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Vacuum fluctuations outside cosmic strings
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The vacuum stress-energy tensor for a conformal scalar field in the exterior spacetime of a
straight cosmic string is calculated. The tensor is traceless, falls off as the fourth power of the

distance from the string, and is proportional to the linear mass density of the string c p/6 in the

physically reasonable case @&&1. The linear energy density arising from the vacuum fluctuations

is small compared with the linear mass-energy density of the string itself. A quasiregular singu-

larity which appears in the exterior spacetime of a cosmic string with —,
' & p & 2 is shown to be

unstable as a consequence of divergent vacuum fluctuations.

ds —dt +dr +(1 —4p)r dp +dz. (2)

There has been considerable interest during the past few
years in cosmic strings and their physical effects. ' A
straight cosmic string has been modeled recently by Gott2
and by Hiscock, 3 with interior and exterior spacetimes
which are exact solutions of Einstein's equations. We use
the topological properties of the flat but conical exterior
spacetime to derive the physical effect of the vacuum fluc-
tuations of a conformal scalar field outside such a string.

Vacuum-polarization effects due to electromagnetic or
scalar fields arise in a flat spacetime when the topology is
unusual or when boundaries are present. The classic ex-
ample is the Casimir effect, in which the vacuum expecta-
tion value of the electromagnetic stress-energy tensor be-
tween two parallel conducting plates depends upon the
plate separation, thereby producing an attractive force be-
tween the plates. The nonzero stress-energy tensor owes
its existence in this case to the presence of boundaries in
Minkowski spacetime.

There can also be vacuum polarization in a flat space-
time even if the manifold is complete, without boundaries:
A complete manifold with an unusual topology is all that is
required. Since the external spacetime of straight cosmic
strings is flat but topologically different from Minkowski
space, one can use the powerful tools which have been
developed to study quantum field theory in similar situa-
tions.

A straight cosmic string is described by an interior
spacetime metric which models the string itself, together
with an exterior metric which models the Universe outside
the string. The interior metric takes the string to be a
cylindrically symmetric fluid with a longitudinal pressure
equal to the negative of its energy density p, —p: The
string is very taut. This interior metric is

dsz dt +dr +ra sin (—r/ro)dp +dz, (1)

where —~ & t & ~, 0 (r & r08ss, 0 ~ p & 2tt, and —~(z & ~, and where both ro and 8~ are constants.
The exterior metric is

where the constant p —,(1 —cos8M) is proportional to
the mass per unit length of the string c2p/G. The metric
applies for 0» p & —,' [for rb «r & ~, where the boundary
radius is rb ro(l —4p) '

sin 8'], and also for
& p & —,

' (for rb~r~0, where the boundary radius is
rb rosin8st). If p —,

' the exterior geometry is cylindri-
cal; we shall not be concerned with this case.

As Gott describes, z the string and its exterior spacetime
are conveniently viewed in terms of t const, z const
embedding diagrams. If p( —,', the interior solution is

represented by a spherical cap which consists of less than
one hemisphere. It is matched at r rb to the exterior
solution represented by a cone of deficit angle D Strp. If
p —,', the interior solution is a hemisphere and the outer
solution is a cylinder, i.e., a cone with deficit angle D 2n.
If —,

' (p & —,', the spherical cap has grown to be more than
one hemisphere, and the exterior conical solution sits on
the cap like a dunce hat. The coordinate r now decreases
as one moves away from the string and reaches zero at the
apex of the dunce hat. The line r 0 is a quasiregular
singularity:56 It can be thought of as a singular string
with zero radius, infinite density, and mass per unit length

pz —,' —p. One can avoid this singularity by rounding off
the apex of the hat with a small spherical cap with ro ( ro.
The spacetime then consists of two strings pi+ p2 —,

' with

empty space separating them. Finally, if p —,
' the interi-

or space is closed upon itself and cannot be matched to an
exterior solution.

In all cases the exterior spacetime is flat and so can be
described locally by a piece of Minkowski spacetime.
How&ever, it differs globally: Topologically, it is a cone if
0 & p & —,' (pA —,' ). This difference leads one to expect
the presence of vacuum fluctuations induced by the
spacetime's topology. In fact, such an effect exists; ~e
have calculated, in particular, the vacuum expectation
value of the stress-energy tensor for a conformally coupled
scalar field in the conical (p~ —,) exterior spacetime of a
cosmic string.

The calculation of (T„„) for this case is remarkably
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where the exterior metric (2) has been rendered

(4)

Min-
I

similar to a calculation made previously by Deutsch and
Candelas7 for a wedge consisting of two infinite conduct-

ing planes intersecting one another at angle a. The pri-
mary difference for the string problem is the periodic
boundary condition one must impose along the seam where
the cone is glued together after the deficit angle is cut out.

The scalar-field Feynman Green's function G(x,x') in

the flat exterior spacetime obeys the inhomogeneous wave

equation

M(x,x') —g 't'b(x, x') .

The D'Alembertian may be written as the usual
cylindrical-coordinate operator

kowskian with the substitution 8 ~1 —4p~p, so that
0» 8 & ( 1 —4p ~

2)r. The vacuum expectation value of the
stress-energy tensor may then be found from G (x,x')
using '

(T~~) t lim ( 3 Vp„' 3 Vp~ 6 gp„V~ )G(x,x )

The eigenfunctions of & are

u(x;(ok p n) (p/a) t J~z„,t, ~(pr)e' * "' e' "'e'
(6)

which are periodic in 8, with period a 2n ( 1 —4p ~
. Here

J is a Bessel function of the first kind, n is an integer (posi-
tive, negative, or zero), and the corresponding eigenvalues
are t02 —k —pz, where tz) and k are arbitrary real num-
bers and p is real and positive. The eigenfunctions satisfy
the completeness condition

dto ' dk
dp g u(x;tz), k,p,n)u'(x';a), k,p,n) b(x,x') .

