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%e make a systematic search of all the possible field theories in n-dimensional Minkowski space
with an Abelian gauge invariance and bosonic gauge fields. They include the usual cases of Maxwell

theory and spontaneously broken gauge theories but also less known cases such as a conserved

current-current interaction and a massive Abelian vector boson coupled to a conserved current, as

well as a description of any symmetry breaking as coming from a spontaneous breakdown. Special
cases in one, two, or three space-time dimensions are also considered.

I. INTRODUCTION

Gauge invariance is one of the fundamental notions in
the actual description of particle physics. Based on the
fact that electromagnetism is not uniquely described by
the potentials, it has been erected as a dynamical principle
which allows one to find the dynamics from the symme-
try properties of the particles. The successes of the stan-
dard SU(3)XSU(2)XU(1) model are impressive and, at
the present time, an enlargement of this symmetry either
as a grand-unification group or as a supersymmetry is still
an open question.

Conceptually, a gauge theory is, however, a more gen-
eral notion than this dynamical principle. One can define
it as a theory described by a Lagrangian which is invari-
ant under group transformations depending on the space-
time points. Associated with this invariance, there is a set
of pairs of constraints. ' In a pair, one constraint comes
from the definition of canonical momenta in terms of ve-
locities (primary constraint) while the other results from
field equations written in terms of phase-space variables
(secondary constraint). These pairs of constraints are first
class which means that each constraint corresponds to an
unphysical degree of freedom. In other words, unphysical
degrees of freedom always occur by pairs in a gauge
theory.

If we restrict ourselves to the Abelian case, as we will
do in the following except when the contrary is explicitly
stated, the best known gauge theory is the Maxwell theory
described by the Lagrangian

whe~e W (Q, B„Q) is the free Lagrangian for matter
fields. The Higgs mechanism is generally considered as a
particular case of it. However, in the last few years we
have seen here and there in the literature " the appear-
ance of different Abelian gauge theories and their non-
Abelian extensions, so that we can ask the question as to
what extent an arbitrary gauge theory can be built up and,
if it cannot, what are the Abelian gauge theories.

To this end, we will make a distinction between rnatter
fields and gauge fields and introduce, in addition to the
usual vector gauge field, a scalar gauge field. In fact,

such a scalar gauge field is essentially not a new notion,
since it can be encountered in the Higgs mechanism, but it
is combined with an invariant matter field in a form
which looks like a matter field. Let us call this scalar
gauge field K while the vector gauge field is V„. Two
gauge field combinations are invariant: (B„K—V„) and
(B„V„—B„V„). Together with the coupling of the vector
gauge field with a conserved current, they are the basis of
all possible gauge theories. A special case can however
also occur if the role of the scalar gauge field is played by
a vector field which will be coupled to a derivative. Spe-
cial considerations related to the nature of the tensor dual
to (B„V„—B„V„) also hold in special space-time dimen-
sions. In one dimension, no kinetic term for the vector
gauge field can be constructed. In two dimensions
(B„V„—B„V&) is equivalent to a pseudoscalar gauge-
invariant field and, in three dimensions, the dual
e„„z(B"A —ÃA") is a conserved quantity which can be
coupled to Vz in a way which is gauge invariant up to a
three-divergence. It can also be coupled to (B„K—V„) in
a fully gauge-invariant way. All of these special cases are
also discussed in our work which is organized as follows.

Some usual assumptions, such as Lorentz invariance,
the absence of derivatives of order higher than 1 in the
Lagrangian, Lagrangians at most quadratic in the veloci-
ties, and the absence of couplings which are nonrenormal-
izable in four dimensions, are used in Sec. II to restrict the
possible Abelian gauge invariances in an arbitrary space-
time dimension to five generic Lagrangians. In Sec. III
we discuss two particular cases which are not discussed
extensively elsewhere, while in Sec. IV, the special case of
one dimension is considered. The special properties of
two and three space-time dimensions are discussed,
respectively, in Secs. V and VI while conclusions are
drawn in Sec. VII.

