 amplitudes. Note the sign
disagreement with the Skyrme model in the first of these
channels.

Finally, Figs. 13 and 14 present the graphs for the pro-
cesses EX~mX' (Ref. 43) and EN~Eh, (Ref. 44). Here
the agreement with the Skyrme model is mediocre. In
both cases the Skyrme model underestimates the impor-
tance of the amplitudes with L'=L+2 compared to those
with L'=L, as before. For EN~mX' the most serious
discrepancies are the signs of the DD~& and PFo& chan-
nels; interestingly, the PFo& channel is also the site of
greatest experimental disagreement with SU(6) it (Ref. 43).
There is also sign disagreement in the DG channels, but
the authors of Ref. 43 consider these waves to be less well
established. As for TCN~Xh, the comparison to the
Skyrme model is hampered by the fact that the experi-
mental solution finds only two clear resonances, the
Dii(1940) and the Fi7(2030), in the narrow energy range
probed. Disappointingly, the DDI3 curve has the opposite
sign of its Skyrme-model counterpart. It is noteworthy
that a negative experimental amplitude in this channel
disagrees, not just with the Skyrme model, but with the
nonrelativistic quark model as well.

In sum, although EN scattering in the Skyrme model
works less well than nX, it is much more successful than
EN. Many sign and size patterns are mimicked correctly.
Excepting the S and I' waves, the agreement in the elastic
case is especially good, and on a par with mN~m. N and
nN~mh. It is an open question whether inclusion of
SU(3)-breaking terms (e.g. , meson masses) into the effec-
tive Lagrangian would improve the agreement with exper-
iment for the scattering data, as it does for the static
properties of the model.
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0.2— I I
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-0.2,
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FIG. 12. Skyrme-model predictions for KX~gA.

VI. HO% MODEL DEPENDENT
ARE THESE RESULTSV

In the last three sections we have presented a detailed
comparison of the Skyrme model with experiment cover-
ing 165 nX, EN, and EN. channels. Despite areas of deep
disagreement, such as "exotic" EN scattering, and S and
P waves in general, we consider the many areas of accord
obtained from such a simple model to be powerful evi-
dence for the validity of the soliton approach to baryon
physics.

In some people's view, the surprising successes of the
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Skyrme model indicate that the Skyrme Lagrangian Eq.
(1) must be extremely close to the optimal effective La-
grangian of nature, W,„„which is derivable in principle
from QCD:

%e do not share this opinion. In our view, the Skyrme
Lagrangian is not much more than a convenient testing
ground for soliton dynamics; it is, in a sense, the
"minimal" model. A more realistic starting point would
necessarily involve many more low-lying mesons and
higher-derivative interactions; there has already been pro-
gress toward extending the Skyrme model along both
these lines.

In light of this, it is crucial to determine to what extent
the Skyrme-model results presented here (both good and
bad) can be expected to survive such modifications. This
is the topic of this section. In the course of the discussion
we shall discover what we believe to be the key to the
Skyrme model's successes in describing meson-baryon
scattering. This will enable us to define implicitly a large
class of models which, we believe, would enjoy compar-
able overall success.

We shall focus at first on processes where the initial

~w~w 2L —& L +1
TL1/2, L —1/2 31 I —1,LL +

3L
(4a)

2L +3
L1/2, L+1/2 31 3 BALLL + 31 3

+L+1,LL+ + (4b)

~@~~ (2L —1)(L —1) 2L —1
L3/2, L —i/2 6L (2L 1)

rL —l, LL+ 6L +LLL

2L +3+
4L 2 L+1 LL

and final meson orbital angular momenta are equal. In
our eyes, a particularly striking achievement of the
Skyrme model in both its two-flavor and three-flavor in-
carnations is the big-small-small-big pattern characteriz-
ing the four elastic mN curves for each value of L & 0 [cf.
Fig. 1(a)]. Let us start by reviewing the two-flavor
analysis of this pattern presented in Ref. 8. We will find
it convenient to represent the n.%~md partial-wave am-
plitudes by the notation TLq~ with I= —,, —,

' and
J=L+—,'. From the formula for two-flavor scattering,
Eq. (2), we obtain's
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T 2L+3.
L3/2L+1n= 4L 2~L-1 LL+ 6L 6~LLL+ ' +

(L +2)(2L +3)
(6L +6)(2L + 1)

(4d)
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To inake progress, let us make use of the fact that, in
the Skyrme model, the variation of rL+1 LL from the ori-
gin is essentially negligible compared with that of rL
and BALLL for reasonable energies (cf. Appendix A). Ac-
cordingly, let us make the simplifying approximation

&L+ 1,LL(to) =o
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FIG. 14. EN ~KL: Comparison between the Skyrme model
and the experimental solution of Ref. 44 (1.92&E, &2. 17
GeV). The nonresonant experimental amplitudes have been
parametrized either as constants or as linear functions of ener-

gy. Channels are labeled by LL~2J. For a fairer comparison,
we have added a detached arrow in the experimental DS~3 chan-
nels to indicate the expected behavior of the amplitude if one
were to extrapolate down to threshold. Note that experimental
and Skyrme-model plots for L=L'=4 and for L'=L+2 are
shown on different scales.

in Eq. (4). The big-small-small-big pattern then emerges
as a natural consequence of the gmup theory: it is simply
due to the large group-theoretic coefficients multiplying

1LL and ~LLL in Eqs. (4a) and (4d) compared with
(4b) and (4c). In this way, the pattern in the two-flavor
Skyrme model results from an elegant interplay between
group-theory and dynamics.

How model dependent is this argument? Recall that, as
noted in Sec. II, the group-theoretic structure of Eq. (2),
and hence of Eq. (4), is completely independent of the de-
tails of the meson Lagrangian that one starts with, but re-
lies only on the "hedgehog" structure of the underlying
Skyrmion. The only specific dynamical input from the
Skyrme model that we needed to formulate the argument
was the presence of a two-tiered "hierarchy" among the
reduced amplitudes. We can therefore assert that the big
small small bi-g pat-tern mill characterize any tmo fiavor-
Skyrmion model for which the reduced amplitude rL+1 LL

is negligible compared mith rL, LL and ~LLL. As such,
the pattern can be considered a quasi model -indepe-ndent

result. In particular, since the pattern characterizes the
experimental amplitudes (apart from the D waves), it is a
safe bet that the optimal effective Lagrangian of nature,
which we do not know, itself falls into this class of
models. Further evidence for this claim will be put forth
in the following section.

There is a natural way to extend this line of reasoning
to the three-flavor formalism. Recall that, in the three-
flavor Skyrme model, the variation of the reduced ampli-

,f 10)
i
00) +tudes rL + l,LL r 'LL +L +1 2,H/+)L —1,/j,p nd +L +1/2, LL

is small in comparison to ~, ',
~ LL, ~,'iLL, and 7L

If one neglects the former, Eq. (3) implies the following
approximate expressions for the physical nl1l amplitudes:.

