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Exact parapositroniumlike solution to two-body Dirac equations
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Recently we used a supersymmetric version of Dirac's constraint mechanics to derive coupled
Dirac equations for a quark and antiquark in mutual chromodynamiclike interaction. Here we in-
vestigate the properties of our equations for two spinning particles in mutual electromagneticlike
interaction. In the chiral Dirac matrix representation we explicitly obtain a family of exact 16-
component solutions with closed-form energy spectrum that agrees with that of parapositronium
through order a4. %e also find that various rearrangements of our Dirac equations simultaneous-
ly yield (for weak potentials) the relativistic wave equations of Todorov and Pilkuhn as well as
(for weak potentials and slow motion) the semirelativistic interaction structure of Breit.

Various authors have used spin-dependent relativistic
wave equations (with varying degrees of success) to
describe the bound qq system. ' But spectral and decay-
width results of the light-quark systems are extremely sen-

sitive to the form of the wave equation employed (or
equivalently to the form of the resulting relativistic wave
function). Since relativistic quark interactions are
governed by the nonperturbative structure of QCD (which
is largely unknown), there is apparently great latitude in
the choice of wave equations and potentials for
phenomenological descriptions of the qq system. We con-
tend, however, that any relativistic quantum mechanics
that, in principle, can describe weak forces as well as
strong ones must, to be taken seriously, be capable of du-
plicating the well-known weak potential results of pertur-
bative quantum field theory. In particular, acceptable
spin-dependent relativistic wave equations must at least be
capable of incorporating the detailed interaction structure
of quantum electrodynamics. Elsewhere, we have shown
how to achieve this goal for spinless particles described by
quantum wave equations obtained through quantization of
relativistic constraint mechanics. In this note we find that
when we carry out the same program for two spin- 2 parti-
cles, we obtain a pair of compatible coupled Dirac equa-
tions that not only reproduce perturbative spectral results
of QED, but also possess an exact 16-component solution
in a case of physical interest —that of singlet positronium.
Furthermore, the existence of this solution is a direct
consequence of the compatibility of our wave equations.

The relativistic wave equations that we shall investigate
result from the quantization of relativistic constraint
mechanics. Relativistic constraint mechanics for two
spinless particles is a covariant canonical dynamics gen-
erated by coupled mass-shell conditions /1c] p] +m]
+Nj[=0, R2 p2 +m2 +@2=0 that must be compati-
ble in the sense that [&],P2]pa=0. This requirement is
satisfied if @] 42 @ ("third law") and if @depends on
x —=x] —x2 only through x~ such that I' x~—=0, ~here
P p]+p2 (covariant regulation of the "relative time").

The quantum version is governed by coupled Klein-
Gordon equations P]y (p] +m] +@)]it 0, P2]tr

(p2 +m2 +4)]it 0 which are supposed to be compati-
ble in the sense that [P],P2] y 0. In terms of the collec-
tive variables P, p —= (e2/w )p] —(e]/w )p2 (where
w =—( P')' ' e —-—,

'
w [1+(m]' —m2')/w'], e2- —,

' w[1
+(m2 —m] )/w ]), the difference (/f] —P2)]it 2P p]lr

0 becomes a "ghost-killing" condition that removes the
relative time in the c.m. rest frame, while the weighted
suI11

iV I/f
= —/I'1 +—jV 2 Itt ~ ( 8~ +m ~ +p +C]) ]lr ~0~2 2 2 2

W

(where e„-—,
'

w [1 —(m]'+m2')/w'] and m -m]m2/w)
becomes a Klein-Gordon equation for the two-body
system.

For two spin- —,
' particles, the quantum system is

governed by the simultaneous "two-body Dirac equa-
tions

[yj'(tt] y]+m]), y2s(tt2 y2+m2). ]=—0,
where"

A] =[1——,
' (6+6-')]p,

+ —,
' (6 —6 ')P2 ——,

'
1 (86 y2) y2,

(2)

A2 = [1 ——,
' (6+6-')]p,

+ —,
' (6 —6 ')P]+ ,'i (86 y]) y]—

[6'-1/(1 —2A/w)] incorporate the Gordon decomposi-
tion of the electromagnetic current. "Squaring" these

Dl
=]l]y~1 ]l 0~ D2]tr=y2+2Ã

which will be compatible in the sense that [D],D2]]it=0 ]f
[S],S2]:—0.

