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We present a comprehensive partial-wave analysis of the processes 7N —¢psB, KN — ¢psB, and
KN —¢psB in the three-flavor Skyrme model, with ¢ps an arbitrary pseudoscalar-octet meson and B
a %+ octet or %+ decuplet baryon. Overall, we find good, poor, and mixed agreement, respectively,

between the model and experiment for these three types of processes. We pay particular attention to
assessing the independence of our results from the details of the Skyrme Lagrangian. We also ex-
amine the effect of including a third light flavor on the linear relations between experimental
N —mN and wN —mA partial-wave amplitudes that are predicted by two-flavor soliton models of
the nucleon. Although the emphasis throughout is on a detailed qualitative comparison with nature,
we also present Skyrme-model predictions for six processes such as 7N —K32* and KN —nZ3 for
which experimental partial-wave analyses are unavailable.

I. SUMMARY AND OUTLINE

In this paper we present a comprehensive partial-wave
analysis of the processes mN-—>@psB, KN —dpsB, and
KN — ¢psB in the three-flavor Skyrme model,! ~® with ¢ps
denoting an arbitrary pseudoscalar-octet meson and B a
% octet or % decuplet baryon. As our approach to
meson-nucleon scattering in both two-flavor and three-
flavor soliton models of the baryon has been discussed in
detail elsewhere, a fresh introduction hardly seems neces-
sary (see Refs. 7—13 and also Refs. 14 and 15). We
should, however, underscore our two principal approxima-
tions: (1) Our results are valid only to leading order in
1/N,, where N, is the number of colors of the underlying
gauge group;'® (2) our group-theoretic formalism assumes
unbroken SU(3)gavor;'!®  furthermore, our numerical
phase-shift computations are carried out in the limit of
massless mesons, i.e., exact chiral symmetry.

In our work on the two-flavor Skyrme model, we found
excellent agreement with experiment for the mass spec-
trum of nucleon and A resonances.” [Masses of the nu-
cleon and A resonances agreed on the average to within
8% of their experimental values after optimizing the pa-
rameters f, and e that appear in the Skyrme Lagrangian,
Eq. (1), below; the results are summarized in Fig. 1(b) in
Sec. II1.] However, given the severity of the second ap-
proximation above, we will refrain in the present three-
flavor analysis from making similar quantitative state-
ments about the spectrum of strange baryons in the
model. Such statements would be of dubious value until a
kaon mass is introduced. Instead, we shall concentrate
here on the qualitative behavior of the partial-wave ampli-
tudes, and on patterns of size and sign alternation between
amplitudes. Unlike mass predictions, such features are
completely independent of the values of the Skyrme pa-
rameters /. and e: a different choice of parameters would
not alter the shapes of the amplitudes, only their parame-
trization as a function of energy.

We have located experimental data for 165 partial-wave
channels'~* corresponding to the processes wN—mN,
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7N —m7A, TN—-nN, 7«N—-KA, 7N—KZ, KN—KN,
KN—KA, KN—KN, KN—73, KN—7A, KN—>7A,
KN —7=*, and KN—KA. A detailed pictorial compar-
ison to the Skyrme model is presented in Secs. III-V.
Several of these processes have been subject to more than
one partial-wave analysis; in these cases we usually select-
ed the most recent one to compare to the Skyrme model.
This choice was not without repercussions: often there
was serious disagreement between independent analyses,
and a different selection would have modified the results
of our comparison accordingly. We shall bring up differ-
ences between various experimental analyses when the
Skyrme model sheds light on the issue.

It is admittedly unusual to discuss such a wide variety
of processes in the context of a single work. We have
done so in order to emphasize the essential unity of these
processes in the Skyrmion approach. In light of the
length of this paper, we have designed this section to serve
as a summary and/or outline of our principal findings.

It is conventional to test models of the baryon spectrum
by checking the signs of the various amplitudes against
experiment. The results of this comparison are summa-
rized in Tables I—-XIII. In these tables, each inelastic am-
plitude has been assigned a + or — according to whether
it first journeys appreciably into the upper or lower half
of the unitarity circle, and a zero if this is unclear.** We
have labeled the channels in the standard fashion: 7N
channels are denoted by L,;,, whereas KN and KN chan-
nels are labeled by L;,;, where L is the meson’s orbital
angular momentum, and I and J stand for total isospin
and angular momentum. For processes where the final
baryon has spin % (Tables II, VII, XII, and XIII), the ini-
tial and final meson angular momenta L and L’ need not
be equal, but can differ by two, hence the notation
LL '21,2‘] or LLII’U

In addition to signs, Tables I—XIII present numerical
ratings from 1 to 4 which represent our assessment of the
degree of qualitative agreement between the Skyrme model
and experiment, with a 1 being the best and a 4 the worst.
The criteria we employed in arriving at such a score are
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TABLE I. 7N —wN (see Fig. 1). Skyrme model vs experiment. Inelastic channels are assigned a +
or — according to whether the amplitude first journeys significantly into the upper or lower half-plane,
and a O if this is unclear. The values 1—4 represent the degree of qualitative agreement between the
model and experiment, with a 1 being the best and a 4 the worst (see text for details).

Two-flavor Three-flavor Two-flavor Three-flavor
Channel Skyrme Skyrme Channel Skyrme Skyrme

Su 3 3 G 2 2
Si 4 4 Gy 2 2
P, 4 4 Gy 2 2
Py 3 2 G 2 2
Py 2 2 H 2 2
P33 4 4 Hlll 2 2
Dys 1 1 Hs 2 2
Dis 2 2 Hs, 2 2
D33 2 2 Il 11 3 2
Dss 3 3 I3 2 2
Fis 1 1 I 3 3
Fy; 2 2 L 2 2
Fy, 1 1 Kus 2 2

K1 3 3

K5 2 2

the following: Does the Skyrme amplitude have the same
general shape as its experimental counterpart? Does it
point in the same general angle in the unitarity circle?
Are distinctive features (e.g., cusps, loops, repulsive
behavior) mimicked correctly? Are the magnitudes of the
curves comparable? Do the graphs share a 4+ or —
designation? To score a 1, the answer must be “yes” to all
of these questions, with sizes agreeing to within 30%. A
2 guarantees that the + or — assignments will agree, and
that the shapes are similar, but the magnitudes can differ

TABLE II. 7N — A (see Fig. 2). See caption of Table L.

Three-flavor
Skyrme

1

Two-flavor
Skyrme

1

Channel

PPy, +
PPy,
DD ;
DD
DD;;
FFs
FFy,
FF;s
FFy;
SDy
SDy;
DS3
DS3;3
PFy,
PF;;
FPs —
FP;s +

Expt.

+4 1+
W o— NN
W = e N

W

+
l++++++++ 1 ++++
I+ +++++++ 1 ++++

b+ + +

+

o+t

[\S 2N ] W W W —N
P+ +

w W W W W W =

substantially (e.g., by a factor of 3 or 4); alternatively, the
sizes might be in close correspondence while the shapes
are rather different. For a 3, the two graphs must lie in
either the same or adjacent quadrants (so the signs can
disagree); there is usually some additional feature of simi-
larity, for example, an energy range over which the shapes
of the amplitudes are in rough correspondence, but on the
whole the agreement looks no better than random. For a
4, the agreement is truly dismal; typically such graphs
point in opposite directions. The reader is encouraged to
glance at a few plots chosen at random from Secs. III-V
in order to gain a “feel” for this (admittedly subjective)
scoring system.

wN processes. As is apparent from Tables I-V, the re-
sults for mN processes are, on the whole, surprisingly
good. Elastic mN scattering as calculated in both the
two-flavor and three-flavor Skyrme models (the two ap-
proaches differing even for nonstrange processes) was ex-
amined previously.”~ !> In general, the three-flavor model
constitutes an improvement over the two-flavor model.

TABLE III. #N —7N (see Fig. 3). See caption of Table I.

Channel Expt. Skyrme

Su + + 3
Py, — + 4
Py - 0 3
Dy — — 3
Ds — - 3
Fis + + 1
Fy; + + 2
G + + 2
Gy 0 -+ 2
Hy + + 2
H,y, +




TABLE IV. 7N —K A (see Fig. 4). See caption of Table I.
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TABLE VI. KN —KN (see Fig. 6). See caption of Table I.

Channel Expt. Skyrme Channel Skyrme
Su + — 4 Soi 4
Py, - — 2 Su 4
Ds + + 2 Py 2
Fyy + + 3 Doy 2
Gy + + 2 Dy; 4
Hy - — 2 Ds 4
H,, + Fos

F 07
F 17

However, in both cases there are serious discrepancies Gor

with experiment in the S and P waves, as reflected in the Goo

preponderance of 3’s and 4’s in these channels. The most Gy 4

severe of these is the failure of the model to reproduce the G

strongly resonant behavior observed in the P,; and P;; Hyy 4

channels, associated with the Roper resonance and with
the A, respectively. These problems are due to the fact
that, in leading order in 1/N,_, certain states such as the
Roper resonance and the A are in fact degenerate with the
nucleon, and hence could not show up as resonances above
threshold. Thus, these are most likely failures, not of the
model itself, but rather of our leading-order analysis.

In contrast, for D waves and higher, with the exception
of the D;s, the agreement is quite impressive. The main
source of disagreement in the high waves (L >4) is the
overly large size of the Skyrme-model curves, which is
primarily due to the limited number of inelastic channels
that we are allowing for (¢psB only); this situation is im-

TABLE V. 7N —K?ZX (see Fig. 5). See caption of Table I.
Channel Expt.

Sll -

Py —

Pl3

P31 -
D3

D15

Dy; -
D5 -
FIS

F17

Fis — — 2
Fyy — — 1
Gl7 -

Gy -

639 -

H!Q -

Hl]l -

H3H - - 2

Skyrme

I
w

| oo | + |
+H

proved when the Skyrme model is enlarged to the three-
flavor case.'’ Significantly, both the two- and three-
flavor Skyrme models mimic the “big-small-small-big”
pattern that characterizes the behavior of the four in-
dependent experimental amplitudes {L;,; 1, Ly 415
Lyy. 1, L3y} for each value of pion angular
momentum L >0; for example, the F;5 and F;3; ampli-
tudes take a much greater excursion through the unitarity
circle than do the F;; and F;s curves.”®!3 We shall see
this explicitly in Sec. III.

For the inelastic processes 7N—mwA, wN—7N,
7N —KA, and 7N —KZ, the sign agreement between the
Skyrme-model and experimental amplitudes is, respective-
ly, 100%, 80%, 80%, and 85%. Such numbers are cer-
tainly competitive with traditional algebraic coupling
schemes such as SU(6)y, as well as with the nonrelativistic
quark model, although unlike the Skyrme model, which is
a full-fledged dynamical model, these approaches concern
themselves only with the behavior of the amplitudes at
resonance energies. As in the elastic case, the lower par-
tial waves in the Skyrme model are often in disagreement
with experiment, whereas the F waves—which are the
first not to mix with the Skyrmion’s rotational and
translational zero modes’—represent the model at its best.
Clearly, a careful treatment of the zero modes, which
would enable us to trust our analysis in the lower partial

TABLE VII. KN —KA (see Fig. 7). See caption of Table I.

Solution A Solution B Solution C Skyrme
PP,, — + + +
PPy, + + + +
DD, — + 0 +
DD ;s + + 0 +
SDy, + + — —
DSy + + - +
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TABLE VIII. KN —KN (see Fig. 8). See caption of Table I.
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TABLE X. KN — 1A (see Fig. 11). See caption of Table I.

Channel

Sot
S
Py,
Py,
Py
Py
Dy
Dy;s
D,
D5
Fos
Fyy
Fis
Fyy
Gor
Gy
Gy
Gy

Skyrme

H

P G SR SUR NG RV \§ O N T NG S SO SO SO N

waves, would be of the utmost importance.

