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In the limit of extremely low energies QCD describes essentially the interactions between the ap-
proximately massless pseudoscalars. They are the bound states of the ‘““chiral” quarks. Equivalently
they are collective Goldstone modes of dynamically broken chiral symmetry, and interact in a non-
linear way with the “constituent” quarks. These two pictures are related by going into the “constit-
uent gauge,” which we define in this paper as a QCD analog of the unitary gauge in theories with
Higgs scalars. We develop a framework for extracting the low-energy dynamics of pions directly
from QCD in the limit of a large number of colors, and under some additional assumptions we cal-
culate the pure pion theory truncated to four derivatives. The model obtained is a somewhat extend-
ed Skyrme model, and contains the anomaly term (Wess-Zumino term) as well as the nontopological
terms, the coefficients of which depend on a classical scalar-meson-field background. Stability of
the soliton is discussed. We show that in the limit in which symmetry breaking is turned off, the
coefficients in front of the pseudoscalar interactions vanish. Under a plausible assumption about the
behavior of a scalar-meson background, we interpret this as a natural realization of the space cutoff
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entering the topological soliton bag model.

I. INTRODUCTION

One of the outstanding problems of particle physics to-
day is to understand the properties of hadrons, starting
from what is supposed to be a microscopic theory of
hadrons—quantum chromodynamics (QCD). The ap-
parent success of phenomenological chiral Lagrangians in
describing many properties of the low-energy interactions
between hadrons makes this problem somewhat more
concrete—one might try to understand how the
phenomenological Lagrangian appears in a certain limit
from the microscopic theory of quarks and gluons, QCD.
This is clearly a difficult task, yet some simplification
could occur if one is willing to consider QCD in the limit
of a large number of colors.’> It is well known® that
many of the properties of low-energy hadron interactions
can be qualitatively explained in the context of the large-
N limit. It is also known'? that QCD in this limit should
be completely equivalent to some local, pure meson
theory. It is a weakly coupled meson theory because the
(quartic) meson coupling constant is 1/N. It has been
conjectured by Witten? that baryons should appear as soli-
tons in this theory. But only recently, after the old
Skyrme model® was reexamined,** did it become more
clear in which sense baryons are in fact solitons.’~7 It
seems, therefore, that the large- N limit is a good starting
point for establishing the connection between QCD and
the effective chiral Lagrangians, known to describe so
well the low-energy hadronic world.®

In this paper, we will argue that in the limit of large N
and extremely low energies, QCD reduces to a pure pseu-
doscalar theory which, under some additional assump-
tions stated and elaborated in Sec. II, can be calculated.
We have calculated this theory truncated to four deriva-
tives.” Here we give a detailed exposition of the motiva-
tion, derivation, and the calculation of the low-energy ef-
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fective action for pseudoscalars. In Sec. III we discuss the
basic strategy for our calculation. In Sec. IV the effective
potential is derived whose minimization would in princi-
ple lead to determination of the ground state. While the
expression for the potential is not explicit enough to en-
able one to demonstrate spontaneous breaking of the
chiral symmetry, assuming that it is broken we obtain an
interesting relation for our order parameter (gq ) and the
pion mass (m,), linking them to the three important
low-energy scales F,, mg (the constituent-quark mass),
and A (the “chiral-symmetry-breaking scale”). In Secs. V
and VI, and in the Appendix we present in detail our cal-
culation. In Sec. VII we discuss the implication of our re-
sults to the question of stability of the soliton. We show
that the coefficients in front of the pseudoscalar interac-
tions vanish whenever the scalar-meson background field,
which figures importantly in our framework, vanishes.
Under a plausible assumption about the behavior of
o4(x), we interpret this as a possible, natural realization
of the space cutoff which enters ad hoc in the (topologi-
cal) soliton bag models.!%!!

II. QCD CONNECTION

In this section we will introduce and elaborate the basic
physical ideas and assumptions within which it is possible
to extract the dynamics of pseudoscalar mesons from
QCD in the limit of a large number of colors and ex-
tremely low energies. Apart from certain technical as-
sumptions which will be stated in the appropriate context
later, our assumptions are the following. (i) QCD(N)
confines at arbitrarily large N. (ii) The theory is charac-
terized by a dynamically generated scale A (proportional
but not necessarily equal to Aqcp) below which chiral
U(Np)XU(Np) is spontaneously broken down to diago-
nal U(Ng). (iii) The breaking is characterized by a non-
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vanishing vacuum expectation value of some quark bilin-
ear transforming as Nj XNy under U(Ng) X U(Ng) and
is realized by minimization of some local potential, a
chiral-invariant function of quark bilinears.!”? (iv) At
large N and energies below the chiral-symmetry-breaking
scale, QCD is equivalent to some local effective pure
meson theory.? The lightest mesons are pseudoscalars
while all other mesons are much heavier (as is the case in
reality, particularly for Np=2). Those decouple in the
limit of very low energies in which case it makes sense to
talk about a pure pseudoscalar effective theory. We will
make the last “decoupling” assumption more precise later.
Consider now the following composite operator:

¢i(x)=q Raqr;(x), i,j=1,2,...,Np. @2.1)

The vacuum expectation value of this operator is a con-
venient order parameter. At high energies'® ($})=0 and
global U(Np)XU(Ng) is unbroken. At low energies,
below the chiral-symmetry-breaking scale, the ground
state of the theory will be characterized by the operator ¢;
being frozen to its large expectation value. The lowest-
energy states above the ground state are Goldstone bosons
of broken-chiral-symmetry pseudoscalar mesons. Fluc-
tuations of ¢j(x) around its vacuum expectation value
have the correct quantum numbers to be identified as sca-
lar and pseudoscalar mesons. One can think of the pseu-
doscalars as being collective massless excitations corre-
sponding to the broken axial generators of
U(Np)XU(Ng). It is therefore natural to define what we
mean by scalar and pseudoscalar mesons by enforcing the
identification

ox)=V'evix), (2.2)

where o(x) is an NpXNp Hermitian matrix of scalar
mesons. The collective pseudoscalar field matrix is
U=V -V =exp[i(2/F,)n?Q®] and transforms in a non-
linear realization'* of SU, (Ny)XSUg(NF) in a standard
way—under an SU; XSUjy transformation realized by
pair of unitary matrices (L,R), U transforms as
U—LUR'. Consider now the partition function for
QCD with the measure appropriately extended to include
integration over the collective fields defined above:

[1dG,1dqdq[dUdo]8(G.qx — Vo V)8(@rq — Ve V")
X exp [l [SQCD—-m qu ] ] . (2.3)

We have included above the explicit mass term for the
quarks (current-quark mass). For simplicity as we are just
interested in the leading effects of the chiral-symmetry
breaking, we take a common current mass for all the
quarks. Let us imagine now separating the measure into a
short- and long-wavelength part with respect to some
physical scale A (the chiral-symmetry-breaking scale).
Above this scale one has a weakly coupled theory of
quarks and gluons, moving with high relative momenta.
There are no bound states. A good description, of the
physics in this region is given by perturbation in the color
coupling. Below the scale A the color forces are becoming
rapidly strong, the chiral symmetry breaks down and the
bound states are formed. At large N the bound states are

mesons, which interact weakly and are certainly much
better candidates for the physical states than strongly in-
teracting quarks and gluons. Clearly, quantizing around
the perturbative QCD vacuum is not appropriate
anymore—QCD as usually written should be rewritten
such that quantization of the small vibrations around the
right ground state is made possible. The first step in this
direction was to rewrite the action as in (2.3). Let us now
integrate out gluons. Define G[J] to be the resulting ef-
fective action: i.e.,

exp!( iG[J])=f[de]CXP

ifd“x(—%Ter,G‘“'
—JuG*) |,

where J;, =qy,Q°q is the color current. G[J] is a func-
tional of the color current and has therefore a full local
chiral invariance. It contains all kinds of higher-
dimension composite operators as well as the effective po-
tential which, following Ref. 12, we assume to be some
chiral invariant of quark bilinears ¢;(x) defined above. If
we now expand the composite operators around their vac-
uum values and quantize the small vibrations around the
vacuum values, we get an effective theory of mesons in-
teracting with massive quarks. Needless to say, calculat-
ing G[J] is a very hard task which we will not attempt in
this paper. Instead, the question we would like to ask is
whether we can somehow extract the low-energy dynam-
ics of the lightest mesons, pseudoscalars, without really
explicitly calculating the effective action due to gluons
G[J]. The central observation which makes this indeed
plausible is that G[J] is invariant under local chiral
transformations on the quark fields and therefore al-
though itself not necessarily local, it has a full local chiral
invariance. To illustrate our idea, forget for the moment
about the quark kinetic term and the measure and note
that at the level of the gluon action this invariance is
essentially trivial, coming from the fact that gluons cou-
ple to the flavor-singlet color current. However, once the
gluons are integrated out the resulting action G[J] is
highly nontrivial (nonlocal and nonrenormalizable) and is
made out of all kinds of flavor-nonsinglet composite
quark operators which are in a rough correspondence with
the low-energy meson degrees of freedom contained in
G[J]. What was a trivial local chiral invariance before
gluons have been integrated out, becomes a highly non-
trivial constraint on the form of G[J]—the local chiral
invariance [with U(Ng) X U(Ng) as the gauge group] has
to be realized at the composite level. To see what this
means, and to make our discussion more concrete, let us
consider now G[J] in the limit of extremely low energies
and large number of colors. In terms of the low-energy
degrees of freedom, G[J] is expected to contain scalar,
vector, and axial-vector mesons interacting with massless
pseudoscalars and massive quarks. We will now make the
important assumption that, at least in this limit, the
mesons are associated in G [J] with an appropriate set of
local composite quark operators. For example, it is natur-
al within our framework to represent the scalar mesons
and pions simply as the scalar and pseudoscalar part of
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the composite “chiral” quark operator, ¢} =7 }qu(x),
respectively:

0;j(x)=7;q;(x) and 7;(x)=7g;v°q;(x) . (2.4a)

G [J] can therefore be written, we assume, as some very
general, Lorentz-singlet, nonlocal action of composite
mesons and massive quarks. There is no reason why such
a complicated action would not contain all possible
Lorentz-singlet terms, subject to the constraint of a full
local chiral invariance. In particular, any derivative term
of the composite meson fields appearing in G[J] will
have to be a covariant derivative—the appearance of the
gauge fields associated with local chiral U(Nz) X U(Ng)
at the composite level seems, therefore, highly plausible.'®

Consider now the pseudoscalars in G[J]. According to
(2.4a), pions are, roughly speaking, composites of two
“chiral” quarks. Below the chiral-symmetry-breaking
scale those quarks become massive and the pion appears
as a massless bound state of the massive chiral quarks.
Alternatively, but equivalently as far as the physics is con-
cerned, the pion is a collective Goldstone mode associated
with breakdown of the chiral symmetry and, using the lo-
cal chiral invariance of G [J], can be completely eliminat-
ed as independent degree of freedom by the appropriate
redefinition of the quark fields. What we have in mind
here is similar and generalize somewhat the unitary gauge
trick in theories with Higgs scalars—using the gauge free-
dom, one removes manifestly the Goldstone bosons by a
particular gauge redefinition of the Higgs scalars, fermion
and gauge fields. To see, more clearly, how this comes
out, note that a local chiral redefinition of the quark fields
will necessarily induce local chiral redefinitions (i.e.,
gauge transformations) on the composite meson fields in
G[J]. Let V(x)=exp[im(x)/F,] be the field matrix of
the collective Goldstone mode defined in (2.2) and (2.3).
We may pass now from the “chiral” quarks, (q), to the
“constituent” quarks (q¥) via the following chiral redefi-
nition of the quark fields:

q.=V'x)qf, qr=V(x)a} (2.5)

which exponentiates the Goldstone bosons in G[J]. Be-
cause G[J]=G[JY] is form invariant under this transfor-
mation, it is still the same functional, with the difference
being that composite operators associated in G [JY] with
mesons, are now made out of the constituent-quark fields
qY instead of the chiral quark fields g. The important
thing is that there is no explicit dependence on V(x) in
G[JY); that is, the Goldstone mesons are removed from
G[JY]. In this “gauge” (the “constituent gauge”), rough-
ly speaking, the mesons are composed of the constituent
quarks gU. The pion is, however, a massless Goldstone
J

mode, and one should not think of it as the composite of
two constituent quarks. Indeed, combining our identifica-
tion of the collective pion (2.2) and (2.3) with (2.5) we find

T(x)=g r’q’=0. (2.4b)

Clearly, in this “gauge” it is manifest that G[JY] does
not contain the operators capable of creating light pseu-
doscalar from the vacuum. What happens one can inter-
pret as, that by passing to the description in terms of the
constituent quarks, one removes a zero-mass two-quark
bound state from the spectrum and replace it with the
zero-mass collective pion state. Collective pions, being re-
moved from G[JY], will couple through those parts of
the QCD action which do not have a local chiral
invariance—the quark kinetic term, explicit current-quark
mass term—and, because they are introduced through a
finite chiral rotation of the quarks, will also couple to the
quark measure [J[ U] term in Eq. (2.6) below].