(2L —1)(49L +24) I i oI 25L +24 I i o} 27L +10
135L (2L +1) ' 135L 45(2L +1) (sa)

(2L —1) I i, ol 25L +1 I i, ol 7L
135(2L + 1) ' 135(L + 1) 45(2L + 1)

T 1v~1v (2L —1)(13L—12) I 1 ol 25L —12 11 ol 12L —5 +
(2L +1) rL —1,LL+ 135L BALLL +

45(2L
(5c)

37 2L —l ( ) 0) 25L +37 ( i,0) 22L
L 3/2, L + 1/2

3 2L 1
L 1,LL +

1 35(L 1 )
LLL +

45(2L 1 )
L —1/2, LL (5d)

Although these expressions are more complicated than their two-flavor counterparts, the big-small-small-big pattern re-
veals itself, as before, in the relative sizes of the group-theoretic coefficients.
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In addition, despite the different coefficients involved in Eqs. (4) and (5), the first of the "big" amplitudes in each in-
stance is predicted to be "bigger" than the last:

~mNmN ~mNmN
L1/2, L —1/2 & x L3/2, L+1/2

This is manifestly the case in the two- and three-flavor Skyrme models; and indeed, with the exception of the P waves, it
is true for the experimental amplitudes as well.

%'e can profitably apply this mode of analysis to a wide range of other processes. Most notably, for I%'%~EX we find

TgNg)v (2L —1)(20L +9) (i ()) 11L +9 ) ) ()) 14L +6
90L(2L+1) rL I'L +

90L ~&tt. + 15(2L+1)~L (6a)

TZNTcN 2L —l I1,oj l lL +2 I1,0j 21
LPL+i/2-45(2L 1),-' + 90(L+1) + 15(2L+1)' 1(/ZLL-

Tzxz)(( (2L —1)(20L —3) ((,o) 23L —3 ) (,p} 22L —4
L(,L —i/2 —

27()L (2L + 1) L —),LL 270L LLL +
45(2L + 1) t" —)/2, LL

T3:NZN &3 2L —l )1,0I 23L +26 )1,oj 2L +
L (,L+1/2 —

135 2L 1
L —1,LL +

270(L + 1) LLL +
3(2L + 1) L —)/2, LL

Similarly, the T matrix for r(:l(l~mX is determined by

TgN~x (2L —1)(44L +21)v 6 (i,p) (23L +21)v 6 (i,p) (9L+4)v 6
Lo, L —i/2 —

540L (2L 1)
+t. —),LL 540L

+LLL +
45(2L 1)

rL —i/2, LL

Tzx~x (2L —1)~& (i,o) (23L+2)~6 (i,p} L~6
270(2L +1) ' 540(L +1) 45(2L +1)

g)((~x (2L —1)(8L +1) (i oi 7L +1
i
(,p} 2L —3 +

()L (2L 1) ~ i,~t —
9()L .L'L +

45(2L

15(2L+1) ' 90(L+1) 9(2L+1)

(6b)

(6d)

(7a)

(7c)

For both these processes, as a moment's inspection of the coefficients confirms, we can expect to see a big-small-small-
small pattern —which is precisely what we found in the previous section for both the Skyrme model and experiment
(Figs. 8—10). In addition, the group-theoretic coefficients appearing in Eq. (6) suggest a relative size ordering among the
three "small" physical amplitudes,

ZNX'N XNKN XNX'N
TLO, L +1/2 & TL 1,L —1/2 ~ TL 1,L +1/2 ~

which we also noticed in Sec. V.
The same type of quasi-model-independent analysis successfully predicts the signs of many inelastic amplitudes, as

well. As an example, consider the F)& and F)z channels for the process XN ~m A (Fig. 11). Equation (3) tells us

F)5. T= ( — 00v3y is+0.03')i'i —0.08'( 5/)ques) +0.15')is —0.04r))s 0 03m(7—/2)i.i 0 03' (s—/ig.i+0 20'(q/2)i. i
f1,Oj f 1,0j j l,oj fO, oj +

F)v. T=(0.08rg3i +0 07ri3i —. 0. 0'( 5/)2s)i— 00'0))ii—0. 0') ii 0 09&(7/2—)pi+. 0 15'(5/2)pi+. 0.02~(p/2)3i .f1,0j f l, oj )1,oj I o,oj +

(8a)

(8b)

If we assume that the reduced amplitudes enclosed in
parentheses dominate these channels in nature as they do
in the Skyrme model, we correctly predict the —and +
signs for the Fis and F)z, respectively; nor are we
surprised to find a 1:3 ratio in the magnitudes of the ex-
perimental curves (versus 1:2 in the Skyrme model).

In sum, w'e have outlined a methodology that success-
fully explains many of the observed features of the experi-
mental meson-baryon partial-wave T matrix. Moreover,
we have seen that the general success of the Skyrme
model can be largely explained by the hypothesis that the
Skyrme Lagrangian shares with the (unknown) optimal ef
fectiue Lagrangian W,~, (i) the "I(:symmetry" chara-cteris-
tic of hedgehog solitons and (ii) a plausible two tiered-
AI'erarehy among the reduced amplitudes.

This hierarchy defines a large class of models which we
expect to enjoy success comparable to that of the Skyrme
model in explaining the experimental scattering data. It
would, ho~ever, be a mistake to conclude that aII predic-
tions made by the Skyrme model are likewise quasi-
model-independent. As a counterexample consider once
again the process KX~vrX (Fig. 10). The Fp& and G()7
channels are governed by Eq. (7a), with L =3 and L =4,
respectively. Note that, taken together, the first two coef-
ficients (which are negative) are comparable in size to the
third (which is positive). Thus, the overall sign of the
physical amplitudes will be determined by the detailed
dynamical question of whether rf' I I L and
outweigh ~L»2 LL or vice versa. One would expect the
answer to this question to depend crucially on our particu-
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lar choice of Lagrangian. . [The reader should contrast this
example with that of Eq. (8).] In light of this, it is not
surprising to find sign disagreement between the Skyrrne
model and experiment in the Go7 channel.

As a somewhat different example, consider the F07 and
Go9 amplitudes for the same process. Here, the coeffi-
cients given in Eq. (7b) are so small to begin with that it
was probably an unjustified approximation to have
dropped the contributions of the other reduced ampli-
tudes. (Even a "small" reduced amplitude, after all, can
make a significant contribution if it is multiplied by a suf-
ficiently large number. ) In particular, the coefficients of
&g+I„LL, and ~t, +i/2 LL, for these channels turn out to bef a, o'i +

an order of magnitude bigger than those that appear in
(7b), and of opposite sign from one another in addition.
As a result, we can no longer with any degree of confi-
dence make a quasi-model-independent sign prediction
about the physical amplitudes, and should not be
surprised to learn that the Skyrme model disagrees with
experiment over the sign of the F07.

We can summarize the discussion so far in this section
by the following statement: Wheneuer a Skyrme-model
prediction folloios from (i) the turbo tiered hie-rarchy among
the reduced amplitudes and (ii) group theory, as illustrated
in Eqs. (4)—(8), there is a high probability of agreement
with experiment. Conuersely, in a11 other cases the agree-
mentis much less reliable. In particular, we can certainly
expect that specific details about the shapes of amplitudes
will vary significantly from model to model, as will the
precise values of masses and widths of resonances. In all
of these areas, there is significant room for improvement
over the Skyrme model.

One specific recipe for improvement is suggested by the
observation that fully 35% of the channels with L'=L
for which the sign of the Skyrme-model amplitude
disagrees with experiment are D-wave processes. This
leads one to suspect that tbe hierarchical hypothesis prob-
ably does not work very well in the D-wave sector of
W,~,—a conclusion bolstered by the violation of the big-
small-smail-big pattern in that sector [Fig. 1(a)]. (We will
supply a further piece of evidence for this conclusion in
the next section. ) Unfortunately, it is not clear how best
to modify the hierarchical assumption for the D waves in

order to predict the signs more accurately. However, an
analysis similar to that used in Eq. (8) suggests that the
reduced amplitudes v~2&, ~y22, and ~[5~2]22 probably can-
not be neglected in nature, as they can in the Skyrme
model.