KN processes. The situation is quite the opposite for
KN scattering (Tables VI and VII). The agreement for
both KN —KN and KN —KA is dismal.*® The reason for
this is not hard to understand. KN processes occupy a
special role from the point of view of the quark model,
since resonances in these channels (unlike KN) cannot
correspond to gqq, but rather gqqqg states. Not surpris-
ingly, in nature, the majority of amplitudes show no hint
of a resonance, and are in fact repulsive (that is, curve
clockwise). The existence of any such resonances is still
an open question, with the most recent analysis favoring
such states in at least two channels. In contrast, there is
nothing particularly “exotic” about KN scattering in the
Skyrmion approach, for reasons we shall discuss below.
Consequently, most of the Skyrme-model graphs evince

TABLE IX. KN — 73 (see Fig. 10). See caption of Table I.
Channel

Sot
Sn
Py,
Py
Py
Py
Dy,
Dys
Dy
D5
Fos
Fy
Fys
Fyq
Goy
Goo
Gy
Gy -

Expt. Skyrme

L+ 1+ +
1

I
|

+
|

P+ ++ 1+
1
W WA NN W=WHENWERERSPREPEWWLSS

I
|

Skyrme
Channel Expt. 1 Expt. II Sign vs I vs II
Su - - + 4 3
Py, — — — 3 3
P + + + 2 4
D3 + + - 3 4
Dis - - + 4 4
Fis — — — 1 1
Fyy + + + 3 1
G|7 - 0 —_ 1 2
G + + 3

the usual resonant behavior: anticlockwise curves and
Breit-Wigner peaks in the speed. In Sec. IV we shall
speculate on whether the (apparent) existence of KN reso-
nances in the real world might be construed as evidence
for the soliton nature of the nucleon.

KN processes. Finally, the Skyrme model gives mixed
results in describing KN scattering (Tables VIII—XIII).
On the level of individual graphs, the model works less
well for KN than for mN scattering; this is perhaps a
consequence of our having set mg =0, which is a much
more severe approximation than setting m,=0.
Nevertheless, in certain important respects, the agreement
is quite pleasing. Most notably, for the processes
KN —KN and KN —73, the model successfully repro-
duces a pattern reminiscent of 7N —mN that character-
izes the four independent experimental amplitudes for
each value of L; specifically, in the model as in nature,
the Pgy;, Dg3, Fys, and Go7 amplitudes travel significantly
further through the unitarity circle than do their counter-
parts. We shall return to this “big-small-small-small”
pattern in Secs. V and VI. The sign agreement for
KN—73, KN—>wA, KN—>nA, KN—-73* and
KN —KA is 65%, 64%, 67%, 6%, and 55%, respective-
ly. Agreement in the last of these processes is extremely
poor.

It should be kept in mind that, for most of the process-
es summarized in these tables, the experimental curves do
not represent the data directly, but result instead from a
multiparameter fit of the differential cross section to the
squared sum of partial-wave amplitudes. Such a fit in-
volves a complex, model-dependent, and frequently ambi-
guous statistical analysis, or “solution,” of multibody fi-

TABLE XI. KN —nA (see Fig. 12). See caption of Table L.
Channel

Soi
Py,
Py
Dy
Dos -
Fos -
Fy
Gy -
Goo

Expt. Skyrme

o+t
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TABLE XII. KN —m2* (see Fig. 13). See caption of Table L.

Channel Expt. Skyrme Channel Expt. Skyrme
PPy, + + 2 SDy, + + 2
PPy - + 4 SDy, - - 3
PP, 0 DSy; —

PPy, + DS, + 3
DDy; - PFy; — + 4
DDys + + 1 PFy3 —
DD; + FPs — - 2
DD — + 4 FPy —+ + 3
FFs + + 2 DG - + 4
FFy + DG s + — 4
FFs —+ + 2 GDy; —
FFyy + + 1 GDy; +

nal states. (For example, 7A must be disentangled from
pN.) In fact, for processes with relatively low statistics,
not only can two experiments differ substantially from
one another, but two solutions of the same data can
disagree (cf. Table VII and Fig. 7, for example). In light
of this, it is noteworthy that the Skyrme model does best
for the processes that are relatively well established (e.g.,
7N —aN, tN—mA, KN—KN), and worst for those that
seem the least well understood (e.g., KN—KA and
KN —KA). It would be interesting to see whether, ten
years hence, there will be any noticeable improvement in
agreement between the model and experiment for these
latter processes.

Before proceeding to the specifics of our analysis, we
would like, once again, to express our wonderment that so
much detailed structure of the meson-nucleon S matrix—
much of it in reasonable accord with nature—can emerge
from a simple meson Lagrangian with no explicit quark
or nucleon fields. The moral is that this structure must be
largely determined by the symmetries of the effective La-
grangian alone. (By this we mean, not just the familiar
chiral symmetries, but also the peculiar “K-symmetry”
characterizing hedgehog solitons, as reviewed in Appendix
B.) It is surprising that effective Lagrangians have so

TABLE XIII. KN—KA (see Fig. 14). See caption
of Table I.
Channel Expt. Skyrme
PPy, + + 4
PPy, - + 4
DD, — + 4
DD + + 4
FF)s +
FFy,; + + 2
GGy, - + 4
GG +
SDy, + + 4
DS\ — — 2
PFy; +
FPis 0 — 4
DG ;s +
GD,, + - 4

much to say far beyond the “soft-pion” energy regime to
which they are normally applied.

The remainder of this paper is organized as follows. In
Sec. II we review the formalism for meson-nucleon
scattering in Skyrmion models of the nucleon. Sections
III, IV, and V are devoted to a pictorial comparison be-
tween the model and experiment for 7N, KN, and KN
scattering, respectively.

In Sec. VI, which we consider the theoretical heart of
the paper, we explore the degree to which the predictions
of the Skyrme model, both successful and unsuccessful,
can in fact be considered model independent (i.e., indepen-
dent of the precise details of the Skyrme Lagrangian, but
based only on the familiar “hedgehog” form of the soli-
ton, as reviewed below). In particular, we shall focus on
sign predictions for inelastic processes, and on the “big-
small-small-big” and “big-small-small-small” patterns
mentioned earlier. The question of model independence is
a crucial one; for, if the soliton approach to baryon phys-
ics is ever to be honed into an accurate calculational tool,
Skyrme’s Lagrangian will eventually have to give way to a
more realistic model involving many more low-lying
mesons. In the course of our investigation we shall dis-
cover what we believe to be the secret behind much of the
Skyrme model’s success in describing the scattering data.
As a consequence, we shall be able to delineate a large
class of models which, we believe, would enjoy compar-
able overall success. We hope that this might usefully
constrain the model-building efforts currently under way.

In Sec. VII we leave the special case of the Skyrme La-
grangian behind, and examine instead the consequences of
assuming that the optimal low-energy effective Lagrang-
ian of nature (which we do not know) possesses solitons of
the same “hedgehog” structure as in the Skyrme model.
It has been shown in the context of two-flavor Skyrmion
physics that this assumption implies the existence of
energy-independent linear relations between experimental
7#N—7N and mN—mA partial-wave amplitudes.>!*> In
general, these relations are well satisfied by the experi-
mental data, with certain exceptions in the lower partial
waves.? Section VII examines to what extent inclusion of
a third light flavor modifies these relations; we focus, in
particular, on the peculiar role played by the Wess-
Zumino term. We shall find that all but one of these rela-
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tions emerge virtually unscathed in the three-flavor for-
malism. We also discuss some new linear relations
designed to test the conclusions of Sec. VI.

In order to make this paper relatively self-contained,
Appendix A depicts some intermediate results of our nu-
merical analysis, Appendix B contains a derivation of the
three-flavor scattering formalism first presented in Ref.
12, and Appendix C gives explicit formulas for the
group-theoretic expressions we have used. Finally, Ap-
pendix D contains the Skyrme-model graphs for the six
7N —¢psB and KN — dpsB processes for which an experi-
mental partial-wave analysis in the resonance region has
yet to be done, namely, 7N —nA, TN —->K3*, KN —n3,
KN —>n3*, KN—KE, and KN—KE*. We very much
hope that this paper will provide fresh impetus for such
work.

II. BASIC NOTIONS

This section is devoted to a brief review of the meson-
nucleon scattering formalism in soliton models. The aim
is to pave the way for the detailed comparison that fol-
lows between the Skyrme model and experiment. (The
casual reader eager for results should skip directly to Sec.
III.) Since we shall be contrasting the two- and three-
flavor versions of the Skyrme model in Secs. III, VI, and
VII, we shall sketch both formalisms here.

The Skyrme Lagrangian is given by' 3

_ S

t
=6 Tro, U d*U

1
32¢?

with U an SU(2) or SU(3) matrix in the two-flavor or

+ Tr[(3, ) U, (8,U) U P+ L, (1

T({LsJ}—{L's'T})=(— 1" ~(2s + (25" + D]'2 T (2K +1)
K

The expressions in curly brackets are 6j symbols, and the
sum over K extends over all integer values consistent with
|[L—1|<K<L+1 and |L'—1|<K<L'+1. The
quantities 7x; -y, which are functions of pion energy w, are
the “reduced amplitudes” of the model, obtainable numer-
ically from a phase-shift analysis about the classical soli-
ton solution of the Lagrangian. (In contrast, we shall
refer to the boldface T’s as “physical amplitudes.”) Al-
though these reduced amplitudes have been presented pre-
viously,”!* we display them in Appendix A in a form
more suited to our purposes.

Although, in Eq. (2), K plays the part of a dummy in-
dex, it actually has an interesting physical interpretation.
Specifically, K can be viewed as the vector sum of the
pion’s angular momentum and isospin in the unphysical
frame in which the pion scatters, not from a nucleon, but
rather from an unrotated soliton of the “hedgehog” form.

three-flavor model, respectively. Here, the first term is
the usual nonlinear o model familiar from soft-pion phys-
ics; the second serves to stabilize a finite-size soliton, or
“Skyrmion,” which is our candidate nucleon; and the
third, the Wess-Zumino term,>*’ reflects the presence of
anomalies.*®* The traditional identification of the Gold-
stone fields comes from setting

.3
exp 20 >, m%o® |, two-flavor case,
fﬂ' a=1
v= 2 &
exp |=— >, ¢°A%|, three-flavor case,
T a=1

in (1).

To study meson-nucleon scattering in this model, one
simply breaks up the Goldstone fields 7 or ¢ into two
pieces: a spatially varying c-number piece, i.e., the Skyr-
mion, and a fluctuating piece, which we identify with
physical mesons. Calculating the meson-nucleon 7 ma-
trix** then reduces to a problem of potential scattering,
from which partial-wave phase shifts can be extracted in
the usual manner. In addition, it is necessary to fold in a
little group theory, as we now describe.

Consider first the case of two-flavor scattering, which
suffices for the study of the nonstrange processes
7N —mN, mN—mA, and mA—m7A. The quantum num-
bers needed to describe such processes are the following:
the initial and final pion angular momenta L and L’; the
initial and final spin (or isospin) representation of the
baryon s and s’, which equal % for nucleons and % for
A’s; and the total pion-baryon isospin and angular
momentum I and J. The T matrix describing such pro-
cesses in the Skyrme model can then be shown to be®!°

K1J
s'L'1

KIJ
sL1 TKL'L - (2)

I

[A hedgehog soliton is one in which the c-number piece of
the pion field, an isovector, is proportional to t; cf. Eq.
(B1) in Appendix B below.] This frame is “unphysical” in
that a nucleon properly corresponds to a rotating
hedgehog soliton in the Skyrmion approach (see. Ref. 61)
In the unphysical frame, K is conserved, but I and J are
not, whereas in the physical frame, with a rotating Skyr-
mion, it is I and J that are conserved, and K is not. More
details on the meaning of K can be found in Refs. 7—15,
as well as in Appendix B below.

The three-flavor analog of Eq. (2) is of the same general
structure albeit a little more complicated. The three-
flavor scattering processes that we are focusing on are
special cases of the general quasielastic process

¢PSB—’¢i’SBI s
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where ¢ps and i&}s are pseudoscalar-octet mesons and B
and B’ are T octet or + decuplet baryons. The
meson-baryon system in either the entering or exiting
channel for such a process can be fully characterized by
the following set of quantum numbers: the orbital angu-
lar momentum L of the meson; the spin s and flavor rep-

|

T({LsRR ¥ iotLzt0t Yiotd} = {L's'R'R 0V T1ot L1t Yior I })

» s [(dimR)(dimR")]'/?