%e construct such a compatible system that has an
electromagnetic structure (with the correct heavy-particle
limits) by introducing the minimal substitutions

p] p] —A]=n], p2 p2
—A2=tt2 into free Dirac equa-

tions so that D]l/f=(tt] y]+m])]it 0, D2y (tt2 y2

+m2)]it =0 are compatible:
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Dirac equations leads to S}y 0, P2}tr 0, where spinless case) while the weighted sum

iV} 4'} x} —
2 a{"F}„„+m}

/f2 ci'22 tr2 —,' o'—g"F2„,+m2 Fg = . [zg—,~:11

The difference (P}—P2)}it 2P /2y 0 (just as }n the
I

82 8~//y= —P}+- //2 y=0
W

yields a system wave equation ~hose "upper-upper" four-
component piece reduces for weak potentials (A((m}c,
m2c2) to Todorov's homogeneous quasipotential equation
for spinor quantum electrodynamics, when A —a/r
[where r -(x )' ']:

w+m} w+m2
p'+m ' —(e —A)'+

( )
L «+

( + )
L'tr2

a

w+m~ &+N$2 1 2, „.A A+ ——(1--', a} o2) +-,}(3«rcr2 r-a} a2) — + y-0 (4)w(e}+m}) w(e2+m2) w
' ' '

w rw

(in the c.m. rest frame).
For weak binding energies, division of the spin-

dependent interaction by 2m}m2/(m}+m2) gives directly
the complete Fermi-Breit spin-dependent interaction for
electromagnetism, while approximate solution for the
binding energy leads directly to Schwinger's method for
calculation of the perturbative positronium spectrum. 2

But, does the full 16-component system determined by
D}}it 0, D2}it 0 make sense? We are aided in answering
this question by a special property of our interaction.
Since Dirac y matrices appear in /f}, '/}t2, and P only
through crI'" and ag', the "squared" Dirac and system
wave equations are automatically block diagonal in the
"chiral" y-matrix representation, related to the usual

I

I

"Dirac" representation by

f~h )'D 7ch 7D 3'ch XD

For

o 0 p ia~ 0~a } O'ck . . i fc}}tr,0 a'. ' ' 0 —i@~

p++
1

Ych

with subspaces labeled by the eigenvalues of y} and y2,
'//, b }it,b 0 implies

[p2+m ' —(e —A)'+(VlnGxp) (cr +tr )

+ if(e2 —A)a}—(e}—A)o2] VlnG+ —,'(1+«a2)V lnG+(VlnG) jp 0 (6)

for }t} p++, }I} (which for weak potentials A becomes an equation recently discovered by Pilkuhns) and

{p2+m ' —(e —A)2+(VlnG xp) (e}+cr2)+ i[(e2 —A)cr}+(e}—A)e2] VlnG

+ 6(3+cr—} tr2)[V lnG+2(VlnG)'] —,' (3cr} —re2r—tr} tr2)[ln"G —ln'G/r+2(VlnG)'H}I}-0 (7)

for }3} }I}+,p +—a new equation that collapses for an
equal-mass singlet wave function }}},to

[p'+m.' —(.„—A)2]}}},-0 . (8)

For a single free spin- 2 particle, since 4'2 P p +m
where 4' y5D y5(p y+m), we see that }it=4'W auto-
matically solves 4'y 0 (and hence Dy ()) if ~@ ();
i e, 4'}tr 4' '}1' P%' 0. Then, since [P,y ]—:0,

Sy 4 y Dy O' DW ( —p y+m)+ automat
ieaIIy solves D y 0 if %f%" 0. Appropriate choices for 0"
(solving the Klein-Gordon equation) lead to }tr's that are
the u and U solutions of the free Dirac equation.

For two spin- 2 particles governed by our "two-body
Dirac equations" compatibility leads to a similar construc-
tion. Since S~'-P~ and Pq'-&2, where 4'~-@AD] and
$2=y25D2, we see that ]I[I=$~$2't autonatieaII'y solves

0 and 4'2y 0 (and hence both D}y 0 and
D2y 0) }f /}t }%' 0 and P2%' 0; }.e., 4'}}tr

l

~} ~2p cl 2+}q 0 and ~2K +2~}2q +}/}}2+
0. Note that such a solution exists only because the two

Dirac equations are compatible in the sense that
[4'},S2]—=0. Then, since P}and P2 commute with y} and
y2 (and smce [y},D2]-0),

y = y]'D] yi'yzD2yz+ -DiD2+
-(—r} y}+m})(—K2 y2+m2)%'

automatically solves both D]y 0 and D2y 0 if both
R}W-0and P2%' 0.

Rearrangement of //1 and //2 into the difference and
weighted sum implies that both D~qr 0 and D2qr 0 if
both P pV 0 and /fqf' 0. Since we can solve two of
the R equations for an equal-mass singlet wave function in
the chiral representation, y D~D2+ will give us the cor-
responding solution to the full coupled 16-component
Dirac system.
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That is, since

0
4s

+ch
G 4.

0

solves P,h%', h 0 when [p +m —(s —A) ]p, 0,
both D i y 0 and D2y 0 are solved by

ych (D ID2)chq ch

1 s-( Kl yl+ml), h( —n2 y2+m2), h

0

(a) —cr2)
p p.

the dimensionless relativistic Coulomb variable x s„ar)
into the time-independent Schrodinger-like equation:

d' 2 d Z(X+1) 2+ ——fl(x)
dx x dx x

Gw EPlw f (x ) (12)
Gw C

with "shifted angular momentum" [since l(k+ 1)
=l(I+1)—a 1

,'+ [(—I+,' )' ——a']'"=I—al .