It is interesting to note that, in the Skyrme model, the
two-tiered hierarchy (i.e., the unexpectedly small size of
five of the eight reduced amplitudes for each L p 0) actu-
ally comes about for three independent reasons.

(i) The reduced amplitudes 1.
L i/2 LL and 1I+i./i Lt are

small because they only receive contributions from the
%ess-Zumino term. '

(ii) rj,'+ I t L and rt. + i/2 Lt and rL++, /2 LL, are small be-
cause the differential equations that determine the phase
shifts ' ' contain attractive terms proportional to fac-
tors such as [L (L + 1)—E (E + 1)]; such terms therefore
give a net repulsiue contribution to these three reduced
amplitudes, which have EyL. (Note that st+~/2LL is
thus "doubly small. ")

(iii) ~Lt', t. vanishes identically in the Skyrme model be-
cause of the commutator in the middle term of Eq. (1).

In our opinion, conditions (i) and (ii) will almost surely
survive the addition of extra terms into the Skyrme I.a-
grangian. In contrast, the size of ~P&t can be expected to
vary from model to model. In fact, it is possible that this
amplitude might not be completely negligible in the "op-
timal" three-fiavor effective Langrangian of nature, and
that this might partially account for some of the disagree-
ment with the Skyrme model.

Thus far in this section we have focused on processes in
which the initial and final meson orbital angular momenta
L and I.' are equal. The analysis has involved an inter-
play between group theory and dynamics, the former pro-
viding the numerical coefficients, and the latter enabling
us to focus on only three of the eight contributing reduced
amplitudes. In contrast, processes with L'=I. +2 are
much simpler to analyze, since, as discussed in Sec. II, the
physical amplitudes are proportional to a single reduced
amplitude ~gz j =~)'zt} with E=(L+L')l2. Thus all
PF and FP mN, EN, and KN amplitudes, for instance, are
predicted to be proportional to one another in the Skyr-
mion approach regardless of the details of the effective
Lagrangian that one starts with. Predictions of relative

TABLE XIV. Model-independent group-theoretic coefficients, and sizes of the experimental ampli-
tudes, for processes in which the meson's angular momentum changes by two.

Channel

SDI I (mN ~m.A)
SD3I (mÃ~mh)
DS13(~N ~mA)
DS33(n N ~m.h )

SD„(KN Ka)
DSI3(KN ~K5)
SDO((E1V~nX )

SDI)(KN~mX )

DSi3(EX~m'X
SD))(ENWEB)
DS I3(KN ~Kh)

—0.44
0.14
0.31

—0.10
0.04

—0.02
—0.30

0.11
—0.07
—0.04

0.02

Size

0.2
—0.3
—0.2

0.2
0.1?
0.1

0.05
—0.2

0.15
0.04

—0.1

Channel

FP»(mN ~eh)
FP35(n.N ~~h)
PF03(KN ~mX )

FPog(KN ~X )

FP»(KN-~r')
FPI5(KN~KA)

DGo5 (KN ~m X*)

DGI5(KN~n. X )

GD)7(KN ~KA)

0.33
—0.10
—0.27

0.22
—0.08

0.03

—0.27
0.09
0.03

Size

—0.3
0.15

—0.15
—0.15

0.01
?

—0.03
0.03
0.02*
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signs and sizes between such amplitudes thus reduce im-
mediately to questions of pure group theory.

Table XIV summarizes the situation for the 20
mX~mh, It,N~K5, It.%~Eh, and EX~~X' channels
with 1.'=2+2 for which we presented experimental
partial-wave data in Sees. III—V. The column labeled
"Coeff" gives the group-theoretic coefficients from . (3)
(rounded off) that multiply the reduced amplitude ~ L J,
E =(1.+I.')/2. (Since, in the Skyrme model, these re-
duced amplitudes lie in the lower half plane, the resulting
physical Skyrme-model amplitudes will have a sign oppo
site to the indicated coefficient. ) The column labeled
"size" gives our rough estimates of the global sizes of the
experimental amphtudes (admittedly an ill-defined con-

cept), together with the observed signs. The five channels
in which the Skyrme-model graph disagrees in sign with

the experimental analysis are marked by asterisks.
The relative sign and size information contained in the

"Coeff" column within each of the three categories
SD/DS, PF/FP, and DG/GD is completely model in
dependent Unf. ortunately, the size predictions do not
seem to correlate well with experiment, and no SU(3)-
preserving modification of the Skyrme Lagrangian can
improve matters. In particular, the It.N ~Eh and
ECN~E7b, curves are predicted to be an order of magni-.

tude smaller than the corresponding mN~mh amplitudes,
whereas if one trusts the experimental solutions they are
almost as big. In contrast, the questions of the relative
sizes between the three categories, as well as the relative
sizes vis-a-vis the amplitudes with I.'=I., are highly
model dependent; in both these areas, the latter especially,
the Skyrme model can be improved upon greatly.

As for signs, there is of course no way to bring about
agreement with the experimental analyses regarding the
sign of the SD11(EN~Eh) and the PFO3(KN~mX')
graphs without destroying the agreement for the other
SD/DS and PF/FP channels. On the other hand, one
might imagine constructing a model in which the reduced

amplitude ~(24 lies in the upper-half plane, as opposed to
the lower-half as in the Skyrme model; such a model
would then agree with the experimental sign predictions
for the three DG and GD channels listed in Table XIV. It
is reassuring that the Skyrme-model sign predictions agree
fully with the experimental solution for m.N~nh, which
we can trust much more than the other three processes.

VII. LINEAR RELATIONS BETWEEN
EXPERIMENTAL AMPLITUDES

In order to assess the validity of the three-flavor
scattering formalism that we have developed, it is crucial
to verify that the successes of the two-fiavor approach are
retained. In Sec. III and in Ref. 13 we showed that, in
fact, including a third flavor improves the agreement be-
tween the Skyrme model and experiment for the process
mN~nN. In this section we consider the effect of incor-
porating strangeness on the model-independent linear rela-
tions between experimental mN amplitudes that were
analyzed in Ref. 8. [One can also derive relations between
mN and EN amplitudes; see M. Karliner, Phys. Rev. Lett.
57, 523 (1986}.] In addition, we shall supply evidence for
the "hierarchical hypothesis" put forth in Sec. VI.

Our analysis in this section is predicted on the assump-
tion that Eqs. (2} and (3) are applicable, not only to the
specific case of the Skyrme model, but also to the optimal
effective Lagrangian W,~„ to which the Skyrme model is
at best a crude approximation. (Of course, the reduced
amplitudes will differ. ) With this in mind, we now leave
the Skyrme model behind, and apply Eqs. (2) and (3)
directly to the study of the real-world mN amplitudes. In
short, we are assuming that a Skyrmion interpretation of
the baryon is legitimate, and that the simultaneous ap-
proximations of large N, and exact SU(3)tl,„«[both of
which enter crucially in the derivation of (3)] are physical-
ly relevant.