== dimR

This expression, whose derivation is reviewed in Appen-
dix B, requires some explication. The quantities in
parentheses are SU(3) isoscalar factors, tabulated by
DeSwart.’! The pair {IY] is summed over {1,0}, {0,0},
and {+,+1}. The index K assumes integral values when
{IY} = {1 0} or {0,0} and odd-half-integral values when
{IY}={3,+1}, while the index i assumes odd-half-
integral and integral values, respectively, in these cases.
In addition, these sums are constrained by the various tri-
angle inequalities implicit in the two 6j symbols, as a
consequence of which we find the followmg contributing
reduced amplitudes for phys1ca1 pro?es§

psB—¢psB’ with L'=

1/2,1 172, —
TE‘H/Z]LL’ TL+1/2 LL} all contribute.

épsB—dpsB’ with L'=L+2: only 7%:%, K=(L
+L')/2, contributes. Furthermore, by time-reversal in-
variance,”? it follows that 7§7 ol ‘rkl

Useful closed-form expressions for the group-theoretic
coefficients in Eq. (3) that multiply these reduced ampli-
tudes are given in Appendix C (Ref. 53).

It tums out that the reduced amplitudes Tk /21 and
Tkl I are numerically quite close to one another for all
energies.’* It is therefore convenient to introduce the
linear combinations

+ L, (1/2,1 1/2,—1
e =3 (TR Y,

{1,0} {0,0}
TL+1 LL> TLrLs TLLL>

K=L—3 orL+7;

these are depicted in Appendix A. It happens that, in the
particular case of the Skyrme model, these are the only
new quantities that one needs in order to pass from the
two-flavor to the three-flavor formalism. Specifically, the
amplitudes TL 9 turn out to be trivial,

TL[:L}(CD)E

while the quantities T}}L’()}_(w) are identical to the two-
flavor reduced amplitudes 7, ; (@) that appear in Eq. (2).
From the discussion in this section we can make the
following observations.
(1) Since all physical amplitudes for processes with

>33 Qi+DRK+1)

Iy} i K

resentation R of the baryon [i.e., (s,R)=(%,8) or
(%,10)]; the total meson-baryon angular momentum J;
and the total SUQB)g,o, quantum  numbers
{Riot>VsIiorsLzions Yior} (see Ref. 50). As in the two-flavor
case, the physical T matrix can be expressed as a superpo-
sition of reduced amplitudes:'*!3

KiJ
s'L'T

R
sl IY
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=L=+2 are Proportlonal to the single reduced ampli-
tude T}< % =7} with K =(L +L")/2, it follows that all
such amplitudes for each value of K are necessarily propor-
tional to one another. The group-theoretic coefficients of
(2) and (3) furnish the relative magnitudes and signs of
these amplitudes for the two- and three-flavor model,
respectively.

(2) Processes with L =L’ are more complicated from a
group-theoretic standpoint, since in general they are ex-
pressed as a superposition of eight reduced amplitudes.
However, from the graphs in Appendix A, we see that,
with a few exceptions in the lower partial waves, the three
reduced amplitudes {7{"°] ,;, r}i’%’, T 1oL} vary
much more dramatically as functions of energy than do the
other five amplitudes {T}“lfl,u‘, 139, T aLL
TL _1/2.LL> TL+1,2,LL }» and consequently provide the dom-
inant contributions to the physical Skyrme-model ampli-
tudes.

(3) Lastly, we ought to point out that Egs. (2) and (3)
are valid for any soliton model of the baryon, not just
Skyrme’s, in which the soliton is a “hedgehog” configura-
tion. The only model-dependent input is the precise
values of the reduced amplitudes.

We will make frequent use of these observations
throughout the remainder of the paper. We turn now to a
channel-by-channel comparison of the Skyrme model 7-
matrix with experiment.

III. #N SCATTERING

We begin with the elastic case #N —mN. This process
has been studied before in the context of both the two-
flavor’—!21415 and three-flavor!®!3 Skyrme models; in
particular, the reader is referred to Ref. 7 for a discussion
of the spectrum of baryon resonances in the two-flavor
model. Elastic mN scattering is extremely well understood
experimentally, as evidenced by the close agreement be-
tween the three principal partial-wave analyses (Refs.
19—21). As such, it represents a crucial test for the
Skyrme model.

Figure 1(a) displays the 30 experimental wN—>mN
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partial-wave amplitudes for O0<L <5 (Ref. 20) and
6<L <7 (Ref. 19) juxtaposed with both the two- and
three-flavor Skyrme-model graphs.”®> For completeness,
we have also summarized the results of our mass spec-
trum calculation”!® in Fig. 1(b). We consider the overall
degree of agreement impressive. Obviously, for G waves
and higher, the Skyrme model graphs are much too
large;*® this is primarily due to the fact that, in our for-
malism, we are not allowing for the large variety of inelas-
tic processes that dominate these channels in nature. In
this regard, the three-flavor Skyrme model, which allows
for final states involving strangeness such as K=, consti-
tutes a clear improvement over the two-flavor model. In-
clusion of a third flavor can also be seen to improve the
agreement in the P3, P;3;, and D3 channels.

The case of the F waves is more subtle. Although the
three-flavor curves do not appear at first glance to be in
quite so close correspondence with nature as their two-
flavor counterparts, they actually constitute an improve-
ment: a “speed analysis”®’ reveals the emergence of a
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second resonance in both the F;s and the F;; three-flavor
amplitudes, in agreement with nature (see Ref. 13 for de-
tails).

Most of the severe disagreement between the model and
experiment is concentrated in the lower partial waves,
especially the S3;, Py, P33, and Djs channels. As dis-
cussed in detail in Refs. 7 and 8, this is probably a failure,
not of the Skyrme model per se, but rather of our
leading-order analysis in 1/N, (Ref. 58). It is illuminat-
ing to summarize the situation for these four “problem”
channels.

(i) The A [i.e., the P33(1232)] is degenerate with the nu-
cleon in the large- N, limit; they are split in mass only by
terms that scale like 1/N, (see Ref. 61). Consequently,
the A does not—indeed, cannot—show up as a resonance
in a leading-order two- or three-flavor analysis such as
ours.” It is interesting that, beyond the energy range as-
sociated with the A, the experimental and Skyrme-model
amplitudes appear to be in quite reasonable agreement
(note the cusplike behavior in each case).
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FIG. 1. (a) 7N —mN: Comparison between the two- and three-flavor Skyrme models and the experimental solutions of (i) Ref. 20
for L <5(1.08 <E.., <2.40 GeV) and (ii) Ref. 19 for 6 <L <7 (1.08 <E. ., <2.50 GeV). The plots show Im(7T) vs Re(T) for each
channel. Channels are labeled by Lj;,;, where L is the pion angular momentum, I is the total isospin, and J the total angular
momentum. Note the change of scale for the experimental graphs with L >4. (b) Spectrum of N and A resonances: Skyrme model
vs experiment. The experimental masses (indicated by dots) and uncertainties are taken from Ref. 20, except for the N(1882) F;s and
the four I- and K-wave states, which are taken from Ref. 19. The Skyrme-model predictions of Refs. 7 and 13 are indicated by
crosses. In general, the two- and three-flavor predictions are identical; the exceptions are the N(1882) F,s and the A(2350) Fs;, which
only exist in the three-flavor Skyrme model (Ref. 13). Resonances have been assigned stars in accord with the Particle Data Group,
ranging from four stars for the best established down to one star for the least well established states. The most recent analysis (Ref.
21) finds no evidence for the N(1700) P,,, but instead finds a state near 1500 MeV. Also shown are the four observed three- or four-
star resonances which have no Skyrme-model counterparts in our analysis, namely, the N(1650) S,;, the N(1440) P,;, the N(1675)
D3, and the A(1890) S3,. The Skyrme-model values for my and m, are obtained from Eq. (9) of Ref. 61, using our “best-fit” pa-
rameters (e =4.79, f,=150 MeV).
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(ii) Similar disagreement plagues the P;, channel,
where the Skyrme-model amplitude stands in stark con-
trast to the classic resonant behavior that appears in na-
ture, associated with the Roper resonance at 1440 MeV.
In light of the qualitative similarity between the P,; and
P33 amplitudes in both the Skyrme model and experi-
ment, we proposed somewhat optimistically in Ref. 7 that
the same 1/N, corrections that are expected to produce a
low-lying Skyrme-model resonance in the Pj3; channel
(i.e., the A) are likely to produce a low-lying resonance in
the P;; channel too (i.e., the Roper resonance).

At the time, this scenario left us somewhat in a quan-
dary, for the following reason. A speed analysis reveals
that the Skyrme-model P;; amplitude in both the two-
flavor and three-flavor cases contains a weak resonance
before the cusp, at approximately 1430 MeV (Ref. 60).
On aesthetic grounds, it would certainly be hard to justify
identifying this tenuous state with the robust Roper reso-
nance seen in nature; indeed, as just mentioned, we pre-
ferred to equate the Roper resonance with a Skyrme-
model state that we hoped would emerge in the next order
in 1/N,. This left us no choice but to associate the
Skyrme-model state at 1430 MeV with the next-excited
state observed in this channel, which is traditionally as-
signed a mass of 1700 MeV. The large discrepancy be-
tween these two values stood out as one of the most disap-
pointing results in a generally successful Skyrme-model
spectroscopy [see Fig. 1(b)]. Interestingly, the experimen-
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tal situation for this channel has since changed: the most
recent mN experimental partial-wave analysis®' finds that
the next-excited P,; state is, in fact, nearly degenerate
with the Roper resonance, and therefore in much closer
agreement with the Skyrme model.*> We should note
that, from the point of view of Skyrmion physics, these
two nearly degenerate states arise in very different ways:
the Roper resonance (like the A) is split from the nucleon
only by an energy of O(1/N,), while its partner has an
excitation energy of O(1). The observed near degeneracy
is an accidental consequence of the fact that, in the real
world, N, is not a very large number.

(iii) Another area of severe disagreement between the
Skyrme model and experiment is in the S3; channel,
which is repulsive near threshold in nature but attractive
in the Skyrme model. Again, this discrepancy is an ar-
tifact of our leading-order 1/N, analysis. Specifically, the
repulsive threshold behavior of the S3; amplitude,
predicted by the Weinberg-Tomozawa two-soft-pion
theorem,®? emerges in the Skyrme model only at order
1/N. (Refs. 8, 63, and 64).

(iv) Finally, the poor agreement between the model and
experiment in the Ds;s channel deserves some comment.
It is clear that from Fig. 1 that, in the Skyrme model, the
D35 amplitude is nearly as big as the D3, while in nature
it is by far the smallest of the four D-wave amplitudes.
Furthermore, the resonance masses of the four D-wave
states are nearly degenerate with one another in both the
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FIG. 1. (Continued).
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two- and three-flavor Skyrme models,” !> while in nature

the D;s state at 1940 MeV is 200—300 MeV higher in
mass than its three partners.®® It is interesting to specu-
late as to the reason for these discrepancies between the
model and experiment.

It happens that the D35(1930) is of particular interest
from the quark point of view, since, in the language of
SU(6), it is the only state present in the Lqua,k =1 56 that
is not contained in the L gy, = 1 70; as such, it serves as a

“marker” for this mu]tlplet Now, in nature, the
Lguark=1 56 is substantially hxgher in mass than the
L quark=1 70. However, there is a well-known problem
that plagues naive bag-model spectrum calculations:%®
namely, the physical quark excitations corresponding to
this multiplet turn out to mix with the (unphysical)
translational zero modes of the center of mass of the sys-
tem, which also generate an L g, =1 56. The result of
this mixing is to lower the predicted mass of the multiplet
to a phenomenologically unacceptable level.
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It is likely that a similar phenomenon is taking place in
our Skyrme-model calculations. One would therefore ex-
pect that a proper “factoring out” of the Skyrmion’s
translational zero modes would raise the mass of the
Skyrme-model prediction for the mass of the Djs, im-
proving the agreement with experiment. Hopefully, the
overall size of the Skyrme-model curve in this channel
would be diminished as well. (Of course, the other S- and
D-wave states would also be expected to be modified, to
the extent that they, too, contain admixtures of the
L guark=156.)