The partition function in this “gauge” reads

Zocp= [[dUdo]dqYdq¥s(qYq¥ —0)8(g¥qY —a)

xexp |i [ d*xqY[B(U)—mUJgY+InJ[U]

xexp(iG[JY]) , (2.6)

where P(U)=iy*(0,+ Vu+y5A#) and V, and 4, are
collective flavor gauge fields made out of pions:

=Lyt t _ Lyt t
Vu=3(V'o,V+Va, V", A,=5V'3,Vy—va, v’ .

(2.7)

G[JY] now contains only operators capable of creating
the heavy mesons from the vacuum. Those however are
not excited in the limit of very low energies and being in-
terested for the lowest-energy excitations above the
ground state we keep those operators frozen to their vacu-
um values. This amounts to keeping only the zero-
momentum term, i.e., potential, and we will drop out a
complicated and unknown piece of G[JY] containing
chiral invariants made out of the heavy currents and
derivatives of the scalar-meson-type quark bilinears.
From the point of view of calculating the effective, pure
pseudoscalar theory this approximation means that we
neglect contributions to the coefficients of this theory, due
to exchanges of the heavy mesons. Those contributions
are suppressed by inverse powers of the heavy-meson
masses, and as long as the momenta involved are much
smaller than the exchange mass, are not important.

The long-wavelength part of the QCD partition func-
tional becomes

Z5ep~ [[dUdoldg YdqUdS dP exp [i [fd"'x (@UP(U)—(mU+S+iy P)]gV+2TrSo — Vguon(0)} —i InJ [U] ] ] .

(2.8)

We have used above the pair (S,P) of auxiliary fields to exponentiate the 8-function constraints in (2.6). Integrating out
quarks, the long-wavelength part of the partition function becomes

ZGcp~ [ [dUdolexp[iW 4(U,0)] ,
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where

exp(iWeff)EdedPexp NcTrln[ID(U)—-(mU+S+i75P)]+1nJ[U]+ifd‘x[ZTrSa—Vgluon(a)] . 2.9

Consider now the integral over the auxiliary fields P and S. At large N it is dominated by a stationary phase. Using the
equations of motion we find

a Vgluon
do

While P, =0 can be simply understood by noticing that P50 is forbidden by parity conservation,'® to find S we dif-
ferentiate exp[ iW¢(U,0)] above with respect to o and we get

P,=0 and S, =3(0)= (2.10)

SWeff iW g aVgluon .5
5o = [dSdP |S(x)— 500 |FPWNTHPU—(mU+S+iy*B)l+ -+ ],
from which follows
an]uon 8W/eff
Sulx;0)= 30(x) +50(x) . (2.11

When o(x) satisfies the classical equations of motion the last term drops out which proves the second equation in (2.10).
We will, therefore, approximately evaluate the integral over P and S, at large N, by replacing P=P_ and S=S_. Within
this approximation the partition function describing the low-energy dynamics of scalar and pseudoscalar mesons is ob-

tained and reads

ZIQCD ~ f [dUdo]lexp

or equivalently, before the quarks are integrated out,

[ d3Ydq'[dUdalexp

With 2(o) defined in (2.10), this is our first result. It is
derived to be valid in the limit of large number of colors
and for energies below some physical cutoff scale A (the
chiral-symmetry-breaking scale) which is of the order of
magnitude or smaller than the typical mass of the heavy
mesons (0.8 GeV). It makes manifest where the pseudo-
scalars are localized and shows that the pure pseudoscalar
low-energy effective theory is to leading order in the
decoupling of heavy mesons completely calculable essen-
tially in terms of two scales, A and (2). The model de-
rived is in fact a somewhat generalized form of the o
model,'” with the tree-level potential

Vol0)=Viiuon(0) —2 Traél/aglﬂ

o

and dynamically generated quark mass () which is,
through defining relation (2.10), related to the gluon in-
duced potential Vyjyon(0).

(2.14)

III. LOW-ENERGY EFFECTIVE ACTION
FOR GOLDSTONE BOSONS IN QCD

After integrating over quark degrees of freedom with
momenta lower than our physical cutoff scale A, one in
principle ends up with pure pseudoscalar effective theory
with the coefficients explicitly dependent on the physical
cutoff, signaling the fact that the theory is not valid
beyond this scale. To be precise, all the coefficients of the
effective theory we are going to calculate will depend on
the “chiral-symmetry-breaking scale” A and dynamical

N TrI[D(U)—(mU+3)] 4 1 [U+i [ d*X (2 Tro3(0) ~ Vyun(o)] |

i [d*(qV[P(U)—(mU+2)]qU+2Tro3(0) — Vguon(0)} +1nJ [U] ] :

(2.12)

(2.13)

quark mass (2). This means that we will be able to re-
late those two scales with the experimentally measurable
parameters F, and m,. To see how this comes out, and
the full low-energy Lagrangian, let us start with the effec-
tive action after the quarks are integrated out, (2.12):

iWey(U,0)=N_Trin{P(U)—[mU+Z(0)]} +InJ [U]
+i [d*%[2Tro2(0)~Vgun(@)] . (3.D)

The central point is to calculate the first two terms above.
The pseudoscalars’ action should come out from this cal-
culation naturally as an expansion in the number of
derivatives. The expansion will include derivatives of an
arbitrary order but in this paper we will calculate this ac-
tion truncated to four derivatives. We use the proper-time
method. It is easy to show that this regularization
respects the vector gauge invariance.!®* The proper-time
integration has to be truncated at some maximal momen-
tum A which we interpret to be the chiral-symmetry-
breaking scale.