If we represent the physical amplitudes for m N~a N by
TLtj as before, then Eq. (3) can be shown to imply

m'N+N 13L —5 23(L + 1)
(~~ +2}TL3/2,L —1/2 (~ 1}TL1/2, L —1/2 (3~ +3)TL1/2, L+1/2 rL —1/2, LL +

45 ' 45 L + 1/2, 1.1. (9a)

eNmN mN+X we~~ 131.+18~ +2)T 3 L, /2+L1/2 LTL1/2, L —1/2 (I + }TL1/2,L+1/2 45
rL —1/2, LL +

4
rL+1/2, LL ~ (9b)

These equations relate the experimental mN amplitudes to
reduced amplitudes which can presumably be extracted
from a phase-shift analysis of W,z,. Unfortunately,

W,~„obtainable in principle from QCD, is unknown.
Thus, without some further approximation, Eq. (9} is en-

tirely without predictive power.
However, using the three-flavor Skyrme model as a

guide (cf. Appendix A), one can expect the right-hand
sides of (9} to be extremely small (note that they would
vanish identically were it not for the Wess-Zumino term).
Accordingly, let us examine the linear relations between
experimental amplitudes that result from setting the
right-hand sides of (9) to zero. Here we find a surprise:
these are precisely the same relations that follow, without

any such dynamical approximation, ' from the two-fiavor
formalism. ' In general, these relations work quite well,
with the exception of severe problems in some of the
lower partial waves, for which a leading-order 1/N,
analysis is inadequate; the reader is directed to Ref. 8 for
full details. The logical conclusion is that the %'ess-
Zumino term must make only a small numerical contribu-
tion to the real-world meson-baryon T matrix. '

It should be emphasized that, a priori, we had no right
to expect any relations, approximate or not, between phys-
ical mN~n. N amplitudes to emerge from the three-flavor
formalism. The reason is the following. In the two-flavor
approach, the four physical nNamplitudes for ea. ch 1.~ 0
(i.e., J=2+—,

' and I = —,', —,
'

) are expressed through Eq.
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(2) as superpositions of only three reduced amplitudes.
Consequently, at least one nontrivial relation between
physical amplitudes is guaranteed for each value of L (in
fact, there are two). In contrast, in the three-flavor ap-
proach, these same four amplitudes are linear combina-
tions of eight reduced amplitudes. That the relations turn
out to be the same in both formalisms is cause for further

surpse, since the group-theoretic factors multiplying the
rg~L) 's are completely different in the two approaches. s2

We can also extract from (3) information about
mN +m—.dL. Let us represent the physical amplitudes for
this process by ILL IJ with I.' the exiting pion angular
momentum (which can differ from L by two). For the
case L =L', Eq. (3) implies

4(L —1)
LL3/2 L —1/2 ~jg(2L 1) LL1/2, L —1/2

(L + 1)(2L +3)(2L —1)
10I.

' 1/2
mNmh

TLL 1/2, L + 1/2

[(2L —1)(L +1)]'/
(&L -1/2, LL &L+1 —

/,2LL)

and likewise
' 1/2

3 L (2I +3)(2I —1) T N a 4{L +2)
LL3/2, L+1/2 2L +1 10{L+ 1) LL1/2, L —1/2 3/10{2L 1) LL1/2, 1. +1/2

1

9(2L +1)

' 1/2
L (2L +3)(2L +1)

(&L 1/2, LL &—L+1/2. LL )—

Setting the right-hand sides to zero as before, we again recover precisely the two-flavor predictions of Ref. 8. Similarly,
for the case L =L+2, Eq. (3) can be shown to imply the simple proportionality relations

&L + 1TL L+2 1/2 L+1/2
———f 10(L + 1)] TL L ~2 3/2 L+1/2 —— &L +2TL—~2 L 1/2 L + 3/2

eNeb 1/2 mNn LL mNn'6,

= [10{L+2)l' TL+2,L3/2, L+3/2 (11)

' 1/2
2L —1

I. +1

1/2
2L +3

ILL 1/2, L —1/2+ I ILL 1/2, L +1/2 ~

~mNmN ~eNmN
L 1/2, L —1/2 x L 1/2, L +1/2 (12)

which are identical to the two-flavor results, with no "Wess-Zumino corrections. "
In the two-flavor case, there was, for each L, one further (fairly successful) model-independent prediction relating the

processes mN ~mN to rrÃ~eb (Ref. 8):
P

but this is completely lost in the three-flavor approach.
In sum, we have shown that, with the dynamical assumption

7L+1/2, LL {CO)=0
suggested by the three-flavor Skyrme model, the three-flavor formalism yields almost all the model-independent linear
relations between experimental nN scattering amplitudes that emerged from the two-flavor approach. It is natural to ex-
plore the consequences of making additional dynamical assumptions about the optimal two- and three-flavor effective
I.agrangians of nature.

A natural set of such assumptions is suggested by the "big-small-small-big" and "big-small-small-small" patterns ex-
hibited by the experimental nN and EX amplitudes, respectively. As reviewed in detail in the previous section, we can
expect the big-small-small-big pattern to occur automatically for a broad class of two-flavor models for which the re-
duced amplitude rI'+I L,L are negligible compared with r[' I LL and ~$LL. Similarly, we saw that the same attern
would characterize three-flavor models if, out of the eight reduced amplitudes for each L & 0, the amplitudes ~ '+) LI,
vpLL, ~L+, /2 LL, and rL+, /2 LL are small compared to the others. We have seen that these conditions are met in the two-
and three-flavor Skyrme models. Fortunately, we have the means of testing whether these dynamical assumption are
valid approximations for the optimal two- and three-flavor effective I.agrangians of nature as well. For, with these addi-
tional approximations, the two-flavor formalism [Eq. (2)] and the three-flavor formalism [Eq. (3)] can be shown to imply
the extra relations

1/2
eNm. N I.3L TL i/2, L —1/2+(L +2)TI. i/2, L+ i/2=3L TLL i/2, L —i/2+ {10L+ 11)I+1 2I. +3

1/2
AN@'5

TL,L 1/2, L +1/2 (13)
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3L TL, i/zL. —i/2+(I +2)Tz, inL, +i/2= 2mNeX 21.—1

' 1/2 1/2
~nNma

TLL1/2, I. —1/2+S(14L' + 1 }
9() 2L 3

+LL, i/2, 1.+I/2 ~

(14)

respectively, which relate the processes mX~mX and

Figure 15 tests these relations as applied to the experi-
mental nN~mN (Ref. 19) and mN +md—(Ref 22). P-, D-,
and I'-wave amplitudes. Clearly, there is no substantial
difference between the two- and three-fiavor predictions
in the degree of agreement. It should be noted that the
agreement in the signs of the amplitudes is in itself a non-
trivial result. For the I' and I' ~aves, the relations appear
rather well satisfied. In particular, Eqs. (13} and (14)
work roughly as well as Eq. (12), which likewise relates
n N ~n N and m N ~m h. Equation (12), however, was de-
rived from the two-fiavor approach without additional
dynamical approximations (cf. Ref. 8 and Fig. 7 therein).
In other words, incorporating these extra approximations
does not noticeably worsen the agreement for the P and F
waves. Unlike Eq. (12), however„ there is poor agreement
evident in Fig. 15 in the D waves —which is consistent
with the fact that the big-small-small-big pattern itself
does not work well for the D waves [cf. Fig. 1(a)].