Fortunately, the other 7N —mN partial waves pose no
such problems. It is particularly striking that both the
two- and three-flavor Skyrme models reproduce the “big-
small-small-big” pattern found in nature, whereby, for in-
stance, the Fs and F;; amplitudes take much larger ex-
cursions through the unitarity circle than do the Fy; and
Fy5 curves;® furthermore, in the model as in nature, the
first amplitude is almost always bigger than the last:
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FIG. 2. #N-—mA: Comparison between the two- and the three-flavor Skyrme models and the experimental solution of Ref. 22
(1.34<E. . <1.91 GeV). Channels are labeled by LL5;,;, with L and L' the incoming and outgoing pion angular momenta, respec-
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forth) denotes amplitudes which were found to be small and/or poorly determined by the available data, and were therefore not in-
cluded in the experimental solution. Note change of scale for Skyrme-model plots with L'=L +2.
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Fs>F;;, etc. We shall return to this phenomenon in
Sec. VI, where we shall argue that both the Skyrme model
and the optimal two- and three-flavor effective Lagrang-
ians of nature (which we do not know) lie in a large class
of models which can be expected to display a big-small-
small-big pattern.

A technical aside is in order concerning our parametri-
zation of energies. Each of the Skryme-model graphs de-
picted in Fig. 1(a) extends from threshold to an excitation
energy of 2ef,, where e and f, are the two independent
parameters that enter into the Skyrme Lagrangian, Eq.
(1). It is not clear to us how best to convert this energy
into GeV’s, especially in light of our having set
m,=mg=0 in our phase-shift calculations. However,
for purposes of comparison with experiment, an excitation
energy of 2ef,. can be thought of as corresponding rough-
ly to a total center-of-mass energy of 2.5 GeV (Ref. 7).
We emphasize once again that the shapes of the Skyrme-
model curves are completely independent of the values of e
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FIG. 3. #N—nN: Comparison between the Skyrme model
and the experimental solution of Ref. 26 (1.51<E ., <2.27
GeV). Channels are labeled by L;;,;. For a fairer comparison,
we have added a detached arrow in the experimental S, chan-
nel to indicate the expected behavior of the amplitude if one
were to extrapolate below the 7NV threshold to the wN threshold
[recall that these are degenerate in our unbroken-SU(3) treat-
ment of the Skyrme model]. Note that experimental and
Skyrme-model plots are shown on different scales.

2001

and f,, apart from the issue of determining precisely
where the tails of the curves should be cut off. For sim-
plicity, we shall cut off all Skyrme-model graphs present-
ed in this paper at 2ef, (although the experimental cut-
offs vary).

Let us turn to the process N —mA. Of all the inelastic
processes that we shall survey, this one is by far the best
understood. As a measure of this, the recent partial-wave
analysis of Manley et al.,??> which is based on a quarter-
million 77N events, is in good overall agreement with the
three principal analyses that preceded it.*~*

Figure 2 displays the experimental 7N —mA solution
drawn from Ref. 22 compared with the two- and three-
flavor Skyrme-model predictions. As in the elastic case,
the agreement is surprisingly good. In fact, there is 100%
agreement between both the two- and three-flavor models
and experiment in the signs of the 7N —mA amplitudes.”
We find the correctly rendered minus sign in the DD,
channel especially gratifying, in view of the fact that all
other PP, DD, and FF graphs lie in the upper-half plane.
It is also noteworthy that, in both the model and experi-
ment, the FF;s amplitudes circle around much more than
the FF;5 and FF3; curves.

For channels where L=L’, it is clear that the three-
flavor model improves significantly on the two-flavor
model as regards the magnitudes of the curves. However,
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the reverse is true when L’'=L *+2: in these channels, the
three-flavor curves are uniformly smaller by a factor of
5v'10/36~0.4 than their two-flavor counterparts, which
were already smaller than experiment. We shall see when
we discuss the processes KN—KA, KN—73*, and
KN —KA that the Skyrme model systematically underesti-
mates the sizes of the amplitudes with L'=L +2 compared
to those with L'=L.

In the remainder of this section, and in Secs. IV and V
to follow, we shall examine processes that involve strange
particles. As a result, whenever we refer to the Skyrme
model, we shall mean the three-flavor version necessarily.

Figures 3 and 4 display the Skyrme model juxtaposed
with experimental solutions for the processes 7N —nN
(Ref. 26) and "N—KA (Ref. 28). In general, the
Skyrme-model graphs are too small for the former, but
too big for the latter. For wN-—mnN, the agreement is
poor for the lower partial waves (L <2) but quite respect-
able for the higher waves (L > 3). Probably, this is large-
ly due to the fact that the S, P, and D waves in the model
are highly sensitive to 1/N, corrections, as mentioned
earlier. However, the issue is clouded by the fact that the
two most recent experimental analyses for this process are
themselves in severe disagreement with one another for
these waves.”®?” The overall degree of agreement is some-
what better for 7N—KA. Here, the most noticeable
feature of the model is the sign alternation characterizing
the plots; this pattern appears to be present in nature as
well, albeit in a more ambiguous manner.

Figure 5 depicts the process mN-—KZ (Ref. 29).
Despite the scale difference between the Skyrme model
and experiment in the D, G, and H waves, the agreement
generally is quite good. It is interesting to compare the
experimental graphs of Ref. 29, which are the ones
displayed in Fig. 5, with the results of previous partial-
wave analyses.’*~32 These earlier analyses, based on an
order of magnitude fewer events, required several addi-
tional strongly coupled resonances in the lower partial
waves. Furthermore, the four solutions presented in Ref.
31 and the two solutions given in Ref. 32 are all charac-
terized by positive F35 and F3; amplitudes, and they
predict that the F;5; amplitude should be larger than the
F3;. On all of these counts, the Skyrme-model results ar-
gue strongly in favor of Ref. 29.

Unfortunately, the analysis of Ref. 29 is restricted to
isospin-% channels. In the isospin- sector, there is no
visible agreement among the previous studies although on
the whole the Skyrme-model graphs seem closest to those
of Ref. 32.

The comparison with the Skyrme model sheds light on
an interesting observation made by the authors of Ref. 29.
They regard the fact that their partial-wave amplitudes lie
almost entirely in the lower-half plane as compelling evi-
dence against the existence of “exotic” 27-plet resonances
in these channels.”! This claim is based on the observa-
tion that, in the isospin-3 channels, the 27 couples to
mN —KZ with a sign opposite to that of the 10; a strong-
ly coupled exotic resonance would therefore be expected to
spoil the observed homogeneity in sign. However, the
Skyrme model provides a counterexample to this claim.
For, as we shall see in the following section, the model ac-
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FIG. 5. #N—KZX: Comparison between the Skyrme model
and the experimental solution of Ref. 29 (1.68<E ., <2.35
GeV). Channels are labeled by L,;,;. The experimental
analysis of Ref. 29 involves only I =% channels, whereas the

Skyrme-model results are shown for both I =3 and I=+.

Note that experimental and Skyrme-model plots for G waves
are shown on different scales.

tually features an overabundance of resonances in the 27.
Nevertheless, in the isospin-% channels of #N—KZ,
these exotics are outweighed by the stronger resonances in
the 10, which are nearly degenerate with those in the 27
(Ref. 72). The net result is that the Skyrme-model ampli-
tudes, too, favor the lower-half plane, as can be seen in
Fig. 5.

The issue of exotic resonances in the Skyrme model is
the topic of the following section.

IV. KN SCATTERING

We turn, next, to the case of KN scattering. The
isospin-0 and isospin-1 channels of KN correspond to
pure 10’s and 27’s of SU(3)gayo. Consequently, a KN res-
onance, although not forbidden, cannot be composed of
three quarks, but must consist instead of four quarks and
an antiquark in the simplest case.

The existence of such resonances has been the subject of
considerable controversy over the last two decades.”> The
most recent partial-wave analyses®> 3" tentatively favor
such states in the P;3 and Dy; channels, and perhaps in
the Py, Py, Dgs, and D5 channels as well. It is interest-
ing to see what the Skyrme model has to say on the
matter.

Figure 6 illustrates elastic KN scattering in the Skyrme
model juxtaposed with the results of the two latest
partial-wave analyses.’>3¢ The overall degree of agree-
ment between the model and experiment is poor. This
should not come as a surprise, for the following reason. It
turns out that the three-flavor Skyrme model with N, =3
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FIG. 6. KN —KN: Comparison between the Skyrme model and
<E.m <2.02 GeV) and “experiment II” from Ref. 35 (1.43<E .

two experimental solutions: “experiment I from Ref. 36 (1.61
<2.61 GeV). Channels are labeled by L;,,;. Note that experi-

mental and Skyrme-model plots for L >2 are shown on different scales.

contains as rotational excitations of the canonical
“hedgehog” soliton [Eq. (B1) below] an infinite tower of
baryon multiplets beyond the usual spin-3 octet and
spin-5 decuplet.* This tower includes, in particular, a
spin-3 10 and spin-+ and spin-—;- 27’s. Each of these
multiplets would naturally be expected to have excitations
of higher angular momentum, just at the usual octet and
decuplet have; such states would manifest themselves as
resonances in KN scattering. In short, there is nothing
exotic about KN processes in the Skyrme model; this is
confirmed by the multitude of obviously resonant
Skyrme-model amplitudes in Fig. 6.

It is instructive to consider an analogous situation in-
volving the two-flavor Skyrme model. It is well known
that this model contains states with I =J =+,3,3,%, ...
that emerge as rotational excitations of the hedgehog.b!
The two lowest-lying multiplets are naturally identified
with the nucleons and A’s, respectively, while the states
with I=J > % are traditionally labeled “artifacts of the
model” and swept under the rug. Thankfully, isospin
conservation forbids these states from appearing in the s
channel of 7N scattering, so that they do not really cause
a problem.” However, one can consider the gedanken ex-
periment of 7+A*+ scattering, which is pure isospin 3.
From the quark point of view, this is an exotic process
just like KN scattering, and we would expect to see a high
proportion of repulsive amplitudes. In contrast, in the
Skyrmion approach, there is nothing exotic about this
channel, since isospin-3 states exist. One would therefore
expect (and we have explicitly verified) that nearly all the
Skyrme-model graphs for 7*A*+ 7+tA+* evince the

usual resonant behavior.

The moral is that the Skyrmion approach can hardly be
expected to yield accurate information about KN scatter-
ing, as these processes directly probe those states that one
would prefer to dismiss as unphysical artifacts of the
model. This having been said, it is interesting to speculate
about whether those exotic states that do seem to be
present in nature reflect in any way the Skyrmion-type
properties of the nucleon. We offer the following cautious
observations.

(1) Although the four P-wave Skyrme-model ampli-
tudes appear to be repulsive, close inspection reveals that
the Py; and P;; amplitudes actually curve anticlockwise
before the cusps. Therefore, they might be interpreted as
very weak resonances superimposed on a strongly repul-
sive background. It is interesting to note that these are
the same two P-wave amplitudes that curve anticlockwise
in nature.

(2) The Dgy; channel is the most prominent of the D-
wave curves in the Skyrme model, and it is the most plau-
sibly resonant D-wave channel in nature as well.

(3) Interestingly, there appears to be some unexpected
resemblance in the P- and the D-wave sectors between the
four KN-—KN experimental amplitudes and their
7N — 7N counterparts [compare “experiment I”” in Fig. 6
to Fig. 1(a)]. In particular, in the P waves, the first and
fourth amplitudes for both processes curve anticlockwise,
while the second and third curve clockwise. Likewise, the
D waves are characterized by a pattern of “decreasingly
resonant behavior” across the four graphs in each process.
Consequently, it is conceivable that the same 1/N, correc-
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tions that are expected to improve the agreement in these
waves between the Skyrme model and experiment for
7N —mN will do likewise for KN —KN.