II. ABELIAN GAUGE-INVARIANT THEORIES
FOR ANY SPACE-TIME DIMENSION

Let us begin our discussion by defining what we mean
by a gauge field in contrast with an ordinary or matter
field. If a gauge invariance is given, a matter field is ei-
ther invariant or transforms proportionally to the fields.
Moreover, it has a real mass given by the term quadratic
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in the fields in the Lagrangian. An example of this is the
complex scalar field described by the Lagrangian

, a—qp ai'Q —,' m—ptp (2)

submitted to the transformation

In contrast, a gauge field always involves in its transfor-
mation a field-independent translation. The best known
example is, of course, the vector field needed for the res-
toration of Lagrangian invariance under point-dependent
gauge transformations. It always occurs through the co-
variant derivative

D~P=(a~ ieV~—)$

In this equation the index a does not play, in general, any
particular role, so that we will, with one notable excep-
tion, drop it in the following. This is due to the assumed
Abehan nature of our gauge invariances.

To summarize, we have essentially two gauge fields, a
scalar and a vector, and they can occur vnth the invariant
combinations a„K—V„and F„„=a„V„—a„V„. They
can be introduced inside the Lagrangian through the
terms

—,
' (a„K—V„) and —,' F„„F—""

which can be taken either separately or together. To these
terms, we also add a coupling with matter fields. By the
nature of matter fields, these couplings generally occur in
the form V~i' where the current is conserved. We have

and is submitted to the transformation 5( vJ")=(5v„)J'"=aqkj"=8'(Aj„) . (13)

V„~V„+a„co .

Another example, not generally recognized as such, is
given by the scalar field occurring in the Higgs mecha-
nism. i If we consider, for instance, the Lagrangian

~=-;a„fata ~ -,.pter--4 (qt~) (6)

with a ~0, the quadratic term in P cannot be considered
as a mass term, so that ((} does not satisfy our definition of
a matter field. The physical interpretation of the La-
grangian (6) is obtained with the new fields p, 8 defined by

y= e". (7)

The massless 8 field transforms as

where ego is a field-independent translation. It is a gauge
field which, by the redefinition (7), is disguised into a
matter field except that it has no physical interpretation.

Let K be a general gauge field. By definition, it is
submitted to the transformation

K~~K +A,

The index a is arbitrary. It may be an internal-symmetry
index or may refer to Minkowski space. The field K may
even be of spinor nature but this possibility will explicitly
be dropped out in the Lagrangian building. Except for
a=p, and kz ——a„A,, in which case a„K„—a+& is invari-
ant, the derivative of our gauge field transforms as

aqKN ~aqK~+ ape, ~

and requires, for the restoration of invariance, the intro-
duction of a compensating field V~ submitted to the
transformation

V~ is again a gauge field and the combination
a„KN V~ is invariant. I—f a derivative of this new gauge
field is introduced, it can appear in a gauge-invariant way
through the combination

(12)

Wi ———,'F„„F""+AJ",—

,'F„~~"+A~~+ —,'p'—(a„—K A„)'—
+-,'a+a ~- v(p),

,'F„~""+, (mA—„—a„K)+A—~", —

W = —,'(mA„—a„K) +A~",

~i=K„&4+ 2 a,4~4 V(0) . —

(14)

(18)

W& is the usual Abelian gauge theory with n —2 true de-
grees of freedom associated with the gauge fields. Wz is
the gauge theory with the Higgs mechanism. n —1 de-

If we add a matter-field Lagrangian, its variation is com-
pensated by 5( Vj").We can, however, also consider that

j„is an external current and use a gauge invariance up to
an n divergence where n is the dimension of space-time.

It is interesting to note here that, if j& can be written as
aJ, we also have

5(A„P'j)=(5A„)P'j =8'(5Ag) if a%A„=O.

Therefore, a theory which is gauge invariant up to an n

divergence can also be obtained in this way.
Except for trivial compensations between two gauge

fields like K, Ei with —K;~K;+A,, in which case the
combination Ki Ki can alw—ays be replaced by a gauge-
invariant field, it is clear that (a„K—Vz), F„„=a„V„—a„V&, Ap& with aJ&=0 and K„cd with 8'A,„=O are
the only possible nontrivial Abelian gauge-invariant com-
binations. The number of Lagrangians involving these
combinations and matter fields in a gauge-invariant way
is rather broad. However, if we make some additional
usual assumptions, such as Lorentz invariance, the ab-
sence of derivatives of order higher than 1 in the Lagrang-
ian, Lagrangians at most quadratic in the velocities, and
renormalizability of the couplings in four space-time di-
mensions, the number of gauge-invariant Lagrangians can
be restricted to five generic cases which are given in Eqs.
(14)—(18). Except for the case of the Higgs mechanism,
we will always consider that K has the usual dimension of
a scalar field and therefore set V„=mA„. These La-
grangians are
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gree of freedom are associated with the gauge fields
while one additional degree of freedom, the Higgs boson,
is associated with p. W& is less known but corresponds to
a gauge-invariant formulation of a massive vector boson
coupled to a conserved current. This model, with n —1

degrees of freedom associated with the gauge fields is
studied in detail elsewhere. '