IV. THE LOW-ENERGY EFFECTIVE POTENTIAL

Clearly (at least within our framework) the crucial in-
formation about the low-energy limit of QCD at large N
is contained in Vgyon(0). Yet in order to extract this in-
formation one has to determine first the ground state.
For example, to calculate a dynamical quark mass one has
to evaluate the first derivative of V., at the ground

state. Vgon itself is not the potential to be minimized in
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order to find the ground state. We have seen, however,
how the tree-level potential V(o) is determined given
Vuon [see (2.14)]. A complete low-energy effective po-
tential is obtained after contribution induced by quark-
meson interaction is added to V(o). Calculation of this
contribution is trivial—one just has to evaluate the fer-
mion determinant [first term in (3.1)] for the case of con-
stant meson fields. For the effective potential we find

To find the ground state we minimize Vg with respect to
(U) and (o). Wefind (U)=1 and

a Veff 82 Vgluon Nc A3
3(o) ~ 3(a)? 4r?

© ds —s(my/A)?
Xf —e
15

mg

A

(gg)+

=0’

then’ where mgo=m +(8Vgy0n/30) is the constituent-quark

mass and (gq)=(u ug)={(drdg)="--. Assuming

4
Veelo,U)~ Nc;\l (¥ giuon » =0 we obtain the following interesting relation:
32
— Ich3 mo ®© ds —.s'(mQ/A)2
© ds s ; —(gg)~ —E [ Ge . @2
xTr fx —3exp —F(MU%—E) (mU+Z2) ar | A s
s

Indeed expanding the effective potential in powers of
m /A and keeping only the leading O (m /A) term, we ob-

—2Tro2(0)+ Vgyon(o) . 4.1  tain
)
NA’ | (3) ©dS  _s(3)/APp. M gt m?
Veﬁ(U,U)zVeff(O',l)-F—‘t‘;z“ A fl ;z—e s Tr°2‘“(U +U)+ - 40 7\—2- (4.3)
Expanding to quadratic order in the pion field we deduce
N, A3 m © 2
2 __Im c mo gi —s(mg/A)
me=T s A [, e . (4.4)

This is just a familiar current-algebra result m,*F,*>=2m (@ ug +ddg ) providing (4.2) is satisfied.

Without some additional knowledge about V., we are not able to demonstrate that the chiral symmetry is broken,
yet assuming that this is the case we have deduced relations (4.2) and (4.4), linking into a simple consistency condition
four important low-energy parameters m,, F,, mgp, and A.

V. DERIVATIVE ACTION

Consider the proper-time representation for the first term of the effective meson action (3.1)
N, N, ;=
r(U,z)=T‘Trm(w-—[muu:(o)]ﬁz-T‘ fE_A_z%Trexp{—s[»2—2<2)1o+<2>2]}+--- . (5.1)
Here, we have expanded Z(o) around its large expectation value {2 ) >>m being the current-quark mass, and have
neglected heavy-scalar-meson fluctuations around it, which is consistent with the basic approximation of our
framework—the assumption of decoupling of heavy mesons in the limit of extremely low energies. A is a proper-time
cutoff which reminds us that the effective meson action we are evaluating is obtained by integrating over long-

wavelength components of the quark fields, i.e., with momenta less than some maximal momentum A. Let us introduce
for calculational convenience a fifth coordinate!® , defined by

U=expliré(x)], O<7<1, g:%w‘?mg". (5.2)
Then it is not difficult to show that
[(r)=T(0)—2N, fol dr f: gsie —s(x)? S%Trgfexp[ —s(P1=2(Z)P)]—(3)Tréy’Pexp[ —s (P2 —2(3Z)D)] | .
Integrating by parts one obtains

1
I'(r)=const+2N, [ dre~<2’TrgySexp[ —e(D*—2(Z)P)]
1 ©
—2N(3)? [ dr [ dse= ) Trgyexpl —s(B2-2(2)D)]

1 ©
+2NA(2)? [ dr [T ds =P ety g) exp[ —s(D2—2(2)D)] . (5.3)

(
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Tr( - - - ) above includes space-time, Lorentz, and internal vanishes. The important thing achieved by deriving the
space indices. Consider now the contribution of the first  last expression is that the calculation is reduced to calcu-

term above, and let us expand the part of the exponent in- lation of the massless heat kernel (x |e™ —ep’ J y) in the
side the trace in powers of (2 )P /A% We obtain coincidence limit (x =y). It is well known®®?! that this
can be done as an expansion in €P 2 i.e., in the number of

1 _ 2 —eP2—
I,=2N, fo dre =<2 TrgySe <P - AP derivatives

1
= —e(2)? 1/2y2m
=2N, [, dre=" 3 2(2)e!”) (x e x) ==L [1 et x) +emlxx) + - .
€

m=0
;_;))"Z_‘im*—rrgys —ep? (5.5)
(5.4 The coefficients a;(x,x) are functionals of the pseudosca-
. o ) lar field matrix U and it is clear on dimensional ground
In obtaining (5.4) above we have used the heat equation,  that a,(U) is a two-derivative term and will lead to the ki-
i.e., the obvious identity netic term for pseudoscalars, while a,(U) contains full in-
) 2 ar 2 formation about four-derivative terms. It is well known
Dme ¢ ———(—1)’";—6;;6—‘ , that expansion of this type is valid for slowly varying

fields, i.e., momenta much lower than our physical cutoff
and the fact that the trace over an odd number of y,’s  scale A= e“’/ 2. Replacing (5.5) in (5.4) we obtain

|

m! 1
2m) 1672

2(2)
A

1
L=2N, [ dre~<®* 3

m=0

— |Tréy®a (U)+2N, e—fm2 f drTry’€a,(U)+0(3°) .

The summation in the first term can be done explicitly and we obtain

A?

I,=2N,
1 c 167 2

e‘<2)2/"2+\/7_r<i> erf<2)

N,
A d‘rTr75§a1+—8—ﬂ7e‘(z>2M2f drTréya,+0(3°) . (5.6)

This expression completes for the moment our calculation of the derivative expansion of the first term in the expression
for the massive Dirac operator, reducing it to the calculation of the coefficients a;(x,x) figuring in the expansion of
massless Dirac kernel (5.5). This then illustrates the way we are going to calculate the effective action I'" coming from
integrating over massive quarks below the chiral-symmetry-breaking scale—we reduce it to the problem of calculating
the coefficients a;(x,x) of a massless Dirac determinant.