(4) Finally, we have come to expect reasonable agree-
ment between the Skyrme model and experiment in the F,
G, and H waves. It is unfortunate that the only such
channels for which experimental KN —KN amplitudes
have been presented, namely, the F5, G,7, and H g, are
predicted by the Skyrme model to be small and rather
featureless (Fig. 6). A much more critical test of whether
the model has anything relevant to say about KN scatter-
ing would be the appearance of resonances in the Fs,
Go7, and Hy channels. An analysis of these channels can
be expected in the not-too-distant future.”

The process KN—KA is understood much less well
than the elastic case. In fact, due to the dearth of data,
the authors of the only existing partial-wave analysis®®
were unable to decide among three possible solutions, each
of which gives a mediocre fit to the data (Y2/DF=2.33,
2.33, and 2.68, respectively, for solutions A4, B, and C).
We have depicted all three solutions in Fig. 7. Evidently
the Skyrme-model graphs bear no resemblance to any of
the three solutions, apart from a reasonable sign correla-
tion with Solution B. Particularly disturbing is the fact
that, while those channels in which the kaon jumps by
two units of angular momentum contribute appreciably to
the experimental T matrix, they are suppressed in the
Skyrme model by roughly a factor of 25 compared with
the channels in which L does not change.

All in all, it is unclear to what extent, if any, the
Skyrme model has anything valid to contribute to our
understanding of KN scattering.

KN — KN
Experiment Skyrme Model
l-OO.S 0 0.5 -05 0O 05 |-OO5 O 05 -05 0 0.5
. T

NS

0.5 i

NEYEYED

1.0

Y

N/
NN

0.5

T

0.5

Y, N N N
S B\ o o
N/ NoY
D

Dos
0.5

0.5

O /\1/
-05 0 05 -05 0 05

5y
Ny

0
-05 0 05

0.5 |

(R
\¥
o %\f/

g €
K

Y

-05 0 05

FIG. 8. KN—KN: Comparison between the Skyrme model and the experimental solution of Ref. 39 (1.48 < E., <2.17 GeV).

Channels are labeled by L ;.
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FIG. 9. Examples of the big-small-small-small pattern

displayed by the experimental KN —KN amplitudes (Ref. 39).
The energy was cut off at the average resonance scale for the P
and D waves (taken to be 1.75 GeV in both cases).

V. KN SCATTERING

We turn, finally, to an examination of KN scattering.
The elastic case KN —KN is considered very well estab-
lished, with excellent agreement between the two most
comprehensive partial-wave analyses (Refs. 39 and 40).
Figure 8 presents the Skyrme model versus experiment®
for this process. As in the case of wN scattering, there is
poor agreement for the S and P waves, but reasonable
agreement for the D waves and higher, with the F waves

being the best. The most obvious feature of the Skyrme-

SKYRME MODEL VERSUS . . . 2005

characterizing the four independent amplitudes {L,; _,
LO,ZL +1s LI,ZL-I’ Ll,2L+l } for each value of L >0; for
example, the Fys curve is larger than its Fy;, F;s, and Fy,
counterparts. In general, this pattern characterizes the ex-
perimental graphs as well. The Py; and D5 curves ap-
pear from Fig. 8 to be semiexceptions to the rule; howev-
er, if one cuts off the energies at the “natural” resonance
scale for each value of L (which we take to be the average
value of the masses of the prominent resonances formed
in these channels), then the big-small-small-small pattern
shows up much more clearly.”® This point is illustrated in
Fig. 9 for the P and D waves.

A subsidiary pattern apparent from the Skyrme-model
graphs of Fig. 8 is a relative size ordering among the three
“small” amplitudes for each value of L >2: for instance,
Dys <Dy3<Ds, and likewise for the F and G waves.
And indeed, with the glaring exception of the G,q, this
ordering holds for the experimental curves as well (Figs. 8
and 9).

We turn next to the inelastic processes KN —73 and
KN —7A. Here there are areas of serious disaccord be-
tween competing partial-wave analyses.’>*' As can be
seen in Figs. 10 and 11, the agreement with the Skyrme
model is likewise less good than for elastic scattering.
Particularly disappointing in the case of KN —72 (Fig.
10) is the discrepancy in the sign of the D;; channel. In
contrast, the agreement in the F-wave sector is excellent.
Moreover, the Skyrme model successfully predicts a big-

model graphs is the ‘big-small-small-small” pattern  small-small-small (or, perhaps more descriptively, a big-
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FIG. 10. KN —»72: Comparison between the Skyrme model and the experimental solutions of Ref. 39 (1.48 < E_. ., <2.17 GeV).
Channels are labeled by L;,;. Note that experimental and Skyrme-model plots for L =0 are shown on different scales.
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FIG. 11. KN—mA: Comparison between the Skyrme model
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that experimental and Skyrme-model plots for L =0 are shown
on different scales.

small-medium-small) pattern for KN — 2, just as for the
elastic case.

In Fig. 11 we have juxtaposed the Skyrme-model
graphs for KN —mA with the results of two independent
experimental analyses.’>*! Clearly the model is in better
agreement with Ref. 41 (“experiment I”) than with Ref.
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FIG. 12. Skyrme-model predictions for KN —nA.

39 (“experiment II”’) in the P and D waves, although in ei-
ther case the D;; amplitude is in complete disaccord.
Conversely, the agreement is much better with Ref. 39
than with Ref. 41 in the S and F waves; however, for the
F; channel, this is simply due to the fact that the authors
of Ref. 41 have cut off their analysis before the effect of
the 2(2030) resonance could be felt. It is pleasing that the
Skyrme model renders correctly the relative signs between
the two graphs for each L for this process.

Figure 12 displays the Skyrme-model curves for
KN—>nA. Although an experimental partial-wave
analysis for this process has never been published in
graphical form, Rader et al. quote couplings at resonance
of approximately —0.04, —0.1, and —0.05, respectively,
for the Dys, Fys, and Gy; amplitudes.*? Note the sign
disagreement with the Skyrme model in the first of these
channels.

Finally, Figs. 13 and 14 present the graphs for the pro-
cesses KN—m2* (Ref. 43) and KN —KA (Ref. 44). Here
the agreement with the Skyrme model is mediocre. In
both cases the Skyrme model underestimates the impor-
tance of the amplitudes with L'=L +2 compared to those
with L'=L, as before. For KN—73* the most serious
discrepancies are the signs of the DDs and PF,; chan-
nels; interestingly, the PF,; channel is also the site of
greatest experimental disagreement with SU(6) (Ref. 43).
There is also sign disagreement in the DG channels, but
the authors of Ref. 43 consider these waves to be less well
established. As for KN—KA, the comparison to the
Skyrme model is hampered by the fact that the experi-
mental solution finds only two clear resonances, the
D 3(1940) and the F;(2030), in the narrow energy range
probed. Disappointingly, the DD 3 curve has the opposite
sign of its Skyrme-model counterpart. It is noteworthy
that a negative experimental amplitude in this channel
disagrees, not just with the Skyrme model, but with the
nonrelativistic quark model as well.”’

In sum, although KN scattering in the Skyrme model
works less well than 7N, it is much more successful than
KN. Many sign and size patterns are mimicked correctly.
Excepting the S and P waves, the agreement in the elastic
case is especially good, and on a par with 7N —=7N and
7N —mA. It is an open question whether inclusion of
SU(3)-breaking terms (e.g., meson masses) into the effec-
tive Lagrangian would improve the agreement with exper-
iment for the scattering data, as it does for the static
properties of the model.®

VI. HOW MODEL DEPENDENT
ARE THESE RESULTS?

In the last three sections we have presented a detailed
comparison of the Skyrme model with experiment cover-
ing 165 7N, KN, and KN channels. Despite areas of deep
disagreement, such as “exotic” KN scattering, and S and
P waves in general, we consider the many areas of accord
obtained from such a simple model to be powerful evi-
dence for the validity of the soliton approach to baryon
physics.

In some people’s view, the surprising successes of the
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Skyrme model indicate that the Skyrme Lagrangian Eq. and final meson orbital angular momenta are equal. In

(1) must be extremely close to the optimal effective La-  our eyes, a particularly striking achievement of the
grangian of nature, .Z,, which is derivable in principle Skyrme model in both its two-flavor and three-flavor in-
from QCD: carnations is the big-small-small-big pattern characteriz-
ing the four elastic N curves for each value of L >0 [cf.

Z opt= L skyrme - Fig. 1(a)]. Let us start by reviewing the two-flavor

We do not share this opinion. In our view, the Skyrme  analysis of this pattern presented in Ref. 8. We will find

Lagrangian is not much more than a convenient testing it convenient to represent the 7N — 7N partial-waye am-

ground for soliton dynamics; it is, in a sense, the PlltUd“‘ by the notation T7;;° with I=+,5 and

“minimal” model. A more realistic starting point would =~ J=L*3. From the formula for two-flavor scattering,

necessarily involve many more low-lying mesons and  Eq. (2), we obtain™

higher-derivative interactions; there has already been pro-

fl::z litg:vs'flrd extending the Skyrme model along both TZIIVZJ,VL-I/Z: 2L3 - 17L—1,LL+ ngl _— (4a)
In light of this, it is crucial to determine to what extent

the Skyrme-model results presented here (both good and NN 2L +3

bad) can be expected to survive such modifications. This  TLi/2L+12= 3L 43 LLL +3L 3 TLHLLL (4b)

is the topic of this section. In the course of the discussion

we shall discover what we believe to be the key to the (2L —1XL —1) _

Skyrme model’s successes in describing meson-baryon TNTN e A=) L0

scattering. This will enable us to define implicitly a large TisaL-1n 6L (2L +1) LME t oL TLLL

class of models which, we believe, would enjoy compar-

able overall success. 2L +3

o —T , (4c
We shall focus at first on processes where the initial 4L 42 LHULL )
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FIG. 13. KN—mX*: Comparison between the Skyrme model and the experimental solution of Ref. 43 (1.78 <E_, <2.17 GeV).
Channels are labeled by LL;,;. For a fairer comparison, we have added a detached arrow in the experimental PPy, DD;s, SDy;, and
DS 3 channels to indicate the expected behavior of these amplitudes if one were to extrapolate down to threshold. The experimental
graphs have been multiplied by an overall minus sign in order to conform to the “baryon-first” convention. Note that experimental
and Skyrme-model plots for SD, DS, PF, and FP channels are shown on different scales.
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TN,,N :ZL—I 2L+3T
L3/2,L+1/2 4L +2 6L+6 LLL

(L +2)(2L +3)
(6L +6)(2L +1) L+VEL -

To make progress, let us make use of the fact that, in
the Skyrme model, the variation of 7, ,; ;; from the ori-
gin is essentially negligible compared with that of 7, _; ;1
and 7;;; for reasonable energies (cf. Appendix A). Ac-
cordingly, let us make the simplifying approximation

TL-1,LL+

(4d)

T 41,0 (@) =0

in Eq. (4). The big-small-small-big pattern then emerges
as a natural consequence of the group theory: it is simply
due to the large group-theoretic coefficients multiplying
1r _1,or and 7p7; in Egs. (4a) and (4d) compared with
(4b) and (4c). In this way, the pattern in the two-flavor
Skyrme model results from an elegant interplay between
group-theory and dynamics.

How model dependent is this argument? Recall that, as
noted in Sec. II, the group-theoretic structure of Eq. (2),
and hence of Eq. (4), is completely independent of the de-
tails of the meson Lagrangian that one starts with, but re-
lies only on the “hedgehog” structure of the underlying
Skyrmion. The only specific dynamical input from the
Skyrme model that we needed to formulate the argument
was the presence of a two-tiered “hierarchy” among the
reduced amplitudes. We can therefore assert that the big-
small-small-big pattern will characterize any two-flavor
Skyrmion model for which the reduced amplitude 1y 11
is negligible compared with vy _, ; and 7r ;. As such,
the pattern can be considered a quasi-model-independent
result. In particular, since the pattern characterizes the
experimental amplitudes (apart from the D waves), it is a
safe bet that the optimal effective Lagrangian of nature,
which we do not know, itself falls into this class of
models. Further evidence for this claim will be put forth
in the following section.

