
PHYSICAL REVIE%' 0 VOLUME 34, NUMBER 6

Simplicial pseudorandom lattice study of a three-dimensional Abelian gauge model,
the regular lattice as an extremum of the action
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%e introduce a simplicial pseudorandom version of lattice gauge theory. In this formulation it is

possible to interpolate continuously between a regular simplicial lattice and a pseudorandom lattice.

Using this method we study a simple three-dimensional Abelian lattice gauge theory. Calculating

average plaquette expectation values, we find an extremum of the action for our regular simplicial

lattice. Such a behavior was found in analytical studies in one and two dimensions.

I. INTRODUCTION

The lattice gauge theory on a random simplicial lattice
was introduced in a series of papers by Christ, Friedberg,
and Lee. ' Monte Carlo calculations of lattice gauge
theories within this framework were reported by Ren.

There are several reasons to prefer the lattice gauge
theory defined on a random lattice. ' We mentioned here
only three of these reasons.

(i) The inherent rotational invariance of the Euclidean
version of the random lattice.

(ii} Because of the higher degree of connectedness, the
random lattice with the same number of points is closer to
the continuum than the usual hypercubic lattice. In the
hypercubic lattice in d=4 dimensions there are

Nitro

—8—
links and N2yp=24 plaquettes per lattice point. In the
random lattice the corresponding numbers are Ni&o -37.8
and %2'-197. This property seems, in the absence of
phase transitions, to translate into a smoother behavior of
the measured expectation values, as for instance found by
Ren in the case of the SU(2} lattice gauge theory.

(iii) The random lattice gauge theory is closely related
to Regge's approach to quantum gravity. ' Applications
of the random lattice gauge theory to quantum gravity
might lead to further progress in this field.

The linking procedure for a large random lattice turns
out to be quite complicated. So far, all numerical calcula-
tions reported were done with very few actually con-
structed and linked random lattices. However, theoretical
considerations' always use the assumption that all aver-

ages run over a large number of different random lattices.
In fact, it was shown' that the average over all possible
orientations of a Wilson loop in one large random lattice
is equivalent to the quenched average calculated from an
ensemble of random lattices. The size of actual random
lattices constructed so far and used in calculations is,
however, not sufficient to exploit this property of the
quenched average. Also it seems easier to use an ensemble
of not so large random, or pseudorandom lattices, than
one really big random lattice.

These problems are our main motivation to introduce a

pseudorandom lattice. The pseudorandom lattice should
have the advantages of the random lattice when applied to
lattice gauge theories but should be easy to construct and
link. We derive our pseudorandom lattice from a regular
simplicial lattice by randomly shifting the lattice sites,
however, without relinking the resulting lattice. This can
be done if the shifted lattice points remain within the so-
called invariant cell.

Lattice gauge theory on simplicial lattices was studied

by Drouffe and co-workers in a series of papers. We
stress, however, that in dimensions higher than d=2 the
regular simplicial lattice is not a simplicial lattice in our
sense. We consider simplicial lattices whose elements in d
dimensions are only points, links, two-simplices or trian-
gles, three-simplices or tetrahedra, . . . up to d-simplices.
The simplicial lattices of Drouffe and co-workers con-
tain, for instance, plaquettes in the form of triangles as
well as squares.

We arrive at our simplicial lattice by cutting the ele-

mentary cells of a regular lattice into simplices. Here we
will consider only the case of d =3 diinensions.

It was shown by Cohen that in d=1 dimensions the
regular lattice is an extremum of the action. The corre-
sponding property in 1=2 dimensions was found by Per-
termann. ' Here we demonstrate numerically the same
behavior in d= 3 dimensions using our formulation of the
pseudorandom lattice gauge theory, which allows a con-
tinuous transition from the initial regular simplicial lat-
tice to the pseudorandom lattice.

In Sec. II we will define our pseudorandom lattice. The
gauge theory on this lattice is defined in Sec. III, and in
Sec. IV we apply this formulation to an Abelian gauge
theory in d=3 dimensions. We find that for this model
the regular simplicial lattice is an extremum of the action.