Consider now the remaining two terms in (5.3):

I,+I;=—2N,(Z)? fol dr f:’ ds e =)’ TrgyS exp[ —s(P2(2)P)] . 5.7

.
(2)
Let us first try to extract the four-derivative term. In order to do this let us perform a formal integration over s. We ob-
tain
D e —€(2 )?2
S (3) | P2z )P+(3)?

Assuming now that (=) is sufficiently large we can expand the denominator in powers of B 2/(Z)? and get

1
I +1;=—2N.(Z)? fo drTréy’ exp[ —e(P2—2(2)D)] . (5.8)

L=Iy=—2N, [ drTrgy’e <2 1—<—?—>— m20(<2>;'" (P2—2(3)D)"exp[ —e(B2—2(3)D)] .

Expanding exp(2¢{X)P) and using the heat equation, i.e., the identity (d /de)e ~? =P ~¢, we obtain

o

L+I=—2N, [ drTagye—<? 1= 2| 5 (3)-m 47 (U2) p 0, oo

S N i de™  n!
! _ (—=1)" d™ | (2(Z)e)*" e d |d' _.p2
— _92N 5,—e(2)? a |a  _ep
‘ f° driiye m,n2=o (=)™ dem et 1T 20 11 de de"

2 . . .

If we now replace (x |e ~“P”| x ) above by its small-€ expansion (5.5) it is easy to see that only the m =n=0 term above
will not annihilate its e-independent, four-derivative piece. The whole contribution of the sum above to the four-
derivative term is, therefore, simply

(I +13)0=—2N, f drTrgy’e ~<®' ——=ay(U) . (5.9

6 2
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A. Two-derivative term

Now, we would like to calculate the contribution of (5.7) to the kinetic term for pseudoscalars. This can not be done
exactly, unlike the case in calculating (5.4), where one did not need to perform the integration over s. However, because
of the presence of the exponential damping factor e ~5(2 in the integrand of (5.7) we assume that a proper-time integral
(5.7) is going to be dominated by the small-s region extending from e=A 2 to roughly (Z)~2. We do not expect ()
(the constituent-quark mass) to be too far from our ultraviolet cutoff A and therefore within this region sP ? can be con-
sidered small and we can approximate the kernel in the integrand by its small-s form (5.5). With this in mind, the con-
tribution of (5.7) to the kinetic term can be approximately calculated:

1 37 s e (2{E)VE )M " _p?
~ 2 s(Z) _1)ym 5,—sP
L+I;~—2N.(Z) fo dr fe dse m2=0 ST = | TegyPe
1 ~(3)—2 _s(3)? (2<2)‘/;)2m+1 ml dm+1 s _sp?
+2N(3) [ dr [ dse m2=0————-~—~—(2m+1)! (—1m =y ey e ™2

Using now (5.5) we obtain the following contribution to the two-derivative term:

1 1 ~(2)"2ds _(35y (2(2) Vs )™m! m+1
— 2 5 as _s(z) I, YL
Ty +1a)pm —2Ne(2)? [ dr T6r? 1BV 81 J. s ¢ mzzo (2m)! =2t |
Fortunately, the summations above can be performed explicitly with the result
~(z)?
Uy +)geele [T Va2V edf((2)VE )5 ety a (). (5.10)
s T

Collecting together (5.6) and (5.10) we obtain the whole contribution to the kinetic term of the effective action I'(U,(Z))
defined in (5.1), i.e., (5.3):

()

> L~ ds oy e (5IVE)

2A2 A2 s3/2

-+

2 1
I,~2N, e‘<2)2/"2+\/7_r<i>erf A [drTgya,. (51D
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B. Four-derivative term

As far as the calculation of a contribution from (5.7) to the four-derivative term is concerned we have assumed in
evaluating (5.8) that (2)? is large enough compared to the gradients of the pseudoscalar fields so that an expansion in
powers of B2/(=)? is justified. This however is not the full story and we would also like to know how the overall coef-
ficient in front of the four-derivative term behaves in the limit () —0. We calculate this as well to the leading order.
One has to expand the denominator in (5.8) now assuming (= )% small. We obtain

I +I3~—2N.{Z)? fo1 drTréy’e —<2” |1 - —é”—) 1—;7 [1 + 2—%1~<—;—2>i cee ems@I=ADIB) L (512)
Expanding the exponential and keeping only the leading contributions as (£ )>—0 we find

I +1;=~2N,(Z)? fol drTréy’e —<% 2e+# e~ P’ LO(E(2)Y.
The leading contribution to the four-derivative terms is then obtained simply as

(I3+13)4 ] (3)~0=2N.(2)% fol dr 1611r2 Tréyda, +0(e*(2)4) . (5.13)

To summarize, expressions (5.9) and (5.13) represent the contribution of (5.7) to the four-derivative term of the low-
energy pseudoscalar theory evaluated in two different limits. For () —0, however, the relevant contribution is (5.13)
and we see that unlike what seems to be suggested by (5.9), the contribution above vanishes as (X )?, as one turns off the
symmetry breaking.

Collecting together (5.6), (5.9), and (5.13) we obtain a complete expression for the four-derivative part of the effective
action (3.6):

N, 1
ngmzz)gn% [, drTrev®a,, (5.14)

where #'(3%)~1 for (2 )?~0, while # (2?)~0 for (2 )50 and sufficiently large.
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V1. THE MEASURE CONTRIBUTION,
PION DECAY CONSTANT,
AND THE LOW-ENERGY EFFECTIVE ACTION

In the preceding section we have calculated [up to the
still undetermined coefficients a;(U)] the first term of the
formal expression (3.1) for the low-energy effective meson
action. Results of this calculation are expressions (5.11)
and (5.14). The remaining thing to be calculated is the
second term in (3.1), InJ[U]. This is the contribution
coming from pseudoscalars coupled through the quark
measure. Contribution of this is simply the negative of
the (=) =0 limit of the previously calculated expression,
ie.,