Our conclusion, suggested by the big-small-small-big
and big-small-small-small patterns and reinforced by Fig.
15, is that the dynamical assumptions stated above are
(with the probable exception of the D waves} good
descriptions of the optimal effective Lagrangian derivable,
in principle, from QCD. We hope that, as such, they will

prove to be useful constraints on the current model-
building efforts of Skyrmion physics.
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APPENDIX A: REDUCED AMPLITUDES
OF THE SKYRME MODEL

Figures 16 and 17 depict the reduced amplitudes of the
three-fiavor Skyrme model. The amplitudes ~gL J are
identical to their two-flavor counterparts, and were
presented previously in a less transparent form. ' It is
convenient to present the results for the linear combina-
tions

+KLL z (+kLL &kLL—
The differential equations from which the T(xl' j s and
~g&L' ')'s are extra-cted are given in Refs. 7 and 14 and in
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which refer to mX~mN„are depicted by solid lines.
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Ref. 13, respectively.
It is clear from Fig. 16 that, with some exceptions in

the lower partial waves, the reduced amplitudes Ir,'r '
I tL,

rIt'L, rL i/2LL I vary much more dramatically as func-1,oI

tions of energy than do the five amplitudes {~f'+I tL, ,
Io,o)TI.LL, rL+I/2 Lt. , TL 1/2 LJ ~ rL+ i/2 t.l, I .

APPENDIX 8: FORMALISM
FOR THREE-FLAVOR SCATTERING

In this appendix we review the derivation of the thrm-
fiavor scattering formula, Eq. (3), given in Ref. 12. We
shall be focusing on Lagrangians such as Eq. (1) where
UESU(3). The key assumption is that the Lagrangian
admits a "hedgehog" soliton solution Uo that lives in the
conventional isospin subgroup of SU(3), viz. ,

3 ~ 8

U, exp iF(r) g r'X'+ (83)

with A,', a =1, . . . , 8, the Gell-Mann matrices. We shall
refer to Uo as a Skyrmion in its canonical orientation.

Of course, other orientations of the Skyrmion are possi-
ble. In fact, by virtue of the assumed SU(3)ti,„„invari-
ance of the Lagrangian, one can construct a family of de-
generate solitons simply by taking

Uq ——/IUD/I ', A ESU(3) .

However, let us forget for the moment about the existence
of these degenerate configurations, and concentrate on the
simplified problem of mesons scattering from Uo. This
entails letting"

3

Uo ——exp iF(r) g r 'A, ' (81)
and expanding the Lagrangian to quadratic order in the
P's. Higher-order terms are suppressed by powers of
l/f -1/QN„and are therefore ignored in our lowest-
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FIG. 17. The reduced amplitudes of the Skyrme model for the case L'=L +2. See text of Appendix A for details.
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order treatment.
Vfhat will the resulting quadratic Lagrangian look like~

Thanks to the hedgehog structure of the Skyrmion, it will
consist of a sum of terms in which all isospin and spatial
indices have been contracted together in all possible ways
to form singlets under the "hybrid" angular momentum
K, which is the vectorial sum of isospin and angular
momentum. Also, since the Skyrmion comrhutes with A. ,
the Lagrangian wiB embody hypercharge conservation.
Consequently, kaons will be coupled only to kaons, and
antikaons to antikaons. There will be mm and gq cou-
plings as well, but nrl terms are forbidden by G parity. In
other words, the T matrix T characterizing the process

P'+ canonical Skyrmion~)}))" +canonical Skyrmion,

which is a priori an 8&&8 matrix in the flavor space of
pseudoscalar-octet mesons, actually block diagonalizes
into a 3 &(3, a 1)& 1, and two 2 g 2 pieces, corresponding to
m, g, E, and E scattering, respectively.

We have not yet made full use of the K symmetry of
the canonical Skyrmion. To do so we first expand )}))' and

in spherical harmonics YL~ and YL ~, with primes
henceforth denoting final-state quantities. These orbital
angular momenta are, in turn, added vectorially to the
mesons' isospin I' and I to form states

I
K K,LI') and

I

K' K,'L'I ). The K symmetry of the canonically
oriented Skyrmion then implies K=j." and K, =K,'; like-
wise, thanks to the block-diagonal nature of T, we must
have I'=I, In contrast, J and L' will not necessarily be
equal, but can differ by two. Scattering in these K chan-
nels will then be described by the reduced amplitudes

~g'L)I, rg, f„and vg~L
'} defined in Sec. II (just as

scattering from a spherical potential can be characterized
by reduced amplitudes Tr ). In equations, the T matrix
will thus be given by

T =5. i5,„& g (P (x') IL'M')(LM I)1)'(x))
LML'M'

x g (L'I'M'I,'I KK, )

&&(KK, ILI'MI,')~g; P,
(84}

where II',I,', Y'} and II,I„Y I are the SU(3) quantum
numbers of the incoming and outgoing meson, respective-
ly.

This formula is easily generalized to account for the
scattering of a meson, not from a canonically oriented

(86)

The final ingredient that we need is an explicit expres-
sion for the baryon wave functions X(A) describing a
baryon with spin, isospin, and hypercharge quantum
numbers [s,s„i,i„YI . Unfortunately, the three-fiavor
wave functions given by Guadagnini, which are often
used in the literature, are characterized by nonstandard
transformation properties under isospin and angular
momentum. The correct wave functions, are, instead,

1/2

X( A) =— [~ (&) ],p( —1) (87)

where a= Is, —s„l I, P= Ii,i„YI, R denotes the
SU(3)t),„„representation of the baryon, and dimR is its
dimension.

As in the two-flavor case, the integration over A can
be carried out in closed form, thanks to some standard
identities. The resulting expression simplifies greatly if,
as indicated in Sec. II, we project the initial and final
meson-baryon systems onto states of definite total angular
momentum and SU(3)ti,„„.The latter projection is ac-
complished with the help of an SU(3} Clebsch-Gordan
coefficient

( R)i )iz) Yi', R2i 2iz2Y2 I Riots I)otIztoi Ytoi )

which can be factored conveniently into the product

«...y
& i ) &ziz )ized I ItotIztot ) Y Y I Y1 1 2 2 tot tot

of an SU(2) Clebsch-Gordan coefficient with a so-called
isoscalar factor. ' With quantum numbers defined as in
Sec. II we find, after some manipulation

Skyrmion Uo, but rather from a rotated Skyrmion Uz as
defined by Eq. (82). The prescription is simply

Tba g ~(8)(g) Tdc~(8)(g)t (85)
cd

with &' '(A} the adjoint representation of A. Armed
with Eqs. (84) and (85), we are finally prepared to tackle
the scattering of a meson off a physical baryon, which, in
the soliton approach, is characterized by a superposition of
U„'s for all values of A &SU(3), weighted by appropriate-
ly constructed wave functions X(A). The physical T ma-
trix is then given by

f „, dA Xr,„,)(A) g &' '(A)~T"'&' )(A)„X;„;„,)(A) .

T( [LsRRt.tXIt.iI*t.t Y~.tJ ] [L's'R'R t.tr'I t.tI't. t Yl.)J'] )

=6„,5J, 5, 5, 5JJ6
tot~ tot tot~tot Jxtot stot ~tot tot ~s z

, [(dimR)(dimR')]'~
dim«, ~,

KiJ KiJ «tot'V «' 8 «8 «totX
~ ~~(2'+1)(2K+I) s'L'I sI.I i 1+Y s'1 IY sl IY i 1+Y '~'~
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TABLE XV. ~fficients of the reduced amplitudes when both the initial and final baryons are in the octet.

=Sxs

(l,o}
~i, 1,L-L

(l,o) (o,o) ( $,1)
1+1,L,L TLLL

($1)
L+ ),LL

($ -1)
1, $LL—

($,-1)
L+ ),LL

(»lie)
(2L- 1 }{4L,-3)

135 L,{2L,+1j
7I.-3 4 2L,+3

135 L 27 2L +1
2
15

4 2L —1
ZV 2L+1

16 L+1
2T 2L+1

14L —1
135 2L +1

16 L+1
135 2I+1

1 2L-1
15 I.