There is a natural way to extend this line of reasoning
to the three-flavor formalism. Recall that, in the three-
flavor Skarrme model, the variation of the reduced ampli-
tudes 71"} LL’TLLLaTL+1/2{,% TL-107 , and TL+1/2,LL
is small in comparison to TL LL> T, gu. ,and 71 _ 1o pr-
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FIG. 14. KN —-KA: Comparison between the Skyrme model
and the experimental solution of Ref. 44 (1.92<E_, <2.17
GeV). The nonresonant experimental amplitudes have been
parametrized either as constants or as linear functions of ener-
gy. Channels are labeled by LL;,;. For a fairer comparison,
we have added a detached arrow in the experimental DS;; chan-
nels to indicate the expected behavior of the amplitude if one
were to extrapolate down to threshold. Note that experimental

If one neglects the former, Eq. (3) implies the following  and Skyrme-model plots for L =L'=4 and for L'=L +2 are
approximate expressions for the physical 7N amplitudes: shown on different scales.
T e QLSO oy DSBS g DL sa
TL1/2L+1/2—-T3£52_(L£'L%'1_)— Ll Of L+ 1;255(12‘—:_11) L 45(2;+1) LTIRY T (5b)
TLg}rZNL-—l/ZZ (2113_5[14)((521;__1)12) TLI'O{ L+ 251L35le }_IL% + 4;3i151)72—1/2,LL ’ (50)
TL3/2L+1/2 13375 ;ﬁ;i Ll Oi L+ 1_2;%% Ll 9 z?;%[‘:{__l‘)‘i—uz,u . (5d)

Although these expressions are more complicated than their two-flavor counterparts, the big-small-small-big pattern re-
veals itself, as before, in the relative sizes of the group-theoretic coefficients.
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In addition, despite the different coefficients involved in Egs. (4) and (5), the first of the “big” amplitudes in each in-
stance is predicted to be “bigger” than the last:

7NN aNaN
Tri/a—12>TL3p,L 4172 -

This is manifestly the case in the two- and three-flavor Skyrme models; and indeed, with the exception of the P waves, it
is true for the experimental amplitudes as well. _ _
We can profitably apply this mode of analysis to a wide range of other processes. Most notably, for KN —KN we find

TR 1 /2~ (2[;&‘1()2(12‘0i 1-+)-9) 0+ “9162_9 i + 151(4212‘_:_61) TE1LL (6a)
TE&ENH/zzﬁ:_:—”‘TL@{,LL + 9&2 i?) i + 15(22LL+ D Tl (6b)
TEIKIEN—I/zz (25751‘1 ()Zf)i;):}) Tyﬂ,u. + 2;{/‘0;3 Tyllg’ + 452(22121:_41) T{—I/Z,LL > (6¢)
THE 1/2’1% %%%Tyﬂ,u. + %‘%T&g; + 3(2[2‘—1‘_‘_1)7'2— 12,LL - (6d)
Similarly, the T matrix for KN —Z is determined by
TEJ&?— 1/2%=— it ;4:))1(4‘22 :211) W TPﬂ,LL - Qé‘l“g%ﬁﬂ_lig} + %Tf—l/z,u > (7a)
ng,?ﬂ» 12— %Z:L%‘/la)fyﬂ,u - %7’&2’ + ZB—(LZ;L[—%{)—TZL_ 1/2,LL > (7v)
T?lv,?:—l/Zz"‘ (2502(12)(118{;_;1) Tfo{,LL - 71;021 7'}_1112} + 45%;}::1) Tf—l/z,LL ’ (7c)
Tﬁl,’iﬁ 125=— ]‘5%%“_;11_)7},191,“ - gg(LTi%‘)‘T}_IL’?.] + ’9'(2—12‘%‘1-)7'1?— 1/2,LL - (7d)

For both these processes, as a moment’s inspection of the coefficients confirms, we can expect to see a big-small-small-
small pattern—which is precisely what we found in the previous section for both the Skyrme model and experiment
(Figs. 8—10). In addition, the group-theoretic coefficients appearing in Eq. (6) suggest a relative size ordering among the

three “small” physical amplitudes,
KNKN KNKN RNEKN
TroLv12<Toir—1n<TirLtin,

which we also noticed in Sec. V.

The same type of quasi-model-independent analysis successfully predicts the signs of many inelastic amplitudes, as
well. As an example, consider the Fs and F; channels for the process KN —mA (Fig. 11). Equation (3) tells us

Fis: T=(—0.037032 +0.037{3 —0.087% /5)33) +0. 15743 —

Fi7: T=(0.087530 4+0.077{4% —0.021% 5)33) —0.007{3) —

If we assume that the reduced amplitudes enclosed in
parentheses dominate these channels in nature as they do
in the Skyrme model, we correctly predict the — and +
signs for the F;s and Fj;, respectively; nor are we
surprised to find a 1:3 ratio in the magnitudes of the ex-
perimental curves (versus 1:2 in the Skyrme model).”

In sum, we have outlined a methodology that success-
fully explains many of the observed features of the experi-
mental meson-baryon partial-wave T matrix. Moreover,
we have seen that the general success of the Skyrme
model can be largely explained by the hypothesis that the
Skyrme Lagrangian shares with the (unknown) optimal ef-
fective Lagrangian . ., (i) the “K-symmetry” characteris-
tic of hedgehog solitons and (ii) a plausible two-tiered
hierarchy among the reduced amplitudes.

00475(3)30} ——-0.037’(_*7'/2)33 —-0.037'(_5/2)33 +0.20T(;/2)33 (8a)

0.04743% —0.097% 13133+ 0. 1575 2)334+0.0277 /2133 - (8b)

This hierarchy defines a large class of models which we
expect to enjoy success comparable to that of the Skyrme
model in explaining the experimental scattering data. It
would, however, be a mistake to conclude that all predic-
tions made by the Skyrme model are likewise quasi-
model-independent. As a counterexample consider once
again the process KN —72 (Fig. 10). The Fys and G,
channels are governed by Eq. (7a), with L =3 and L =4,
respectively. Note that, taken together, the first two coef-
ficients (which are negative) are comparable in size to the
third (which is positive). Thus, the overall sign of the
physical amplitudes will be determined by the detailed
dynamical question of whether 0 } 1 and 7p4Y
outweigh 7/ _, 5 ; or vice versa. One would expect the
answer to this question to depend crucially on our particu-
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lar choice of Lagrangian.. [The reader should contrast this
example with that of Eq. (8).] In light of this, it is not
surprising to find sign disagreement between the Skyrme
model and experiment in the Gy; channel.

As a somewhat different example, consider the Fy; and
Goo amplitudes for the same process. Here, the coeffi-
cients given in Eq. (7b) are so small to begin with that it
was probably an unjustified approximation to have
dropped the contributions of the other reduced ampli-
tudes. (Even a ‘“small” reduced amplitude, after all, can
make a significant contribution if it is multiplied by a suf-
ficiently large number.) In particular, the coefficients of
lef}, rr and 71, s, for these channels turn out to be
an order of magnitude bigger than those that appear in
(7b), and of opposite sign from one another in addition.
As a result, we can no longer with any degree of confi-
dence make a quasi-model-independent sign prediction
about the physical amplitudes, and should not be
surprised to learn that the Skyrme model disagrees with
experiment over the sign of the Fy;.

We can summarize the discussion so far in this section
by the following statement: Whenever a Skyrme-model
prediction follows from (i) the two-tiered hierarchy among
the reduced amplitudes and (ii) group theory, as illustrated
in Egs. (4)—(8), there is a high probability of agreement
with experiment. Conversely, in all other cases the agree-
ment is much less reliable. In particular, we can certainly
expect that specific details about the shapes of amplitudes
will vary significantly from model to model, as will the
precise values of masses and widths of resonances. In all
of these areas, there is significant room for improvement
over the Skyrme model.

One specific recipe for improvement is suggested by the
observation that fully 35% of the channels with L'=L
for which the sign of the Skyrme-model amplitude
disagrees with experiment are D-wave processes. This
leads one to suspect that the hierarchical hypothesis prob-
ably does not work very well in the D-wave sector of
-Z opr—a conclusion bolstered by the violation of the big-
small-small-big pattern in that sector [Fig. 1(a)]. (We will
supply a further piece of evidence for this conclusion in
the next section.) Unfortunately, it is not clear how best
to modify the hierarchical assumption for the D waves in
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order to predict the signs more accurately. However, an
analysis similar to that used in Eq. (8) suggests that the
reduced amplitudes T&}’zo], r&‘z”z‘”, and 75 /), probably can-
not be neglected in nature, as they can in the Skyrme
model.

It is interesting to note that, in the Skyrme model, the
two-tiered hierarchy (i.e., the unexpectedly small size of
five of the eight reduced amplitudes for each L >0) actu-
ally comes about for three independent reasons.

(i) The reduced amplitudes T 1/2,LL and TE+ 1/2,LL are
small because they only receive contributions from the
Wess-Zumino term.!?

Gi) 71| 1 and 7 ;1,51 and 774,51, are small be-
cause the differential equations that determine the phase
shifts”!>14 contain attractive terms proportional to fac-
tors such as [L(L +1)—K (K +1)]; such terms therefore
give a net repulsive contribution to these three reduced
amplitudes, which have K> L. (Note that 77 ., s is
thus “doubly small.”)

(iii) 7§3Y vanishes identically in the Skyrme model be-
cause of the commutator in the middle term of Eq. (1).

In our opinion, conditions (i) and (ii) will almost surely
survive the addition of extra terms into the Skyrme La-
grangian. In contrast, the size of TB;? can be expected to
vary from model to model. In fact, it is possible that this
amplitude might not be completely negligible in the “op-
timal” three-flavor effective Langrangian of nature, and
that this might partially account for some of the disagree-
ment with the Skyrme model.

Thus far in this section we have focused on processes in
which the initial and final meson orbital angular momenta
L and L’ are equal. The analysis has involved an inter-
play between group theory and dynamics, the former pro-
viding the numerical coefficients, and the latter enabling
us to focus on only three of the eight contributing reduced
amplitudes. In contrast, processes with L'=L +2 are
much simpler to analyze, since, as discussed in Sec. II, the
physical amplitudes are proportional to a single reduced
amplitude Ti’i‘?)uzrkligl with K=(L +L')/2. Thus all
PF and FP 7N, KN, and KN amplitudes, for instance, are
predicted to be proportional to one another in the Skyr-
mion approach regardless of the details of the effective
Lagrangian that one starts with. Predictions of relative

TABLE XIV. Model-independent group-theoretic coefficients, and sizes of the experimental ampli-
tudes, for processes in which the meson’s angular momentum changes by two.

Channel Coeff Size Channel Coeff Size
SD(mN —»mA) —0.44 0.2 FPs(mN —7A) 0.33 —-0.3
SD; (7N —»mA) 0.14 —0.3 FPys(mN —7mA) —0.10 0.15
DS 3(wN —>7mA) 0.31 —0.2 PFy (KN —m3*) —0.27 —0.15*
DS;3;(wN —7A) —0.10 0.2 FPys(RN —»73*) 0.22 —0.15
SD (KN —-KA) 0.04 0.17* FP,s(KN —7Z¥) —0.08 0.01
DS 3(KN —-KA) —0.02 0.1 FP,s(KN—EKA) 0.03 ?
SDy (KN —7X*) —0.30 0.05
SD (KN —>73*) 0.11 —-0.2 DGys(KEN —>72*) —0.27 —0.03*
DS ;(RN —>73*) —0.07 0.15 DG s(KN —>u3*) 0.09 0.03*
SD,(KN—EKA) —0.04 0.04 GD,;(KN—KA) 0.03 0.02*

DS ;(RN —KA) 0.02 —0.1
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signs and sizes between such amplitudes thus reduce im-
mediately to questions of pure group theory.

Table XIV summarizes the situation for the 20
aN—mA, KN—KA, KN—KA, and KN—uZ* channels
with L'=L+2 for which we presented experimental
partial-wave data in Secs. III-V. The column labeled
“Coeff> gives the group-theoretic coefficients from Eq. (3)
(rounded off) that multiply the reduced amplitude 7§;%},
K=(L +L")/2. (Since, in the Skyrme model, these re-
duced amplitudes lie in the lower half plane, the resulting
physical Skyrme-model amplitudes will have a sign oppo-
site to the indicated coefficient.) The column labeled
“size” gives our rough estimates of the global sizes of the
experimental amplitudes (admittedly an ill-defined con-
cept), together with the observed signs. The five channels
in which the Skyrme-model graph disagrees in sign with
the experimental analysis are marked by asterisks.