=T | mz= o—lﬂJ[U]——ZN = f drTréy’a,

E-‘—Z— fo drTréy’a, . (6.1)
To understand this, note that it is natural to define the
quark measure to start with independent of the possible
dynamically generated constituent-quark mass. Dynami-
cal mass generation is the phenomenon occurring below a
certain low-energy scale, while the quark measure is de-
fined at all scales, being the essential part in the definition
of the path integral. It is important to note, however, that
the “chiral-quark” measure dqdq and the “constituent-
quark” measure dq YdqY [see Egs. (2.5) and (2.6) of Sec.
II] have completely different transformation properties
under the transformations of the global chiral
SU(Ng)XSU(Ng). In fact, the constituent-quark mea-
sure is chiral invariant. The chiral transformation by
which we have introduced pseudoscalars [Eq. (2.5)] in Sec.
II is a redefinition of the chiral-quark fields and induces a
nontrivial interaction, InJ[U] of the low-energy part of
the quark measure with pions. The quark measure
relevant for calculating InJ[U] is therefore defined with
respect to a massless Dirac operator coupled to some
“external” vector and axial-vector fields. The
phenomenological requirement of having a hadronic vec-
tor current anomaly-free makes it convenient to use the
Schwinger proper-time method for regularization. This is
consistent with what has been done in the preceding sec-
tion, where the proper-time definition of the fermion
determinant is used. It is well known'® that this regulari-
zation scheme gives automatically the vector gauge-
J

—(2YA (=) () V7 (2)
2N, |e +Vr A erf A 1 2 A2
where for a;(U) we find [see Eq. (A6)]
a,(x,x)=24(1) A(T)+y’[DY-A(1)]++ YEYYV (1)

with 4,,(7) and V,(7) deﬁned in (A8). It follows that
f drTr€y a_4f dr [d*x tr&(D"-4) .

Integrating by parts and noticing that
~A,(T )+8¢D”§ we obtain

(6.5)
A, (T+067)
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invariant definition of the fermion determinant and the
measure. Consider now a finite chiral redefinition of the
quark fields similar to one [see Eq. (2.5)] by which we
have localized pseudoscalars couple only through the
parts of the QCD action not having the full local chiral
invariance:

a.=V'xnq, qr=V(x,7qk , (6.2)

where V(x,7)=exp[iy>r€(x)]. This is a finite chiral rota-
tion, but can be viewed as a succession of infinitesimal
transformations, each of which gives an anomalous
change in the measure?

871nJ (7)= —2N,Trdr&y’e ~P*™ .

Clearly then, summing over the infinite set of infini-
tesimal transformations, as 7 goes from 7=0 to 7=1, one
obtains

InJ[U]=—2N, f drTréySe <P’ (6.3)
€=A"? is the proper-time cutoff indicating that we are
considering contributions from the long-wavelength part
of the measure interacting with pseudoscalars, as has been
explained in the preceding sections. Formula (6.1) follows
if one compares now (6.3) with the expression for I'(U,X),
(5.3), and results (5.6), (5.11), and (5.14). With (6.1) and
the results of the preceding section, (5.11) and (5.14), we
have reduced the calculation of the low-energy pseudosca-
lar action (3.1), to the calculation of the coefficients
a;(x,x) appearing in the small-¢ expansion of the massless
heat kernel (x |e~“P’|x) [see Eq. (5.5)]. In the Appen-
dix we present a general method and derive the relevant
recursive formulas for evaluating the coefficients a;(x,y),
which we have used in our calculation. While the formu-
las derived could be of some pedagogical interest, we
should stress that it is possible to calculate the coefficient
a,(x,x) in another way, using the general theorem by Gil-
key?® as has been done by Balachandran et al.?* and more
recently by Nepomechie.?®

We now illustrate how the kinetic term for pseudosca-
lars appear, while details about the four-derivative terms
are worked out in the Appendix and will be used shortly,
when we present a complete expression for the low-energy
effective theory for pseudoscalars. A complete expression
for the two-derivative term is obtained by combining the
contributions from (6.1) and (5.11). We get

~(2)~

s (6.4)

3,2 erf((3)V’s)

—4[d*% trf 84-A=—2[d*xtrd-4 .

Using the expression (2.7) for 4, and going back to Min-
kowski space, one obtains
f drTréy’a =it [d* rd*U',U . (6.6)

We learn, therefore, that (6.4) represents a properly nor-
malized kinetic term for pseudoscalars providing that the
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following relation is satisfied:

N, A2 —(mp/A)? m m
2= < mQ \/_- —-——Q ['f -————Q
F, e e +Vr A e A
—1+f_2 2s3/2 erf(mQ\/'>

(6.7

This relation above is similar to the previously obtained
relations (4.2) and (4.4) in that it links into a simple con-
J

F,*
Wer(U,2)= [ d'x | ——ud*U"d, U—: -

N,
+ 19272
{2)

+ Vegrlo, 1)+ A

I

472

where #(2?)=1 for (2)~0 (unbroken phase) while it
approaches #'(2?)~0 rapidly as (Z) increases above a
certain scale and in particular is zero for (2)~my, i.e.,
in the chiral-symmetry-broken phase (“normal vacuum?”).
The last two terms represent the effective potential [see
(4.1) and (4.3)] expanded to leading order around the
chiral limit (m=£40). The second term in (6.8) is the calcu-
lated Wess-Zumino term,>?%?7 with U=U(x ;x°) interpo-
lating between U=exp[i(2/F,)m(x)] at xs;=1and U=1
at x5=0.

VII. DISCUSSION: SKYRME OR THE BAG?

Let us first note that throughout our derivation so far,
the assumption of the dynamical breakdown of the chiral
symmetry, i.e., the existence of the (2 )5£0 ground state,
has been closely aligned with the appearance of the pseu-
doscalars. That is, of course, as it should be the pseudo-
scalars being just the pseudo-Goldstone bosons associated
with the breakdown of the chiral symmetry. Our calcula-
tion illustrates that it is the dynamical symmetry break-
down which leads to the appearance of the kinetic term
and the nontopological four-derivative terms for pseudo-
scalars. Notice that if one artificially turns off the sym-
metry breaking, i.e., let (£)—0, the dynamical terms of
the low-energy effective action (6.8) will also be turned
off, the coefficients in front of them vanishing as
(X )—0. Note at this point that the same conclusion ap-
plies to the coefficients in front of all higher derivative
terms as well. This can be easily seen from the fact that
the effective pseudoscalar action is the difference between
the massive determinant and the low-energy measure con-
tribution [Sec. VI, Eq. (6.1)] and it vanishes in the limit
MQ —0.