1 L+1
15 L,

1 2L —1
15 2L+1

I.+1
15 2L+1

(j.olj.o)
2 {2L,-i}{l.-i)
i5 L {2I+1}

2 2I.-1
15 L,

2 2L+3
5 2L+1

1 2L —l
15 2L+1

4 I,+1
15 2L+1

(8 ls) 3 2I.-1
20 L,

L+1
20 L

1
20

1 4I-1
io 2I+1

L,+1
5 2I +1

2L,-1
12I

L,+1
12L

1 4I+1
G 2l+1

l L+1
3 2L+1

(Sll~) 1
2~S(2L+1)

—{L+1}
y 6(2L+ 1)

J=L+2

(l,o)
~L-1,LL TLLL

W (1,0)
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LLL
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4 I
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The long string of Kronecker 5's expresses the reassuring
fact that total angular momentum and SU(3)n,„„arecon-
served in the scattering process. This is Eq. (3).

Note that the derivation of this formula is independent
of the particular SU(3)-preserving Lagrangian that we
started from, apart from the requirement that it admits a
hedgehog soliton as in Eq. (81).

APPENDIX C: EXPLICIT FORMULAS
FOR SU(3) SCATTERING COEFFICIENTS

In this appendix we present explicit formulas for the
group-theoretic coefficients multiplying the reduced am-
plitudes in the SU(3) scattering formula, Eq. (3). For
fixed initial and final baryon representations, these depend
only on the total meson-baryon representation R„, and
the total angular momentum J. We will restrict ourselves
to the physically relevant cases when the initial baryon is
in the spin- —, octet, and the final baryon is in either the
octet or the spin- —, decuplet.

Table XV presents the coefficients of the reduced am-
plitudes for the case when the initial and final baryon are
both in the octet. The decomposition for both the initial
and final meson-baryon states is given by

8XS=27+10+10+8,+8,+1,
where (following de Swart ') the si and 82 are
synonymous with 8sym and Santisym, respectively. Note
that, from Eq. (3),

&s, is, )=(s, is, ).
Of course, for most physical processes, one is interested

in a superposition of pure SU(3)n,„„representations. Con-
sider, for instance, the case KN~7rX in the isospin-1
channel. With the help of the table of isoscalar factors
given in Ref. 51, the initial and final states can be written
as

I»&+
5 6 6

~30 1is&+ is&
6

.„,(el = — &lol+ &loi+ (s, l
.1 — 1 v6

6 6 3

The amplitude for this process is thus given by

.„,(vie),„=——,'(Ioi lo) ——,'(loi lo)

(82 i si)+ —, (8$ i 8$) .
5

Each term in this expression can, in turn, be expressed in
terms of reduced amplitudes using Table XV.

As an important example of this procedure, Table XVI
gives the coefficients for the case of 7rN elastic scattering
in the three-flavor formalism. These coefficients can be
directly compared to their two-flavor counterparts
presented in Appendix B of Ref. S.

Table XVII presents the relevant coefficients when the
initial and final baryons are in the octet and decuplet,
respectively, and when the initial and final meson angular
momenta are the same (L =L'). The relevant decomposi-
tion of the final state is now

10'8=35+27+ 10+8 .

Table XVIII lists the coefficients for the analogous
SXS~IOX8 processes when iL L'i =2. Note —that
these coefficients all multipl~ the single contributing re-
duced amplitude 7(~ 'iI =7)ILL, where —K =(L +L ') /2.

TABLE XVI. Coefficients of the reduced amplitudes for elastic mN scattering.

(i,o)
~r. 'I,LL- ' I.+1,I.I.

(o.o} ($.1} ($ 1) ($ -1) (1 -1)
TLLL L $,LL L+ $,LL L ~I,L I,+ $ LL-
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a35I.(2I.+1j
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135I

2L+3
135(2L +1}

1
15

55L+25 4(L+1) 104I+35 17(L+1) L 1
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135(2I+1j
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1
15

4I 58L+33 17I 104L +@9
135(2L+1) 270(2L+1) 135(2L+1} 27(}t2L,+1) + 2

{2GI~-37L+12)
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1) 8~ L'+1) 1GI -5 2G(L+ 1}
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25I.+37 2GI.'+SOI.+75
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1
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2t 2J +3) 2GL, 1GL+21
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TABLE XVIII. Coefficients of the reduced amplitude v$ «, «+ i when the initial and final haryons
are in the octet and decuplet, respectively, and when the orbital angular momentum of the meson
changes by two.

.- 10 x I I ' = I 6 3

(mls')

(toledo)

(L„L,') = (X —I., X+ I}

2K+1
9 s0K

v'ax+ a

s 9K+1
sOK

Q(9K+1)

(I, I') = (E+ I, K —&)

1 2K+1
9 SO(K+1)

2K+1
60(K+17

-s 9K+1
s0(K+1)

Q(9K+1)
s(K+1~

APPENDIX D: SKYRME-MODEL PREDICTIONS
FOR ADDITIONAL PROCESSES

In Figs. 18—23 we display the Skyrme-model ampli-
tudes for the six ItlpsN~itips8 processes for which we
were unable to find experimental partial-wave analyses in
the literature: namely, mX~gb, +%~AX*, j:N~gX,
KN —+qX', KN —+It.'-, and KN —+K:"'. As always, the
plots are from threshold to an excitation energy of 2ef„.
On the basis of the results of Secs. III and V, we can ex-
pect good agreement for the F and G waves, mixed agree-
ment in the D waves, and poor agreement in the S and I'
waves. %e also expect that the Skyrme model greatly un-
derestimates the relative size of the amplitudes with

I
L L'

I
=2 vis-i—-vis those with L =L' in Figs. 18, 19,

21, and 23.

Q. l 5
I

DDI5
I

DDT@

0.15

0—

DDIP

FF)7

-0.15 0 0.15 0 0.15 0
0.15

PP ~ PP~I
0 —g

0. I5 0 O. I5
I

PP~g

0.15 I

GGlg
I

GGs7 GGpg

O. l

DDT@0— DDM

O.O I

FFp50—
I

FF~~
O.OI

-0.I 0 O. l 0 O. I -O.QI 0 O.OI
O. I

I l O.OI

pp, PP,. SD.0—

0 O.OI

FP~5

0.05
PFI~0—

FPI5

I

FP~5
d

-0. l5

-0.05 0 0.05 0 0.05 0 0.05 0 0.05
0.05

— sos'
0

DSIP

O. I -O.OI
DG}5

0

I

Gop7

-0.05

FIG. 18. Skyrme-model predictions for mX~gh. FIG. 19. Skyrme-model predictions for mX~EX .



MAREK KARLINER AND MICHAEL P. MAT-I IS

0 0.2
l

51;

-02 0
0.2.

0—

0.2

0.2 0 0.2 -0.0I 0 0.0l 0 0.0l
O.O l

DS(~
Q.Q I

0.2

0.2—
617

0—

1

Gl&

0.2

0—FF)5

0—
l

GGI7

DD)p
0—

DD(5

GG~

0 — o
0.0l

-0.0 l

FP(~
l

DG)5

GD)7

-O.2
-0.2 0 0.2

FIG. 21. Skyrme-model predictions for ES—+gX .