Substitution of this expression into Schwinger's representation of the Green*s function,

G (x,x') i ds e'"b(x,x'),
yields

Ci (X,X J~- app as e is(m -k2-p ) -ie(1 f ) ik(z-z )e e
a al —ca 2n al —co 2n al Q al (j

J/2nzlaf(p»)J(2nata/(p» )e

This expression is the starting point for calculation of the various derivatives of G (x,x') required for &T„„&. After the
functions on the right have been differentiated, the integrals and sum can be evaluated. We demonstrate the method by
calculating G(x,x') itself, using the approach of Deutsch and Candelas. 7 Let to i co and s is, rot—ate the contours
of the m and s integrals back to the real axes, and take the limits (t',r',z') (t,r,z ). The result is

d(0 dk e4 —oo 4 —oo

xg J'(2„.t.)(pr)e'"""t'" " (10)

~ to oo p oo oo

lim G(x,x') -=G(8,8') - '
dp p „ds e

(t'. ', ') (t, , ) 4)r a "0

g einz (e
—iz 1)

—1

n 1ds d ~dk e (-*+"+")—
40 4 —oo4 -oo

I

The double integral over c0 and k may be evaluated using series
polar coordinates in a space of 2 —e dimensions; then

(i4)

The integral over p is

r —r 1 —— . (ii)K 8 8
p' 2 2

resulting finally in

G( ~) i 2)r(8 —8')

4a r

., dpp' 'Jfz..t.~(p»)

2' V( —1+e)r(i 2nn/a i+1 —e/2)
r' r'(e/2)r(( 2nn/a ( +e/2)

and so, taking e 0,
0 oo

G(8,8')- —,', g ncos " (8 8') . —
n-1 C

The sum is evaluated by differentiation of the geometric

The corresponding Minkowski-space Green's function is

lim Go(x,x') =—Go(8,8')
(t ',r ',z') —(i,r,z )

i 2 0 —8'
csc

4a r

which follows from Eq. (15) by taking a 2n.
The derivatives of G(x,x') required for (T„,) are de-

rived in a similar way. Derivatives with respect to r and r
can be found with the aid of the formulas
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1-s (rr') "I"(v+I —s/2) + e + 1 4rr'
dpp 'J,(pr)Jv(pr )~, F v+1 ——,v+ —,2v+1;

and

dF(a,P,yz)/dz -(aP/y)F(a+ I,P+ I,y+1,z) .

f

space, the scalar-field vacuum energy per unit length along
the string outside the boundary rb is

18

All of the derivatives may be related to derivatives of
G (e,e') with respect to e. For example,

8'G(x,x') l. 8'G(x,x') l. 8'G(x,x')
x'—x 8t x'—x 8t 8t x'—x 8z 8z

& Tan) 2tr(1 4lt )—rdr

[(1—4p) ' —11= ", (if p« I),(1 —4p) hc @Ac
1440xrb 90xry

(24)

, ltm (1+8'/8e')G(e, e'),
3r e- e'

8 G(x x)
1

8 G(ee)
8e8e' e- e' 8e'

(2o)
eva Jestring I /90tt&b (25)

where l'tc has been inserted to give the dimensions. The
ratio of this linear energy density to the linear mass-energy
density c p/G of the string itself is therefore (if p « 1)

82G (x,x')
x x 8r8r

1 . 8
, ltm 4+ G(e,e') .

3r e e 8

&T ")„„-— '
»m [G (e,e') —G,(e,e')]

x diag(1, 1 —3,1), (22)

where &T„) is renormalized by subtracting off its value in

ordinary Minkowski space. We then obtain the result

&T„")„,„-, —1 dtag(1, 1,—3,1)
1440 r

[(I-4p) ' —1]diag(1, 1, —3,1),
1440tt r

(23)

which is traceless, falls off as the fourth power of the dis-
tance from the string, and is proportional to the mass den-
sity of the string in the limit of small mass densities.

For the physically reasonable case p & —,', where the
string is surrounded by an infinite flat but conical external

The expectation value of the renormalized stress tensor
then becomes

where Rb is the boundary radius in units of Planck length.
The boundary radius is roughly the Compton wavelength
of the typical boson mass when the string was formed: If
ttt —10'6 GeV, then Rb- 10, so the external vacuum en-

ergy is very small.
For the case —, & lt & —,, the coordinate r begins at rb

and decreases as one moves away from the string. A
quasiregular singularity, i.e., a singularity at which the
curvature tensor is at least bounded in a parallel-
propagated orthonormal frame, is encountered at r 0.
However, our result for &T„")„,diverges as r ~ 0, which
suggests that the quasiregular singularity is unstable, con-
verting to a curvature singularity as a consequence of the
unbounded vacuum energy density. It is easy to show that
the divergence of (T„'& is not a coordinate effect: For ex-
ample, the quadratic stress-energy scalar

&T„„T")-[(1—4l )-' —1]'/172800~'r' (26)

also diverges. It is also possible that rather than induce a
curvature singularity in this case, the vacuum energy
might serve in effect to round off the cone apex at r 0,
inducing a second string of finite density. In either case
the quasiregular singularity would be unstable, a feature it
would share with other quasiregular singularities which
have been studied.
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