Consider now the four-derivative terms in (6.8). It is
well known>®?® that within a pure pseudoscalar low-

ds sz /atpem

sistency condition some important low-energy parameters:
mg, A, and F,. One should note that (6.7) and (4.2) give,
after eliminating A, a new (dynamical) relation between
Fﬂ’ (‘7‘1), and mQ~

We are now in a position to present the final result of
our calculation of the low-energy effective action for
pseudoscalars (3.1), to which, as we have argued in Sec. II,
QCD is likely to reduce in the limit of large number of
colors and extremely low energies. Collecting together
(4.1), (5.11), (5.14), (6.1), and using (6.4) as well as the re-
sults about the four-derivative terms presented in the Ap-
pendix, we obtain’®

¢ [1—F (3] f dx*e*1rutauutauuu’e, uu’s,uuts, U

[1—x (328?020 + +[U'S,U, U8, U —(8*U"3,U)?)]

(U*+U)+o

!

energy model, such as the Skyrme model, those terms are
crucial for the eventual stabilization of the soliton (i.e.,
nucleon) against shrinking to zero size.? It is easy to see
that among the four-derivative terms calculated here,0—33
the second (the Skyrme term) and third contribute to the
stability of the soliton. However, the first term is of op-
posite sign and tends to destabilize the soliton. It does not
seem possible to claim that the quartic terms will be man-
ifestly positive, and we conclude therefore, that the soliton
is not stabilized by the quartic, pure pseudoscalar
terms.>** This result, although hard to predict without
calculating the four-derivative terms, is not completely
surprising. After all, the effective pure pseudoscalar
theory is derived to be valid at extremely low energies
(E << A). This is not the relevant scale for the nucleon—
Skyrmion.’S Yet, in the context of the Skyrme model, one
had hoped that a pure pseudoscalar part of the low-energy
action coming from QCD, might contain a stable soliton.
Our result should be interpreted as an indication that this
hope is not justified (at least in the case of the theory ob-
tained by truncating the derivative expansion to the four
derivatives).3® It might not be a bad idea to investigate in
some detail the phenomenology of the model obtained by
ignoring the 3*U'32U term (that which spoils stability) in
(6.8). In addition to the Skyrme term we are then left
with term of different tensor structure,’’ (3U E)U)2 the
coefficient of which we predict’ to be N,/1927%. In any
case, to arrive at a more realistic meson theory, and at the
same time the stable soliton, it seems that one should ex-
tend somewhat the pure pseudoscalar (Skyrme) frame-
work. In fact, even within our (extreme) low-energy
framework there is a hint of the more realistic structure
appearing. To see this, note that scalar-meson field enters
naturally into our formulation, and the coefficients in
front of the nontopological terms of our effective pseudo-
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scalar theory depend in a nontrivial way on the scalar-
meson background o, i.e.,, Z(g). While in the vacuum
sector the energy is minimized by =(o)~(ZX), the pres-
ence of the soliton is likely to be characterized by the po-
sition dependent o (x) which interpolates between oy~0
at short distances and (0)+0 [i.e,, Z(0)~my] at large
distances. Assuming this we see that the coefficients in
front of the kinetic term (6.7) and quartic derivative terms
(6.8) will rapidly vanish below a certain critical radius
which characterizes the rapid falloff of o (x) from its
large distance (“normal vacuum”) value (o)=£0 to
(0)=~0. What appears therefore is a natural realization
of the space cutoff, essentially a step function, which
enters in an ad hoc way the topological soliton bag
model.'® The topological soliton will be characterized by
a core made out of the scalar-meson and chiral fields (the
bag) inside of which the contribution of pseudoscalars
rapidly vanishes, leaving the bubble of unbroken vacuum
({o)~0) with massless (chiral) quarks and gluons. The
topological soliton will in this case be stable against
shrinking to zero size. The baryon number will be equal
to unity and composed of the fraction carried by the
quarks inside the bag and the topological charge carried
by the chiral soliton.’® Note at this point that the pure
pseudoscalar anomaly term [the second term in (6.8), i.e.,
the Wess-Zumino-Witten term] as well, enters the effec-
tive action (6.8) multiplied by a factor of [1—%(Z?)], a
point which was not clear (to the author) when Ref. 9 was
written. This result supports the result first obtained
within a particular model calculation by Niemi.*

Consider finally the two consistency relations (4.4) and
(6.7) obtained through our derivation.® Remarkably,
those two relations have a consistent solution reasonably
close to the realistic values of the parameters involved.
We find, for example, m,~130 MeV (m=8 MeV),
F,~96 MeV, A~667 MeV, and my~200 MeV (two of
these are predictions).

VIII. CONCLUDING REMARKS

In this paper we have argued that in the limit of large
N and extremely low energies QCD should reduce to the
pure pseudoscalar theory which under some additional as-
sumptions, stated in Sec. II, we have calculated truncated
to four derivatives. The basic ideas, making the model de-
rived here a very plausible one for the extreme low-energy
limit of QCD at large N, are explained in Sec. II. There
we find it very useful to make a clear distinction between
the “chiral” quarks and the “constituent” quarks. The
pion is either the bound state of two chiral quarks or is
(equivalently) a collective Goldstone mode interacting
nonlinearly through the derivative coupling with massive
constituent quarks. We define what we call the
“constituent-quark gauge” as a QCD analog of the uni-
tary gauge in the spontaneously broken theories with
Higgs bosons. In this gauge the pions are made manifest
as collective Goldstone modes of dynamically broken
chiral symmetry and are localized to couple only through
the parts of the QCD action that do not have a full local
chiral invariance. Further “decoupling” and large-N ar-
guments then singles out a particular low-energy model of