FIG. 20. Skyrme-model predictions for EN ~qX. KN =K-
-0.2 0 0.2 0 0.2 0 0.2 0 0.2

02
PPOI

KN —K

-0.02 0 0.02
0.02

—0.02 0 0.02
f

0.2

0.2

- PPp~
l

t
1 l f l

— oDo~ — ooo5

-0.02

-O.QS 0 0.08 0 0.08 0 0.08 0 0.08
0.08

0.2
FO5 FFo7 — FF,5

— FF~7

0—
GGo7 — GGo9

I

GGip — GGi9

-O.Q8

-0.15 0 0.15 0 0.15 0 0. 15 0 0.15
I

Do~ oo5

—0.05 0 0.05 0 0.05 0 0.05 0 0.05
005 t

~ i i
~

t i
~

»
~

r

Soi OSIS
0

— Dso~
-0.05

Q. l

0.15

l

Fo7
-0.05 0

0.03
PFpp

0.05 0 0.05
I f

J
t

PF)g
I

0 0.05 0 0.05
1 I 1 f

1

FP)5

-Q. I

0— DGpg0—

-0.05
DG)5

GD)7

GDp7

FIG. 22. Skyrme-model predictions for XN ~K". FIG. 23. Skyrme-model predictions for EN ~E:"*.



34 nN, KN, AND EV SCATTERING: SKYRME MODEL VERSUS. . . 2023

Present address: Enrico Fermi Institute, University of Chi-

cago, Chicago, IL 60637.
~T. H. R. Skyrme, Proc. R. Soc. London A260, 127 (1961).
2T. H. R. Skyrme, Nucl Phys. 31, 556 (1962}.
3E. %itten, Nucl. Phys. 8223, 422 (1983);8223, 433 (1983}.
4E. Guadagnim, Nucl. Phys. 8236, 35 (1984).
5For recent reviews of the Skyrme model, see I. Zahed and G. E.

Brown, SUNY Report No. Print-86-0160, 1986 (unpublished);

U. G. Meissner and I. Zahed, SUNY Rcport No. Print-86-

0162, 1985 (unpublished).
6Some aspects of the static phenomenology of the three-flavor

Skyrme model are reviewed in C, Nappi, in Nuc/ear Chromo-

dynamics: Quarks and Gluons in Particles and Nuclei,

proceedings of the ITP Workshop, Santa Barbara, 1985, edit-

ed by S. Brodsky and E. Moniz (%'orld Scientific, Singapore,
1986).

7M. P. Mattis and M. Karliner, Phys. Rev. D 31, 2833 (1985}.
M. P. Mattis and M. Peskin, Phys. Rev. D 32, 58 (1985).

9M. Peskin, in Recent Deuelopments in Quantum Field Theory,
edited by J. Ambjgm, B. J. Durhuus, and J. L. Petersen (El-
sevier, New York, 1985).

~OM. P. Mattis, Phys. Rev. Lett. 56, 1103 (1986).
&~M. P. Mattis, in Chira/ So/itons, edited by K. Liu (World

Scientific, Singapore, 1986).
'zM. P. Mattis, in Nuclear Chromodynamics: Quarks and

G/uons in Particles and Xuc/ei (Ref. 6).
M. Karliner and M, P. Mattis, Phys. Rev. Lett. 56, 428 {1986).

'4H. Walliser and G. Eckart, Nucl. Phys. A429, 514 {1984).
~5A. Hayashi, G. Eckart, G. Holzwarth, and H. Walliser, Phys.

Lett. 147$, 5 (1984).
' See Sec. II of Ref. 8 for a detailed exp1anation of the large-N,

approximation in the context of meson-Skyrmion scattering.
C. G. Callan and I. Klebanov, Nucl. Phys. 8262, 365 (1985).

' The opposite limit, corresponding to m~ ~g m, has been stud-
ied by Callan and Klebanov (Ref. 17).

' G. Hohler, F. Kaiser, R. Koch, and E. Pietarinen, Handbook

of Pion Nucleon -Scattering (Fachinformationszentrum,
Karlsruhe, 1979), Physik Oaten No. 12-7, reproduced in Par-
ticle Data Group, Rev. Mod. Phys. 56, S1 {1984)(mX~mX).

~ R. E. Cutkosky et al. , in Baryon 1980, proceedings of the
Fourth International Conference on Baryon Resonances,
Toronto, edited by N. Isgur {University of Toronto Press,
Toronto, 1981); reproduced in Particle Data Group (Ref. 19}
(mN~mN).

2'R. A. Amdt, J, M. Ford, and L. D. Roper, Phys. Rev. D 32,
1085 (1985) (mX-+mN ).

~2D. M. Manley, R. A. Amdt, Y. Goradia, and V. L. Teplitz,
Phys. Rev. D 30, 904 (1984) (mN~mh).

23D. J. Herndon et al. , Phys. Rev. D 11, 3183 (1975)
(mX~mL).

24J. Dolbeau et al. , Nucl. Phys. 8108, 365 (1976) (mN~mh).
25K. %'. J. Barnham et al. , Nucl. Phys. 8168, 243 (1980)

(mX~mL).
26R. D. Baker et a/. , Nucl. Phys. 8156, 93 (1979) {mX~qN ).
27J. Fcltesse et al. , Nucl. Phys. $93, 242 (1975) {mX~gN }.
~8K. W. Bell et al. , Nucl. Phys. 8222, 389 (1983) (mX~KA).
~9D. J. Candlin et a/. , Nucl. Phys. 8238, 477 {1984){mN~EX).
3 P. Livanos et a/. , in Baryon 1980 (Ref. 20) (mX~KX).
3~S. R. Deans et al. , Nucl. Phys. 896, 90 (1975) (mX~EX).
3~W. Langbcin and F. Wagner, Nucl. Phys. 853, 251 (1973)

(mX —+EX).
38. R. Martin and G. C. Oades, University College Report No.

Print-80-0806, 1980 (unpublished) ( EN ~EX}.
34R. A. Amdt, L. D. Roper, and P. H. Steinberg, Phys. Rev. D

18, 3278 (l978) (KN ~KX).
35R. A. Amdt and L. D. Roper, Phys. Rev. D 31, 2230 (1985)

(K%~K%).
36K. Hashimoto, Phys. Rev. C 29, 1377 {1984)(EN~K%).

K. Nakakijma et a/. , Phys. Lett. 1128, 80 {1982)(EN ~K%).
38G. Giacomelli et a/. , Nucl. Phys. 8110,67 (1967) (EX~Eh).
39G. P. Gopal eI; al. , Nucl. Phys. 8119, 362 {1977);reproduced

in Particle Data Group (Ref. 19) (K%~EN, EN~n. X,
KX~mA).

~M. Alston-Garnjost et al. , Phys. Rev. D 18, 182 (1978); repro-
duced with many more partial waves in Particle Data Group
(Ref. 19) (17N ~EN).

"'B. R. Martin and M. K. Pidcock, Nucl. Phys. 8126, 285
(1977); reproduced in Particle Data Group (Ref. 19)
(ZN ~n A and XN~eX)

42R. Rader et al. , Nuovo Cimento 16A, 178 {1973){EN~gA).
4 W. Cameron et al. , Nucl. Phys. 8143, 189 (1978)

(JlN ~X").
44P. J. Litchfield et al. , Nuc1. Phys. 874, 39 (1974) (EN ~X LL)

450ur sign definitions differ somewhat from the traditional
ones, whereby a + or —refer, not to the amplitude as a
whole, but to its value at a resonance; specifically, they indi-
cate whether the resonance occurs at the top (+ ) or bottom
{—) of a circle. For resonant amplitudes, our definition al-
most always coincides with the traditional definition as ap-
plied to the lowest-lying appreciably coupled resonance in that
channel; however, our broader definition allows us to charac-
terize nonresonant (e.g., repulsive) amplitudes as well.