Then, the radial part takes the form

fl (r ) (s„ar)"exp[ —(m —c„')'~ r ]
r

XF X+1—," 2, l2,21+2;2( m„—2 s 2)'~2r,
2) l/2 '

(0'l Cr2)——A — p p
2 2

(io) (13)
where Fla, b;p] is the confluent hypergeometric function
solution of

Under the unitary transformation that connects the chiral
y-matrix representation to the Dirac representation,

P h PD - (1+yi yl ) (1+y2 y3) yh
1 0 5 1

2 2
r r

——A +—
2 6

0'& 0'2

0'] CF2 ' pcs

1
&l'P0

p +(b —p)
dp p

—a F[a,b;p] 0 .

s„a—(k+1)+ n„=n —0+—1),
(m ' —s ')'"

which implies that
8 Q

&w ~w
(n -8l)2

("relativistic Balmer Formula" ), which in turn gives a
"Sommerfeld formula" for the total energy:

2
—t/2. [/2

w m42 I+ 1+ (15)
(n -bl)'

W

in agreement with the field-theoretic parapositronium
spectrum [to O(a )]:

N1 Q
K ~2'

4n

ma 11 ma +O( s)
4 4

2n (2l+1) 64 n"

But if fl(r) is to remain finite as r ~, the negative of
the first argument of Fmust be a non-negative integer:

1
rrl ' P ' 2 ' PdsE2 Thus, we obtain a family of solutions y„I with parapo-

sitronium spectrum [to O(a )] of the form

where X=(w/2 —A)+m/G. The final form of the solu-
tion shows how WD "evolves" out of the direct product of u
solutions to two free Dirac equations (for which G 1) as
the potential A is turned on.

To find electromagneticlike bound-state solutions of the
two-body Dirae system, we combine this form with
bound-state solutions of [p +m —(s —A) ]p, 0 for
A —a/r which we seek by first factoring off the angular
dependence, then transforming the radial equation (using

I
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1
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2
a'l'P~2 P4'snlm
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g -0&,
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which are eigenstates of J and J, with eigenvalues
j(j+I)-I (I+ I) and rrts m

Our ability to solve the second-order wave equations (7)
and (8) was made possible by the Gordon form of the ef-
fective constituent potentials (3) that we introduced
through minimal substitution. This form ultimately per-
mitted us to decouple and solve the P~ and P2 equations
in the chiral Dirac matrix representation. Such second-
order equations might have been arrived at directly from
another starting point. s But, what distinguishes the con-
straint approach from other brands of relativistic quantum
mechanics (and what is most unfamiliar and novel about
it) is its use of multiple but compatible simultaneous wave
equations —one for each constituent. This feature forces it
to treat the particles symmetrically, thereby preserving
infinite-mass limits to one-body Dirac equations and in-
cluding treatment of spin-dependent relativistic recoil au-
tomatically. In this note, we see that compatibility allows
us to construct simultaneous solutions to the two constitu-
ent Dirac equations from solutions to the second-order
equation. Compatibility ensures that this property of a
single-particle or free-particle system is preserved under
interaction and consequently produces a solution that de-
generates asymptotically into a free-particle direct-
product structure far from the center of force.

Another virtue of such a description is that its two in-
dependent Dirac equations can be rearranged in many
combinations to give equivalent equations, pieces of which

(for weak potential) reduce to well-known (e.g., the
Fermi-Breit, Todorov, Pilkuhn equations) or new [e.g. (7)]
equations for the electromagnetic system of two spin- —,'

particles. Since all of these rearrangements have
(17)-(18) as an exact solution, our solution has a signifi-
cance and potential utility beyond that possessed by a solu-
tion to any system governed by a single relativistic wave
equation. In fact, the existence of all of these rearrange-
ments in our procedure illustrates how apparently dif-
ferent relativistic wave equations can possess equivalent
spectra. Furthermore, since the constraint quantum
mechanics can itself be viewed as a rearrangement, the
"quantum-mechanical transform" of the Bethe-Salpeter
equation (according to the work of Sazdjians), our solu-
tion may be an approximate but fully relativistic
quantum-mechanical transform of the Bethe-Salpeter
solution. During its construction, we saw that our solution
was made possible by the collapse of the p+ second-order
wave equation (in the chiral representation) to Eq. (8).'o
On the other hand, as viewed in the Dirac y-matrix repre-
sentation, the existence of our solution is a consequence of
a nonperturbative cancellation between Darwin and spin-
spin terms. " This fact underlines the important role
played by Darwin terms in relativistic wave equations at
short distance and argues against their neglect in the
short-distance structure of QCD and resulting qq bound-
state calculation.
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