II. THE DEFINITION OF A SIMPLICIAL
PSEUDORANDOM LATTICE

In order to describe the construction of a simplicial
pseudorandom lattice we restrict ourselves to three dimen-
sions. The lattice is called pseudorandom since it differs
significantly from the random lattice constructed by

1986 The American Physical Society



34 SIMPLICIAL PSEUDORANDOM LATTICE STUDY OF A. . .

FIG. 1. The elementary cell of a three-dimensional Bravais
lattice (a) in the usual sense and (b) decomposed in tetrahedra
(three-simpHces) by diagonal links.

Christ, Friedberg, and I.ee. ' Our construction starts from
a regular simplicial lattice. Each point of the regular lat-
tice is displaced randomly within a given invariant cell.
The invariant cells are constructed in such a way that the
linking structure of the imtial regular lattice can be kept
after randomizing the points. In this way it becomes easy
to construct many different pseudorandom lattices
without excessive computations for linking the lattice.
Also, since the amount of randomizing the points can be
controlled by a single parameter V varying between zero
and one, it is easy to study the effects connected with the
transition from a regular simplicial lattice to a pseudoran-
dom lattice.

%e start with lattice sites distributed on a regular Bra-
vais lattice. The simplest case to consider is a cubic lat-
tice, but without much additional effort we can also start
from tetragonal, rhombic, rhombohedral, monoclinic, or
triclinic lattices. In a usual lattice of this kind —we dis-
cuss for simplicity the cubic case—the basic lattice ele-
ments are points (sites), links, squares (plaquettes), and
cubes. In our simplicial Bravais lattice the elements
should be instead points, links„ triangles, and tetrahedra.
It is easy to go over from the usual lattice to the simplicial
lattice by cutting each cube into five tetrahedra; see Fig. 1.
The resultant lattice consists of two types of tetrahedra,
two types of triangles, and three different kinds of links.
The multiplicity of these elements increases further in
case of the other noncubic lattices. The cuts in the com-
mon faces of adjacent cubes are always the same. Figure
2 gives a possible arrangement of a three-dimensional
4& 2 &2 lattice. It is obvious that more than one possibil-
ity exists for linking the regular simplicial lattice.

Considering the rhombic configuration (which includes
the cubic and tetragonal cases) we choose a Cartesian
coordinate system with the axes parallel to the lattice
axes. The coordinate spacings M, Ay, and Lz are identi-

I r

Jc

FIG. 3. The rhombic lattice and the corresponding lattice
spaclllgs.

cal to the lattice spacings a„, a„, and a„along the three
axes (see Fig. 3).

For a triclinic lattice (which includes all other cases) it
would be possible to use a skew coordinate system parallel
to the lattice axes. But we prefer to describe the lattice in

a Cartesian frame of reference. There are the coordinate

spacings bx, by, and M and six deviations My, Mz, byx,
hyz, box, and day. The deviation My, for instance, de-

scribes the additional increment to the x coordinate if one

advances by hy in the y direction (see Fig. 4). All the im-

portant lattice quantities can be collected in a matrix

lay Mz

(g;J ) = byx b,y hyz

Lrx My

In d=3 dimensions one needs only six quantities to
describe a geometric object. Therefore, we inight fix three
of the deviations, for instance,

hzx = hazy =h,yx =0 .

In this case, the xy plane and the plane of the lattice axes
gi and $2 (see Fig. 4) coincide. Furthermore, the x and g,
axes are parallel. In this way we describe the triclinic lat-
tice by the matrix

ry

~~ ~&yx

FIG. 2. Example of a regular simplicial lattice derived from
a 4)&2&2 cubic lattice. Each elementary cube is cut as shown
in Fig. 1(b).

FIG. 4. The coordinate intervals hx, hy, and M and devia-
tions lucy, Mz, hyx, byz, ~, and day of a triclinic Bravais lat-
tice with axes g ), g2, and g3.
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tice constructed in this way, again in d =2 dimensions.
The site positions of the pseudorandom lattice are

characterized by their coordinates in the regular lattice
plus a random fluctuation within the invariant cell. It is
convenient to generate the fluctuations in diagonal coordi-
nates g ] Q2 and g 3 varying within

ds
/ =1,2,3,

where the d; are the corresponding half-diagonals:

di ———,[(bx +bxy +bxz) +(by +byx+byz)

+(bz+ b ~+bzy)']'",

d, = —,
' [(b —b y+b z)'+(by —byx —byz)'

+(bz+ bzx —bzy )']'~',

d3 ———,
' [(bx —bxy —bxz) +(by —byx+byz)

+(bz —bzx+bzy) ]'