the massive constituent quarks interacting with collective
pions and scalar mesons [Eqgs. (2.12), (2.13), and (2.14)]
which we use as the starting point for our calculation of
the low-energy effective pure pion theory in Secs. III, IV,
V, and VI. The basic results of this calculation are ex-
pressions (4.1), (4.2), (4.4), (6.7), and (6.8). Two of these
relations, (4.2) and (6.7), can be used to eliminate our
physical cutoff A, and lead to a new (dynamical) relation
between F,, (gq), and my. Our calculation clearly illus-
trates that it is the dynamical symmetry breakdown which
leads to the appearance of the kinetic term and all the oth-
er interaction terms for pseudoscalars. We comment
about the possibility that if summed to all orders in
derivatives, the pure pseudoscalar theory might have a
stable soliton.® In this case one might have the justifica-
tion to neglect one of the four-derivative terms in (6.8)
(that which spoils stability). It should be interesting to in-
vestigate the phenomenology of the Skyrme model extend-
ed in this way. However, it seems very likely that one will
have to extend the pure pseudoscalar framework in order
to reproduce realistically all the aspects of phenomenolo-
gy.>> We show that under a plausible assumption about
the behavior of the scalar-meson background o(x), our
results lead to a natural realization of the space cutoff
entering in an ad hoc way in the previously proposed to-
pological soliton bag models.'°

Note added. Recently, the following papers appeared,
in which, within a somewhat more phenomenological
framework and using a different method of calculation,
similar but not identical results were obtained: A. Dhar,
R. Shankar, and S. R. Wadia, Phys. Rev. D 31, 3256
(1985); L. H. Chan, Phys. Rev. Lett. 55, 21 (1985). See
also Ref. 9. Also, since the submission of this paper, the
following relevant work appeared, I. Aitchison et al.,
Phys. Lett. 165B, 162 (1985), in which the contribution of
the sixth-order terms to the static energy was investigated.
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APPENDIX
Consider the massless “heat kernel”
H(x,y;s)=(x |exp(—sP?)|y)
satisfying the “heat equation”
8,H=—P’H, H(x,y;0)=58(x—y) . (A1)
Let us make the ansatz
H(x,y;s)=Hy(x,y;s)[ao(x,p)+sa;(x,y)+ - -] (A2)

and
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1 (x —y)?
167252 4s

where Hy(x,y) is the solution of the “heat equation” for
the case of the massless Dirac operator. Replacing the an-
satz (A2) in the heat equation (A1), one obtains the fol-
lowing system of recursion relations:

(x —yFQR,+V,—io, v’ A")a +la)=—D%a_,,

Hy(x,y;s)= exp | —

»

(A3a)
]

ag(x,y)=1+ f: (=1 fyxf"“..

n=1

P,=V,—io,y’4”.

From (A3), after some easy algebra, we -obtain the follow-
ing useful formula:

a,(x,x)=———}—(D2a,_1)x=,

__1 4
=Tun P A

+ [Y*Y"Vuy+27(DV-4)+44-4), .

1
II+1)
(AS)

This expression, together with the expression for ag(x,y)
in (A4) can be used to calculate directly the first two coef-
ficients of the small-s expansion (A2) in the coincidence
limit (x =y).

After some algebra we obtain

a,(x,x)=—(P2ag), .y =24-A+7* D" A)+ 57"V .
(A6)

Using (A6) in (AS) we obtain a simple looking expression
for a,(x,x) which can be used for a direct calculation of
this coefficient:

a,(x,x)= (D *ag), -,
+ V"V Vo +273(D-4)+44-AT .

In fact, we are interested to calculate Try°£a (x,x) rather
than a,(x,x) itself. Also, some simplification comes from
the fact that vector (V) and axial-vector (A4) fields ap-
pearing in our framework are made out of collective pseu-
doscalar fields, according to the formula

=1V v +vavh, 4,=300T,v—va,rh,
(A8)

where V=V (r)=exp[iTé(x)]. Therefore V), and A4, are
pure gauge:

Viyw=A4,,=0. (A9)

Calculation of (P *ag),_, can be done with use of (A3b).
This is a straightforward but somewhat lengthy calcula-
tion. We present here only the result which agrees with
one obtained some time ago by Balachandran et al.?* and

(A7)

n

X, _
[ dx " ax P P,

(x —p¥(3,+V,—io,,r A")a;=0, agx,x)=1, (A3b)

where
P=iv*@u+V,+74,) .

The equation for ag(x,y) can be integrated, and the solu-
tion can be represented in terms of Dyson’s iterative
series:

P, ,

1

(A4)

more recently by Nepomechie:?*
Tréy’a (x,x)= —i5 tre*"PEA, A, A A,
++ tré[ —4{D-A4,4%}
+16{D,A,,A*A”} +4D*(DA)
+244%(D-A)A,] . (A10)

The imaginary part of the action is therefore

Nc 1 m
Iwz=i dr | d*xe*Potr2i—
G fo f F,

xu'a,uu'a,uu’s,uu’s, U .

Using 2i(w/F,)= UTBSU and x°=7 we obtain the Wess-

Zumino anomaly term:

N,
d’x e’

487% J

Iyz=i

xtrU'asuu’s, uu’s, UU"s U, U .

(A11)

Consider now the contribution of the real part of a,(x,x)
to the four-derivative action:

N, 1
Sy~ 8;2 [a*x [ drugl—4{D-4,4%)

4
+16{D,4,,4*4")}
+4DD(D-A)

+244HD-A)4,] . (A12)

The integrand is in fact a total derivative as can be expli-
citly checked:

d v
o144, A4, —44,4,44

—4(D,A,)(D*A")+6(D-A)] .
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Equation (A12) can therefore be written as a four-
dimensional integral:

N,
Str [ d*x[4[A,,4,]2—44,4,4" 4"

Si.=
MY

—4(D,A,)(D*A”)+6(D-A)*] . (A13)

Using the property A4,,=V,,=0, ie, D,4,=D,A,,
(A13) can be further simplified and we obtain
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N,
S4= *m fd"x tr[Z(D'A)2+2[ApyAV]2

+4(A4-4)7] .
Using (A8), as well as the obvious
3*U'U+U'3?U= —2¢#U"3,U we obtain

(A14)
identity
N 4 2r1ta2 Lrprt t 2
Sy= —Wfd x[2(°U'9?0) + $[U'3,U,U"8,U]

—(3,U'*uy]. (A15)

*Address after September 1986: Department of Physics,
University of California at Los Angeles, Los Angeles, Califor-
nia 90024.
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