W& will be discussed in the
following section while &5 has also been studied else-
where. It allows one to give a spontaneous origin to any
symmetry-breaking term in a Lagrangian. In principle,
terms like —,(m V„„a„K—„) and —,F„„iF—"""could also
be added to the Lagrangian W&. However, if a kinetic
term for the K„ field is included, a natural gauge is given
by K„=O which makes the theory useless, while, if
—

4 I&„~I'I'" is added alone, the theory looks like

Wi+ Wz but no particular meaning can be given to it.
If we remove the requirement of renormalizability in

four dimensions, terms like ~F&„j"", (1/m)a„ICj" and
many others like P(P)F„„F""could be added. P(P) is
any function of the matter field P. It may be interesting
to introduce the term (1/m)a&KJ'& in the Lagrangian

~6= l F„.F—""+,' (~A„-a„K)'—+ '(mA„—a„K)J—~
Pl

III. T%0 PARTICULAR THEORIES
IN ARBITRARY DIMENSIONS

The cases Wi, &2, Wi, and Wz, are either well known
or discussed in detail elsewhere, so that, in this section, we
will concentrate our attention to the particular case W4
and also to the nonrenormalizable Lagrangian W6.

W4 is characterized by the absence of a kinetic term for
the vector gauge field, so that four primary constraints

aw=
a(a,A„)

=

are present, while

aw=
a(a~)

=

The total Hamiltoman is

(20)

(21)

P z.= 2 m+rn'mAo+ '2 (mAk —akK)i

Aoi 0+—Ak)k+ A"~ (22)

&ssoci«ed with the primary constraints, we have the fol-
lowing chains of equations:

=- iiiAk —akK+jk =0

to show that gauge invariance is not necessarily related to
the presence of a conserved current. The Lagrangian W6
is indeed invariant, even if a j„&0. This example will be
considered below. If the current j& is conserved, ai'KJ'&
=ai'(Kj„) is an n-divergence which does not affect the
field equations. The theory is classically the same as if
this term was removed. This can also be checked at the
quantum level. When a gauge-invariant kinetic term is in-
troduced for the K field, the secondary constraint, which
is given by the Euler-Lagrange equation with respect to
variation of A 0, always coiltaiils tile term
m'=aoK —Ao+, so that K can be considered as an
unphysical degree of freedom and K=O is a suitable
gauge. The discussion is more subtle when such a kinetic
term is not included but the conclusion is the same.

If the number of gauge fields is multiplied by the intro-
duction of an index a, the gauge field terms are general-
ized by ,' F„'~~+$"an—d—

—,
' (a„K—v„) N~(a"K —v")p,

whatever this index is. The fields are, however, of bosonic
nature. Therefore, except for special cases in special di-
mensions, all the fundamental Abelian gauge theories
obeying our natural assumptions are given by W, —&5.

Special cases in a particular dime~sion are related to the
properties of the tensor dual to F„„. For n =4, for in-
stance, the dual of F„„is a rank-two tensor 'F& which
can be coupled to I'& to give the CP-violating gauge-
invariant term I'"'I'&„ in a Lagrangian. Particularities
of the theory involving such terms are sufficiently well
known not to be discussed further here. For n &4, no
special property occurs. For dimensions lower than four,
the discussion is made in the following sections.

~ =0—=-mm —jo ——0 = mak(rnA—k
-—akK)+aaio ——0,

where the last equation in (24) is clearly a consequence of
the second equation in (23) and of the current conserva-
tion.

We clearly have a gauge theory with two first-class con-
straints and 2( n —1) second-class constraints. Because of
the nature of the secondary first-class constraint [second
equation in (24)t, the only possible gauge condition is
K =0. By time differentiation, it implies

K=0 = &+mA =O-==a„(mA a„K)+ma—o=o.
(25)

With the gauge conditions (25), all the constraints in (23)
and (24) become second class and can be strongly realized
provided that Dirac brackets instead of Poisson brackets
are used. The effective Hamiltonian is

1
~4,efr= JpJ2'

The physical content of W4 is thus a conserved current-
current interaction. It is not renormalizable and there is
no hope to find a renormalizable gauge, even by the intro-
duction of additional variables because the term
—(i /m )g&„of the gauge vector-boson propagator is im-
possible to compensate. For instance, in the Stueckelberg
gauge,

,' (m A„a„K) +—A~" —,' a„ya"y+ ,
' am—i—y', —

(27)

with E identified with P = —5/m, we have
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Wg g ——,'—m A„A" —SP'Aq+Ap" + —,aS

or, equivalently,

Wg's ———,
' IiA„A"— (BI"A„)i+Ag" .