The relative sign and size information contained in the
“Coeff” column within each of the three categories
SD /DS, PF/FP, and DG/GD is completely model in-
dependent. Unfortunately, the size predictions do not
seem to correlate well with experiment, and no SU(3)-
preserving modification of the Skyrme Lagrangian can
improve matters. In particular, the KN—KA and
KN —KA curves are predicted to be an order of magni-
tude smaller than the corresponding 7N — A amplitudes,
whereas if one trusts the experimental solutions they are
almost as big. In contrast, the questions of the relative
sizes between the three categories, as well as the relative
sizes vis-a-vis the amplitudes with L’'=L, are highly
model dependent; in both these areas, the latter especially,
the Skyrme model can be improved upon greatly.

As for signs, there is of course no way to bring about
agreement with the experimental analyses regarding the
sign of the SD,;(KN—KA) and the PFy;(KN—mZ*)
graphs without destroying the agreement for the other
SD /DS and PF/FP channels. On the other hand, one
might imagine constructing a model in which the reduced
J

(4L +2)TIAH L 1 p— (L =TI _1p—(BL +3)T

and

(4L +2)TINN L 12— 3LTIN L _1p—(L +2TT +12= " L1t

These equations relate the experimental 7N amplitudes to
reduced amplitudes which can presumably be extracted
from a phase-shift analysis of .Z,. Unfortunately,
-Z op» Obtainable in principle from QCD, is unknown.
Thus, without some further approximation, Eq. (9) is en-
tirely without predictive power.

However, using the three-flavor Skyrme model as a
guide (cf. Appendix A), one can expect the right-hand
sides of (9) to be extremely small (note that they would
vanish identically were it not for the Wess-Zumino term).
Accordingly, let us examine the linear relations between
experimental amplitudes that result from setting the
right-hand sides of (9) to zero. Here we find a surprise:
these are precisely the same relations that follow, without

aNTN _
L1/2,L+1/2—

amplitude T!;%:,,O] lies in the upper-half plane, as opposed to
the lower-half as in the Skyrme model; such a model
would then agree with the experimental sign predictions
for the three DG and GD channels listed in Table XIV. It
is reassuring that the Skyrme-model sign predictions agree
fully with the experimental solution for 7N —#A, which
we can trust much more than the other three processes.

VII. LINEAR RELATIONS BETWEEN
EXPERIMENTAL AMPLITUDES

In order to assess the validity of the three-flavor
scattering formalism that we have developed, it is crucial
to verify that the successes of the two-flavor approach are
retained. In Sec. III and in Ref. 13 we showed that, in
fact, including a third flavor improves the agreement be-
tween the Skyrme model and experiment for the process
7N —7N. In this section we consider the effect of incor-
porating strangeness on the model-independent linear rela-
tions between experimental wN amplitudes that were
analyzed in Ref. 8. [One can also derive relations between
7N and KN amplitudes; see M. Karliner, Phys. Rev. Lett.
57, 523 (1986).] In addition, we shall supply evidence for
the “hierarchical hypothesis” put forth in Sec. VI.

Our analysis in this section is predicted on the assump-
tion that Eqgs. (2) and (3) are applicable, not only to the
specific case of the Skyrme model, but also to the optimal
effective Lagrangian .Z, to which the Skyrme model is
at best a crude approximation. (Of course, the reduced
amplitudes will differ.) With this in mind, we now leave
the Skyrme model behind, and apply Egs. (2) and (3)
directly to the study of the real-world 7N amplitudes. In
short, we are assuming that a Skyrmion interpretation of
the baryon is legitimate, and that the simultaneous ap-
proximations of large N, and exact SU(3)g,,or [both of
which enter crucially in the derivation of (3)] are physical-
ly relevant.

If we represent the physical amplitudes for 7N —=N by

TT™V as before, then Eq. (3) can be shown to imply

13L —5 - + 23(L +1) - (9a)
T 45 L-aLLt T e TLAALL

23L  _ 13L +18 _

T 45 TL+I2LL - (9b)

any such dynamical approximation,® from the two-flavor
formalism.®'> In general, these relations work quite well,
with the exception of severe problems in some of the
lower partial waves, for which a leading-order 1/N,
analysis is inadequate; the reader is directed to Ref. 8 for
full details. The logical conclusion is that the Wess-
Zumino term must make only a small numerical contribu-
tion to the real-world meson-baryon T matrix.%!

It should be emphasized that, a priori, we had no right
to expect any relations, approximate or not, between phys-
ical 7N —7N amplitudes to emerge from the three-flavor
formalism. The reason is the following. In the two-flavor
approach, the four physical 7N amplitudes for each L >0
(ie, J=L++ and I=7,5) are expressed through Eq.
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(2) as superpositions of only three reduced amplitudes.  surprise, since the group-theoretic factors multlplymg the
Consequently, at least one nontrivial relation between TkLL] s are completely different in the two approaches.??

physical amplitudes is guaranteed for each value of L (in We can also extract from (3) information about
fact, there are two). In contrast, in the three-flavor ap- 7N—mA. Let us represent the physical amphtudes for
proach, these same four amplitudes are linear combina- this process by T,_L 77 with L’ the exiting pion angular

tions of eight reduced amplitudes. That the relations turn  momentum (which can differ from L by two). For the
out to be the same in both formalisms is cause for further ~ case L =L’, Eq. (3) implies

172
4L —1) TNTA 3

TriTA _ T N (L + 1L +3)2L —1)
LL3/2,L —1/2 \/1_0(2L+1) LL1/2,L —1/2 2L +1

1oL T TS 4172

(2L —1)(L +1)]'7
[ 9(2L+T . (TL-12,0L —TL412,00)  (102)

and likewise

TZIIY;’/A2,L+I/2‘_ 2L +1 10(L +1) LL1/2,L—-1/2" \/Tf)(2L+1) LL1/2,L +1/2

1
T 9(2L +1)

172
3 L(2L+3)(2L—1)] Loy ML +2) onea

L(Q2L +3)(2L +1) _ _
—Z+1 + (L —1/2,LL —TL +1,2,LL) - (10b)

Setting the right-hand sides to zero as before, we again recover precisely the two-flavor predictions of Ref. 8. Similarly,
for the case L'=L +2, Eq. (3) can be shown to imply the simple proportionality relations

VL 1T L +12=—[10L + D12 TI 0 300 412=—VL ¥ 2T L1 L 430
=[10(L +2)1"* TS L30,L 43,2 (11)

which are identical to the two-flavor results, with no “Wess-Zumino corrections.”
In the two-flavor case, there was, for each L, one further (fairly successful) model-independent prediction relating the
processes TN —mN to wN —mA (Ref. 8):

172

Tn’N A

172
2L +3
LL1/2,L—12F |7 —

L

2L —1

Lil T L 4172 » (12)

TNTN TN#7N
T -1 2=TLiL +12=

but this is completely lost in the three-flavor approach.
In sum, we have shown that, with the dynamical assumption

TL+1/2,0L (@) =0

suggested by the three-flavor Skyrme model, the three-flavor formalism yields almost all the model-independent linear
relations between experimental 7N scattering amplitudes that emerged from the two-flavor approach. It is natural to ex-
plore the consequences of making additional dynamical assumptions about the optimal two- and three-flavor effective
Lagrangians of nature.

A natural set of such assumptions is suggested by the “big-small-small-big” and “big-small-small-small” patterns ex-
hibited by the experimental 7N and KN amplitudes, respectively. As reviewed in detail in the previous section, we can
expect the big-small-small-big pattern to occur automatically for a broad class of two-flavor models for which the re-
duced amplitude T Ol Lz are negligible compared with TL‘_O] rr and TLLL Similarly, we saw that the same pattern
would characterize three-ﬂavor models if, out of the eight reduced amplitudes for each L > 0, the amphtud&s f l LLs
T}_‘}J}, TL+1,2,LL> and 71 1,2 11 are small compared to the others. We have seen that these conditions are met in the two-
and three-flavor Skyrme models. Fortunately, we have the means of testing whether these dynamical assumption are
valid approximations for the optimal two- and three-flavor effective Lagrangians of nature as well. For, with these addi-
tional approximations, the two-flavor formalism [Eq. (2)] and the three-flavor formalism [Eq. (3)] can be shown to imply
the extra relations

2L —1 172

L +1

L
2L +3

LTI 10+ (L + 2TV, 41 p=3L

TNTA
TIL 2L +12 (13)

172
] T AL —12+(10L +11)
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and
oL 1 172 I 172
LTI L 12+ (L +2DTE R 41232 m] TEE oL 12 +804L +15) | gomm—s | TE s 41
(14)
respectively, which relate the processes mN—mN and ACKNOWLEDGMENTS

TN —7A. . . .
Figure 15 tests these relations as applied to the experi- We are indebted to Dick Arndt, Fred Gilman, Bob

mental 7N —=N (Ref. 19) and 7N —7A (Ref. 22) P-, D-,  Jaffe, David Leith, Peter Litchfield, Mark Manley, Ben
Nefkens, and especially Michael Peskin for helpful com-
ments on the manuscript. In addition we have benefited
from conversations and correspondence with Stan Brod-

and F-wave amplitudes.®> Clearly, there is no substantial
difference between the two- and three-flavor predictions

in the degree of agreement. It should be noted that the 4 ! X
agreement in the signs of the amplitudes is in itself a non- Sk, Dick Cutkosky, Max Ferro-Luzzi, John Ford, David

trivial result. For the P and F waves, the relations appear ~ Roper, Pekka Sinervo, Tom Trippe, and Charles Wohl.
rather well satisfied. In particular, Egs. (13) and (14)  Finally we would like to express our thanks to Lucy
work roughly as well as Eq. (12), which likewise relates  Yuen, Kevin Johnston, and above all, Sylvia MacBride in
7N —mN and mN —7A. Equation (12), however, was de- the SLAC Publications Department. This work was sup-
rived from the two-flavor approach without additional ~ ported by the Department of Energy, Contract No. DE-
dynamical approximations (cf. Ref. 8 and Fig. 7 therein). AC03-765F00515.
In other words, incorporating these extra approximations
does not noticeably worsen the agreement for the P and F APPENDIX A: REDUCED AMPLITUDES
waves. Unlike Eq. (12), however, there is poor agreement OF THE SKYRME MODEL
evident in Fig. 15 in the D waves—which is consistent
with the fact that the big-small-small-big pattern itself
does not work well for the D waves [cf. Fig. 1(a)].

Our conclusion, suggested by the big-small-small-big
and big-small-small-small patterns and reinforced by Fig.
15, is that the dynamical assumptions stated above are

Figures 16 and 17 depict the reduced amphtudes of the
three-flavor Skyrme model. The amplitudes T}(L o) are
identical to their two-flavor counterparts, and were
presented previously in a less transparent form.”!* It is
convenient to present the results for the linear combina-

(with the probable exception of the D waves) good  tions

fiescr'ipt'gons of the optimal effective Lagrangian derivabl‘e, ThLL = A2 42 1))

in principle, from QCD. We hope that, as such, they will

prove to be useful constraints on the current model-  The differential equations from which the %% s and
building efforts of Skyrmion physics. ki 2 *'s are extracted are given in Refs. 7 and 14 and in
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FIG. 15. Test of Egs. (13) and (14). The upper and lower expressions in braces, which refer to the process 7N — A, are the two-
flavor and three-flavor predictions, depicted by dot-dash and dotted lines, respectively. The expressions to the left of the equalities,
which refer to #N —mN, are depicted by solid lines.
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FIG. 16. The reduced amplitudes of the Skyrme model for the case L =L’. See text of Appendix A for details.
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Ref. 13, respectively.?