Using the cosines between the Cartesian and diagonal
coordinates, we find the corresponding variations in the
Cartesian coordinates of the sites

bx +bxy+ bxz
2d i

hy +hyx+ 5yz
Zdi

M +Mx+ razz

2d i

bx —bxy+ bxz
2d2

Ay —hyx —hyz

2d2

—~y
2d2

lb& —My+ diaz

2di

Ay —Ayx+ hyz

2d3

Lz —~~@+My
2di

92

'93

where V is a parameter, introduced in order to interpolate
continuously between the regular simplicial lattice and the
pseudorandom lattice. For V=O, the variations 5; vanish,
we get the regular lattice, for V= 1 we get the pseudoran-
dom lattice with maximum randomization of the points.

The differences between our version of a pseudorandom
lattice and the random lattice introduced by Christ, Fried-
berg, and Lee' do not concern the simplex decomposition
alone but also the dual lattice. So, negative dual lengths
of plaquettes (triangles) and negative dual areas of links
are possible and occur indeed occasionally corresponding
to an overlapping of dual cells. Such negative dual quan-
tities appear because the definition of lattice site clusters'
is not valid in our version. Nevertheless, the dual of the
pseudorandom lattice is a Voronoi construction. There-
fore, the relations between the lattice quantities discussed
in Ref. 1 are valid. Let Q be the given volume of the
space-time. %e have

LI'"= g l/~l, jA,;J.=QP—'",
(ij )

Ogj
AugJ l,j

X,J, I,J, and o,z being the coupling, length, and the dual
area of the link joining the sites i and j. The l,j are the
components of the corresponding link vector. The sum
runs over all the links (ij ) of the lattice. Concerning the
plaquettes we have

T"~=g a)»b.„""bp~ (R% ~ P'~5"»——)Q, —

b»"= 6 [ifjijk+ijk4i+C~ii (v~—»]

IP
COP =

Here p denotes the plaquette (triangle) with vertices ij,k
and links (ij), (jk), (ki). The co», 6», and I» are the cou-
pling, area, and dual length of the plaquette. It follows
from Eqs. (8) and (9) that

1

3 0 (j l(J Q
(ij )

(10)

III. THE LATTICE GAUGE THEORY
ON THE SIMPLICIAL PSEUDORANDOM LATTICE

We define the gauge theory on our simplicial pseu-
dorandom lattice following Christ, Friedberg, and Lee. '

The theory in 0=3 dimensions is defined by the partition
function

These formulas have a simple meaning. In three space-
time dimensions using the dual areas and the half-lengths
of the links we get pyramids. The sum over all these py-
ramids [Eq. (10)] has to be Q. In the same way it is possi-
ble to construct tetrahedra consisting of the areas and the
half-dual-lengths of plaquettes. Again, the sum [Eq. (11)]
over these tetrahedra gives Q.

For a pseudorandom lattice represented by 64 sites in a
cubic volume Q=64.0 (linear size AL=4) we found this
value within the numerical accuracy of the computer
used.
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Wl

Z(PtIJ })=f gd3x J(Ix})f g dUiexp —PA(Ix}, t U})—g J Q (Ix },t U})
i=1 /=1 A

(12)

where Nu is the number of lattice sites in the volume 0
and N, is the number of links. The Euclidean action is
A(Ix},(U}). The Q are observables and the J exter-
nal sources. The action for a pure gauge theory is defined

ui~. We found one of three (one of four) lattice configura-
tions with such plaquette weights for V=0.65 (0.70). The
number of these extreme configurations increases rapidly
if V~ l. Therefore, we restrict the variation parameter to
be

1
A ( I x},I U} ) = g co~ 1 ——Re Tr U~

p=l
(13)

0.00& V(0.70 .

p runs over all Nz triangular plaquettes of the lattice. U~
is the product of the three link variables around the pla-
quette. The weight co& of the plaquette is given by

COp tX:
I~

(14)p

where 5& is the area of the triangle and I& is the length of
its dual. We normalize co~ as

N21q lhq
Cop= N

p=1

(15)

(16)

The expectation value of a physical quantity 0 becomes

We measure quenched expectation values'2 and define the
Jacobian J( I x }) as

N
' —1

1

J(fx})= f D„dU,e
/=1

IV. THE REGULAR LATTICE
AS AN EXTREMUM OF THE ACTION

In Fig. 7 we show, by projecting some of the points of
pseudorandom lattices into the x-y plane, how the ran-
dom lattice parameter Y changes the appearance of the
lattice. This plot demonstrates also that we interpolate
with V between the regular lattice ( V=O) and the full
pseudorandom lattice ( V= 1).