Tile propagator 1s

(30)

~o=o =-a"0+m~=0, (31)

E =0 is a convenient gauge and, in this gauge, the theory
describes the coupling of a vector field with a noncon-
served current. The theory is, however, the same in any
gauge since it always involves the combination A„= mA„B„E even—in the interaction which, in a pertur-
bation theory, destroys any modification of the A„propa-
gator by the compensating B„K term. Therefore, this
gauge invariance has no real effect and will not be con-
sidered further. It occurs because a gauge-invariant quan-
tity A& can be decomposed into two gauge-dependent
parts. This is quite different from usual gauge invari-
ances where the coupling involves the noninvariant A„
field.

krak„
m' "" k' —am'+ie

It still contains 1/m terms.
The case &6„which could also be considered without

the kinetic term for the vector gauge field, possesses all
the aspects of a gauge theory. It does not even require
current conservation since all terms are gauge invariant.
It does not come from a gauge invariance of a matter-field
Lagrangian, even if the current is conserved. In this case,
however, the coupling B&EJ' can be removed since it is an
n-divergence, so that the theory is not new. Since the
constraints are

V. SPECIAL MODELS IN T%'0 DIMENSIONS

Of course, our five gauge-invariant Lagrangians can be
built up in two dimensions. The particular feature of this
space is that a 2-form is associated to a pseudoscalar field.
In other words, the dual of F is a pseudoscalar

(34)

This information can be brought inside a Lagrangian by
writing it as

,' Pe„+""——,' P~+ ,
' (—rnA„B—„K)i+A J—" . (35)

The Euler-Lagrange equation corresponding to a variation
of P is indeed (34). An equivalent expression of W is

&=ye„~A" , y +——,'(mA„—B„E)—i+A~& . (36)

freedom (thus excluding K and A variables). This means
that, in one dimension, the gauging of an aphelian global
invariance amounts to the elimination of the variables
submitted to the local variation. The same is true for a
non-Abelian invariance. The form of the Lagrangian (33)
also means that any one-dimensional theory can be em-
bedded into a gauge-invariant formulation. This is also
true in higher dimensions but, except in the above cases,
there is no coupling between matter and gauge fields.

Gauge invariances in one-dimensional space-time are
interesting from the pedagogical point of view. For in-
stance, they provide clear and simple examples for the ap-
plication of the Dirac method of quantizing constrained
systems. Typical exam les are the motion on a straight
line ' or on a half line ' described in a gauge-invariant
way. The structure of the Lagrangian (33) shows that ex-
amples can be invented as one pleases.

IV. MODELS IN ONE DIMESION

In a geometrical language, a scalar field corresponds to
a O-form, a vector field to a l-form, and the tensor F„„to
a 2-form, the curvature form. If the manifold dimension
is n, only p-forms with 0&@(n exist. Therefore, in one
dimension, no 2-form exists and, consequently, there is no
kinetic term for the vector gauge field, which, here, is also
a scalar. The only gauge-invariant combination is E—A
where E and A are submitted to the gauge transforma-
tions

K K+A, , A A+X.
There is also no coupling with a conserved current since
J=0 implies that J reduces to a constant in contrast with
the case of higher dimensions. W5 is also not a gauge-
invariant Lagrangian but the physical contents are the
same as in arbitrary dimensions. The only difference
comes from the second-class nature of the constraints.
Therefore, the only one-dimensional gauge-invariant
theories are

L =L, + ,
' (K A) N p(K —A —)~, —

where L„ is some Lagrangian describing real degrees of

+Apnp+A n +A'(n' —P) . (38)

The search of second-class constraints leads to the follow-
ing chains of equations:

n —/=0 ==-- —m (mA i
—BiE)—Ap

——0,1

In the m =0 case, Hagen has recently shown how (36)
is related to the first-order formulation of a scalar field
theory and how it is equivalent to the Schwinger' model
which is nothing other than our Lagrangian Wi. We will
therefore restrict our considerations to prove that (36)
with m~o describes a two-dimensional massive vector
boson, although it looks like a scalar field theory. We
could easily reproduce Hagen's arguments in the massive
case but we prefer to prove it in a Hamiltonian way. We
neglect the unessential coupling with the matter current.