It is clear from Fig. 16 that, with some exceptions in
the lower partial waves, the reduced amplitudes { T}fﬁ) } LL>
T}_kg], 71 _1,2,0L )} vary much more dramatically as func-

tions of energy than do the five amplitudes {TLlfl_LL,
L0,0] + — —
TLLL s TL +1/2,LL> TL—1/2,LL> TL +1/2,LL}'

APPENDIX B: FORMALISM
FOR THREE-FLAVOR SCATTERING

In this appendix we review the derivation of the three-
flavor scattering formula, Eq. (3), given in Ref. 12. We
shall be focusing on Lagrangians such as Eq. (1) where
Ue€SU(3). The key assumption is that the Lagrangian
admits a “hedgehog” soliton solution Uy that lives in the
conventional isospin subgroup of SU(3), viz.,

with A% a=1,...,8, the Gell-Mann matrices. We shall
refer to Uy as a Skyrmion in its canonical orientation.®’

Of course, other orientations of the Skyrmion are possi-
ble. In fact, by virtue of the assumed SU(3)q,,,, invari-
ance of the Lagrangian, one can construct a family of de-
generate solitons simply by taking

Uy,=AUyA~!, A€SUB). (B2)

However, let us forget for the moment about the existence
of these degenerate configurations, and concentrate on the
simplified problem of mesons scattering from U,. This
entails letting®
3 L. 2i 8
Uy—exp |iF(r) 3, ?‘k’+?— > ¢°A° (B3)

i=1 T a=1

and expanding the Lagrangian to quadratic order in the

3
Uy=exp |iF(r) z’r“')d , (B1) ¢’s. Higher-order terms are suppressed by powers of
i=1 1/fr~1/vV'N,, and are therefore ignored in our lowest-
5 0.
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FIG. 17. The reduced amplitudes of the Skyrme model for the case L'=L +2. See text of Appendix A for details.
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order treatment.

What will the resulting quadratic Lagrangian look like?
Thanks to the hedgehog structure of the Skyrmion, it will
consist of a sum of terms in which all isospin and spatial
indices have been contracted together in all possible ways
to form singlets under the “hybrid” angular momentum
K, which is the vectorial sum of isospin and angular
momentum. Also, since the Skyrmion commutes with A%,
the Lagrangian will embody hypercharge conservation.
Consequently, kaons will be coupled only to kaons, and
antikaons to antikaons. There will be 77 and 17 cou-
plings as well, but 77 terms are forbidden by G parity. In
other words, the T matrix T% characterizing the process

#°+ canonical Skyrmion— ¢®+ canonical Skyrmion ,

which is a priori an 8 X 8 matrix in the flavor space of
pseudoscalar-octet mesons, actually block diagonalizes
into a 3X3,a 1 X1, and two 2 X2 pieces, corresponding to
m, m, K, and K scattering, respectively.

We have not yet made full use of the K symmetry of
the canonical Skyrmion. To do so we first expand ¢ and
#° in spherical harmonics Y., and Y., with primes
henceforth denoting final-state quantities. These orbital
angular momenta are, in turn, added vectorially to the
mesons’ isospin I° and I’ to form states | K?K,LI®) and
|K'2K,L'I®). The K symmetry of the canonically
oriented Skyrmion then implies K=K’ and K, =K}; like-
wise, thanks to the block-diagonal nature of T? we must
have I°=I°% 1In contrast, L and L’ will not necessarily be
equal, but can differ by two. Scattering in these K chan-
nels will then be described by the reduced amplitudes
'r}(l,ﬂ, 3%, and 7{/%*Y defined in Sec. II (just as
scattering from a spherical potential can be characterized
by reduced amplitudes 7). In equations, the 7 matrix
will thus be given by

T?=8,08yaps > ($%x")|L'M'){LM | $%x))
LML'M'
x 3 (L'I°M'I} | KK,)
KK,

x (KK, | LI'MIZ Y7l X7,

(B4)

where {I°I],Y%} and {II’,Izb, Y?} are the SU(3) quantum
numbers of the incoming and outgoing meson, respective-
ly.

This formula is easily generalized to account for the
scattering of a meson, not from a canonically oriented

]

T({LsRR ¥ L iotIzt0t Yot} = {L's'R'R {6tV Tt 710t Y 1t })
=8R R’ 81 I 8 8 . 88

’ ’
tot ™" tot tot” tot Lol tot JZJZ

ztot” ztot

Y Y

tot

s—s [(dimR)(dimR’)]'/?

X(—1) ;
dimR

{rvy i K

S 332 +1)2K +1)
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Skyrmion Uy, but rather from a rotated Skyrmion U, as
defined by Eq. (B2). The prescription is simply

T S D 4), TP 4)], (BS)
cd

with Z2®(4) the adjoint representation of A. Armed
with Egs. (B4) and (B5), we are finally prepared to tackle
the scattering of a meson off a physical baryon, which, in
the soliton approach, is characterized by a superposition of
U ,’s for all values of 4 €SU(3), weighted by appropriate-
ly constructed wave functions X(A4). The physical T ma-
trix is then given by

Jooiny 34 Xl 4) 3, D) T D D A) ] Kot A) -
Su(3) od

(B6)

The final ingredient that we need is an explicit expres-
sion for the baryon wave functions X(A4) describing a
baryon with spin, isospin, and hypercharge quantum
numbers {s,S,,i,i;,Y}. Unfortunately, the three-flavor
wave functions given by Guadagnini,* which are often
used in the literature, are characterized by nonstandard
transformation properties under isospin and angular
momentum. The correct wave functions, are, instead,

) . 172
X()=L |9BR |\ gRr -1 T, B
T 2
where a={s,—s,;,1}, B={ii,,Y}, R denotes the

SU(3)favor representation of the baryon, and dimR is its
dimension.

As in the two-flavor case,® the integration over 4 can
be carried out in closed form, thanks to some standard
identities. The resulting expression simplifies greatly if,
as indicated in Sec. II, we project the initial and final
meson-baryon systems onto states of definite total angular
momentum and SU(3)q,., The latter projection is ac-
complished with the help of an SU(3) Clebsch-Gordan
coefficient

(Ryiyig1Y15R,i50,,Y, | Riot Vo210t Yiot )
which can be factored conveniently into the product

R, R,
LY, i,Y,

Ry

( ilizizlizz l Itotlztot) Itot Ytot

of an SU(2) Clebsch-Gordan coefficient with a so-called
isoscalar factor.’! With quantum numbers defined as in
Sec. II we find, after some manipulation

KiJ
s'L'T

Ry’
iL1+Y

KiJ
sLI

Ry
L14+Y

R' 8
s't 1Y

R 8
s1 IY

T, }{ILY'}.

(B8)
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TABLE XV. Coefficients of the reduced amplitudes when both the initial and final baryons are in the octet.
8x8 — 8x8
J=L- %
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The long string of Kronecker &’s expresses the reassuring
fact that total angular momentum and SU(3)g,,,, are con-
served in the scattering process. This is Eq. (3).

Note that the derivation of this formula is independent
of the particular SU(3)-preserving Lagrangian that we
started from, apart from the requirement that it admits a
hedgehog soliton as in Eq. (B1).

APPENDIX C: EXPLICIT FORMULAS
FOR SU(3) SCATTERING COEFFICIENTS

In this appendix we present explicit formulas for the
group-theoretic coefficients multiplying the reduced am-
plitudes in the SU(3) scattering formula, Eq. (3). For
fixed initial and final baryon representations, these depend
only on the total meson-baryon representation R,, and
the total angular momentum J. We will restrict ourselves
to the physically relevant cases when the initial baryon is
in the spin-+ octet and the final baryon is in either the
octet or the spin-3 decuplet.

Table XV presents the coefficients of the reduced am-
plitudes for the case when the initial and final baryon are
both in the octet. The decomposition for both the initial
and final meson-baryon states is given by

8x8=27+10+10+8,+8,+1,

where (following de Swart’!) the 8, and 8,
synonymous with 8., and 8,,iym, respectively.
that, from Egq. (3),

(8,18,)=(8,[8,) .

Of course, for most physical processes, one is interested
in a superposition of pure SU(3)g,,or representations. Con-
sider, for instance, the case KN —72 in the isospin-1
channel. With the help of the table of isoscalar factors
given in Ref. 51, the initial and final states can be written
as

are
Note

SKYRME MODEL VERSUS... 2019
1
W), = - |27 10 10
W)= 12D+ TV - 10)
S
~ o 181)'*“/3‘82)
and
— Ve
ou,<W|=-~J~3<10|+ <101+——6—<82|

The amplitude for this process is thus given by
out<\p ' w)mz_%(ﬁ | E>-%(1_0 | E)

_%<sz|s,>+%<sz|82>

Each term in this expression can, in turn, be expressed in
terms of reduced amplitudes using Table XV.

As an important example of this procedure, Table XVI
gives the coefficients for the case of N elastic scattering
in the three-flavor formalism. These coefficients can be
directly compared to their two-flavor counterparts
presented in Appendix B of Ref. 8.

Table XVII presents the relevant coefficients when the
initial and final baryons are in the octet and decuplet,
respectively, and when the initial and final meson angular
momenta are the same (L =L'). The relevant decomposi-
tion of the final state is now

10xX8=35+27+10+8 .

Table XVIII lists the coefficients for the analogous
8 X 8—>10X8 processes when |L—L'|=2. Note that
these coefficients all multi IY the single contributing re-
duced amplitude T}(L =71kir, where K =(L +L")/2.

TABLE XVI. Coefficients of the reduced amplitudes for elastic 7N scattering.

*xN— zN
{1,0} {10} {1,0} {oo} {}1) {31) {}.-1} {31}

To-hLe TiL Te+iLL ToL T L-}.LL TL+} LL TL— $.LL TL+,} LL J I
08L1-L—-24  25L+24 2L+3 1 58L+25  _4(L+1)  104L+35 _L7(L+1) g1 1
135L(2L+1) 135L 135(2L+1) 15 270(2L+1) 135(2L+1) 270(2L+1) 135(2L+1) 2 2

2L—1 25L+1 98L24+197L+75 1 4L 58L+33 17L 104L469 . 1 1
135(2L+1) 135(L+1) 135(2L?+3L+1) 15 135(2L+1) 270(2L+1) 135(2L+1) 270(2L+1) 2 2
(26L?-37L+12) 25L-12 37 2L+3 1 2(2L-1) 8(L+1) 16L-5 26(L+1) L-1 3
135L(2L+1) 135L 135 2L+1 15 27(2L+1) 27(2L+1) 135(2L+1) 135(2L+1) 2 2
37 2L-1 25L+37 _26L?4+80L+75 1 2(2L+3) 26L 16L+21 gy 1 3
135 2L+1 135(L+1) 135(2L7+3L+1) 15 27(2L+1) 27(2L+1) 135(2L+1) 135(2L+1) 2 2
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TABLE XVIII. Coefficients of the reduced amplitude TH’,?’_LK +1 when the initial and final baryons
are in the octet and decuplet, respectively, and when the orbital angular momentum of the meson

changes by two.

8x8 — 10 x 8;

L'=L%t2

Rio (L,L)=(K-1,K+1) (L,L)=(K+1,K~1)
(27]27) - MR 3/
(10/10) - V%5 Vel
(818,) VR ERA 53]

(8]85) 1y

-1 [3(3K+1
1 V3FEFA

APPENDIX D: SKYRME-MODEL PREDICTIONS
FOR ADDITIONAL PROCESSES

In Figs. 18—23 we display the Skyrme-model ampli-
tudes for the six ¢psN —¢dpsB processes for which we
were unable to find experimental partial-wave analyses in
the literature: namely, 7N —nA, 7N —KZ=*, KN—7Z,
KN —>n=*, KN—KE, and KN—>KZE*. As always, the
plots are from threshold to an excitation energy of 2ef .
On the basis of the results of Secs. III and V, we can ex-
pect good agreement for the F and G waves, mixed agree-
ment in the D waves, and poor agreement in the S and P
waves. We also expect that the Skyrme model greatly un-
derestimates the relative size of the amplitudes with
| L—L'| =2 vis-a-vis those with L=L’ in Figs. 18, 19,
21, and 23.
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FIG. 18. Skyrme-model predictions for 7N —nA.
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