We use in our calculation the Abelian U(1) gauge
group, which ~e approximate in the calculation by the
discrete Z6u group. The U(1) lattice gauge theory in d= 3
dimensions m'as studied in detail by Bhanot and Creutz"
and by Ambjorn, Hey, and Otto. ' There is no phase
transition in this theory We .will not study in the present
paper the properties of this theory. We calculate only the

(0(P))= f gdx f ff dUie ~"0 .
Q i =1 /=1

(17)

Here we will especially calculate the expectation value
of the average plaquette action

A(IU})

le
0.30

CL

All these definitions correspond to the ones used by Ren
in his random-lattice calculations.

We use in our calculations in d=3 dimensions pseu-
dorandom lattices with No 64 points. T——he lattices are
derived from an initial 4X4)&4 cubic lattice. Our simpli-
cial lattice has on the average %1~0——12 links per point in-
stead of 6 in the cubic lattice and Nz~u

——30 plaquettes per
point instead of 12 in the cubic lattice. In a random lat-
tice these numbers ~ould be N1~o —15.S4 and

%2' 40.56.
Occasionally, there occur plaquettes in the pseudoran-

dom lattice eath very smaB area hz. Furthermore,
tetrahedra are possible with all vertices approximatively in
one plane. The corresponding large radius of a cir-
cumscribing sphere yields a very large dual plaquette
length I&. This could disturb the Monte Carlo results,
since such a plaquette mould get an overwhelming weight
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FIG. 9. Average plaquette expectation values for eight values
of P as function of the random lattice parameter V. For the
regular lattice we find a maximum of the action. The calcula-
tion is for the U(1) lattice gauge theory in d=3 dimensions.
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average action per plaquette as a function of the coupling
constant P and study the effects which occur if one goes
from the regular simplicial lattice to the pseudorandom
lattice.

There are two effects.
(i) When calculating expectation values on regular lat-

tices of the same size, there are no systematic differences
between independent calculations. Only statistical errors
and possibly effects connected with the lack of thermal
equilibrium lead to different results. This is not so when
calculating expectation values on a random lattice or
pseudorandom lattice of finite size. Depending on the ac-
tual realization of the random lattice we fmd systematic
differences between the expectation values. We have to
average the expectation values over a sufficiently large
number of independent random or pseudorandom lattices
as prescribed by the quenched average. ' This is always
true if we are using a lattice with a finite size practical for
a numeric calculation. To illustrate this feature, we
present in Fig. 8 distributions of plaquette expectation
values obtained from calculations with 8 ( V=0.5}, 14
( V=0.6), and 20 ( V=0.7} independent random lattices.
The expectation values on each lattice and for each value

P are calculated over 100 iterations of the lattice using the
Metropolis method.

(ii) The expectation values of the average action depend
in a systematic way on the random lattice parameter V,
which interpolates between the regular lattice and the
pseudorandom lattice. In Fig. 9 me plot average plaquette
expectation values for eight different P values as functions
of V. For each value of V the expectation values are the
result of calculations with several independently generated

random lattices (4 lattices at the lower V values up to 20
lattices at V=0.7). The statistical errors are hardly bigger
than the points plotted. The expectation values were mea-
sured in a calculation lowering P in steps of 0.1, with 100
iterations per point and lattice.

We find from Fig. 9 that the action has an extremum
(maximum) for the regular lattice. This behavior was
conjectured by Cohen who could show it in d =1 dimen-
sions. Pertermann' found such a behavior in d=2 di-
mensions.

Our experience with the first application of the pseu-
dorandom Monte Carlo study shows that this method is
promising; it needs hardly more computing resources than
Monte Carlo calculations on a regular hypercubic lattice.
The advantages of random-lattice theory seem to be also
present in pseudorandorn-lattice calculations, but with the
pseudorandom lattice the linking step in the construction
of the lattice is done very efficiently, at least as compared
with the algorithm, vrhich me were using previously to
link a random lattice. Using the pseudorandom lattice,
there is nothing which would prevent the proper calcula-
tion of quenched or annealed averages over many lattices
when studying lattice gauge theories.
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