~In light of the threefold ambiguity in the experimental solu-
tion for EX~Eh, we have not presented "scores" in Table
VII; however, a comparion of the Skyrme-model amplitudes
to any one of these solutions would produce mostly 4's.

47J. Wess and B.Zumino, Phys Lett. 378, 95 (1971).
4 The %ess-Zumino term is not present in the two-flavor model

unless it is gauged (Ref. 3).
In order to facilitate comparison to experiment, we will

present all our results in terms of T-matrix elements. The T
matrix is related to the S matrix via T=(S—1)/2i, where 1 is
the identity operator on the Hilbert space (which vanishes for
inelastic scattering).
Here y is a largely redundant index whose only real purpose is
to distinguish between degenerate representations that can
occur in the product of two SU(3) representations, as for ex-
ample the 8»~ and 8»t,»m in SX8 (Ref. 51). As can be seen
in Eq. {3), it is not in general conserved, even for exact
SU(3)L,„„.To understand this, one need only consider the
nonvanishing 8,„„,„~8,„couphng Tr( [8,4 ) [B,4]) be-
tween the baryon octet 8 and the meson octet 4.

5'J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963); reprinted in M.
Gell-Mann and Y. Ne'eman, The Eightfold Way (Benjamin,
New York, 1964), p. 120.

52Parity precludes the case I.'=I.+1.
The analogous two-flavor quantities are tabulated in Appendix
8 of Ref. 8.

54In fact, they would be precisely equivalent to one another in
the absence of the %'ess-Zumino term (Ref. 13); that they are
so close means that the %'ess-Zumino term has a small effect
on the meson-nucleon phase shifts in the Skyrme model.

55In Ref. 7, in contrast, wc compared the Skyrme-model curves
solely to Ref. 19. Overall, the Skyrme model agrees some-
what better with Ref. 20 than with Ref. 19. The most recent
experimental analysis (Ref. 21} only goes up to E, =1726
MeV and I =3.

56Note the magnification by a factor of 4 in the experimental



MAREK KARLINER AND MICHAEL P. MATTIS

graphs with L &4.
57This entails looking for Breit-%igner peaks in the function

~

dT/dE
~

plotted against energy.
58Specifically, the S„P,and D waves can be shown to couple to

the rotational and translational zero-modes of the Skyrmion,
and therefore turn out to be extremely sensitive to next-order
1/N, corrections (Refs. 7 and 8).

59Skyrme himself recognized the lack of a P-wave resonance in

his model (Ref. 2): "The P-wave meson-particle interaction

[is] repulsive on the average. There is no indication of the

strong attraction observed in the pion-nucleon resonant state,
but this ~ould hardly be expected in a static classical treat-
ment where the rotational splitting of the particle states has
been ignored. "

60Note that the amplitude does in fact curve counterclockwise in
this region.

6 G. Adkins, C. Nappi, and E. %itten, Nucl. Phys. 8228, 552
(1983).

62S. %'einberg, Phys. Rev. Lett. 17, 616 {1966);Y. Tomozawa,
Nuovo Cimento 46A, 707 (1966).

6 M. Uehara and H. Kondo, Saga University Report No.
SAGA-HE-19, 1985 (unpublished).

~H. Schnitzer, Phys. Lett. 1398, 217 (1984); Nuel. Phys. 8261,
546 (1985).

65The analysis of Ref. 21, which probes an energy range
E, & 1726 MeV, is not sensitive enough in the upper region
to confirm the presence of a resonance in the 1700-MeV
range, but more recent results point to pole structure there as
well [R. Amdt and B.Nefkens (private communicationi].

6 It is noteworthy that the D35 amplitude is clearly resonant
(hence qualitatively closer to the Skyrme model) in the experi-
mental analysis of Ref. 20, as opposed to that of Ref. 19.

7%'e thank Bob Jaffe for an illuminating discussion on this
point.

ssThis point is discussed in R. L. Jaffe, in Proceedings of the
Topical Conference on Baryon Resonances, Oxford, 1976, edit-
ed by R. T. Ross and D. H. Saxon (Rutherford Laboratory,
Chilton, Didcot, England, 1977).

6 The pattern emerges even more sharply if the experimental
curves are cut off at the natural resonance scale for each
value of L (Ref. 8).

~%he reader is referred to Ref. 22 for a survey of sign predic-
tions made by competing theories.

7'Such states are called "exotic" because they cannot be formed
from three quarks, see Sec. IV.

72This near degeneracy is simply due to the fact that both sets of
amplitudes are built from the same reduced amplitudes in the
Skyrmion formalism.

73On opposite sides of the spectrum, Martin and Oades (Ref. 33)
claim that there are no bona fide poles on the second sheet for
such processes, while Amdt, Roper, and Steinberg (Ref. 34)
seem to find poles in almost every channel; however, in Amdt
and Roper's later analysis (Ref. 35), most of these poles disap-

pear thanks to a different choice of parametrization.
7 Note that an isospin- 2 baryon 85&& can be produced in the

Skyrme model in the process mN~m85&2 and is therefore re-

quired for unitarity.
75R. A. Amdt (private communication).
76As mentioned earlier, the same phenomenon occurs for elastic

mN scattering, where the "big-small-small-big" pattern like-

wise emerges most clearly when the graphs are cut off at the

natural resonance energies. In fact, if instead one goes to =4
QeV uniformly, then the pattern disappears completely, and

all four mN amplitudes for each value of L approach the same

value (Ref. 8).
77R. Koniuk and N. Isgur, Phys. Rev. 0 21, 1868 (1980).

Although rsL L and rjrL ) refer to the same quantity, we shall

employ the former notation when we are invoking the two-

flavor formalism.
9This analysis also works for the G]7 and G]9 channels but

fails for the D&3 and D&5 channels. This suggests that, for the

D waves, the two-tiered hierarchy that we have postulated for
the reduced amplitudes runs into trouble; we shall return to
this shortly.

Recall that the %'ess-Zumino term vanishes in the two-flavor

case.
8'This conclusion differs from that of Ref. 17.
2Compare Table XVI of Appendix C to Appendix 8 of Ref. 8.
In order to make use of the available curves for mN~mh
(Ref. 22), we have combined Eqs. (13) and (14) with Eq. (10)
for the P and I' waves. As discussed in Ref. 8, it is not obvi-

ous how best to relate energies when comparing processes
such as n.N~mN and mN~n. h with different thresholds; fol-

lowing the practice adopted there, we have parametrized the

amplitudes in Fig. 15 by "excitation energy" AE, , mea-

sured from the average of the m.N and mh thresholds.
84N. B. The reader should exercise caution in applying the for-

malism presented in Sec. II of Ref. 7 to processes with
L'=L+2: On the one hand, there ought to have been a
minus sign in the off-diagonal elements of S~ defined in Eq.
(16) of Ref. 7 due to our Bessel-function conventions. On the
other hand Fig. 6 of Ref. 7 is in error and should be disre-
garded.

The results of this section would be unaffected if the q field
had a radially dependent expectation value as well, although
this is not the case for the particular example of Skyrme's La-
grangian.

6For calculating on-shell amplitudes, this parametrization of
the meson fields is equivalent to the one advocated by
Schnitzer (Ref. 64).

~See, for example, A. Manohar, Nucl. Phys. 8248, 19 (1984).
This fact that the "left-handed hypercharge" is unity is a non-
trivial quantization condition arising from consideration of
the %'ess-Zumino term (Ref. 4). Our normalization in {87)is

such that dA =2m
SU(3)