When defining canonical momenta, we have (eo, = —1)

BW i BW'= a(ay)
= ' =

a(a,A, )
= '

no=0, nx=aoE . mAo, —

i.e., three primary constraints. The total Harniltonian is

A T , mx +mAonx ———pa—'Ao+—,(mAi —B)E) + —,'(ir')
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n =0, me —8'm'=0

and two second-class constraints

(42)

According to the second equation in (42), E =0 is a can-
venient gauge. It implies the chain of equations

E =0 -=-mg+mAO ——0 -=-=-mb)(Ai —BiE)+mAO ——0 .

The strong realization of all the constraints and the gauge
conditions leads to the effective Hamiltonian

which coincides with the effective Hamiltonian of a two-
dimensional massive vector boson. There is thus no essen-
tial difference between the Lagrangian (36) and Wi. The
same is clearly true if we set m =0 in (36}and compare it
with Wi. The addition of —,'F„„F""to—(35)or (36) is
also possible but amounts to a simple rescaling. The con-
straint n' /=0 i—s indeed replaced by 2m'+/ =0.

VI. SPECIAL MODELS IN THREE DIMENSIONS

The particularity of three-dimension space-time is that
the dual of the curvature tensor F„, is a conserved pseu-
dovector. The combination

mp ——0 =-O'AD+A'=0,

n =0 = mm x+8'$= 0=---mB i(m A i—BiE}+BiAp——0 .

(41)

Therefore, we have a gauge theory with two first-class
constraints

cases: (a) mi and m2 are arbitrary —two real degrees of
freedom are associated with the gauge fields; (b) m, -+ ao

and m2 is arbitrary —one real degree of freedom is associ-
ated with the gauge fields; (c) mi is arbitrary and
m2~00 —one real degree of freedom is also associated
with the gauge fields but the theory is different from case
(b); (d) m i

——m2~ oo—no real degree of freedom is asso-
ciated with the gauge fields. Cases (c) and (d) can also be
obtained, up to a free field E, by taking m&

——0 while
keeping m2 finite. They were considered, respectively, by
Deser, Jackiw, and Templeton and by Hagen. A non-
Abelian generalization, ' can also be given.

If the term (48) has a clear geometrical interpretation,
it does not seem to have a physical interest. Of course, it
allows the introduction of a inass in a gauge-invariant
may but the mechanism is restricted to three-dimensional
space and it violates parity. The introduction of a gauge-
invariant mass term is more natural in the Lagrangian
W3 In the case of the Hagen model, some formally in-
teresting results' can be obtained concerning the Dirac
method of quantizing constrained systems. We do not see
any other interest, either formal or physical, to consider
further here these special examples.

More interesting could be the possibility of making the
term —,

' e"'%+~A„completely gauge invariant by includ-
ing the contribution of the scalar gauge field. The addi-
tion of the three-divergence ——,cP[e„„z(cFA")E]
makes indeed the gauge in variance complete in
—,
' e„~P'A "(rnA~ —cd). Classically, such a divergence

does not affect field equations but, in a quantum theory,
commutation relations can be modified. In the cases
when a kinetic term for the E field is included, E =0 is a
suitable gauge and the added term is not relevant, even in
the quantum case. In the absence of such a kinetic term,
there may be modifications of the physical theory.

Let us take, for instance, the Lagrangian

,
'
eq~(B"A i' —cYA")—

indeed, obviously, satisfies

(46) ,'F„+""+—,
' d'"%„A„(mA—p BP ) . —

In addition to the usual gauge constraints

(50)

(47)

This means that, like a conserved current, P& can be cou-
pled to A„ to give a term which is gauge invariant up to a
three divergence. This term also reads

—,
' Aqd'""BQ

p (48)

Three different parameters with the dimension of a mass
have been introduced. We can consider four distinct

and can be added to any of our Lagrangians W~, W2,
&3 W4 or considered alone with the coupling to the
matter current. Neglecting the Higgs mechanism which
does not give rise to any essentially different result, the
most general Lagrangian including this term can be writ-
ten as

~0=0 —=- a"0——~kloof„A, =0,
2

there are now tao second-class constraints, a primary and
a secondary one:

~+-, ~ A =0== ~'"'&,[+,'~""(mA„a„E}~. —& &10

(52}

They can be realized as strong equations provided that
Dirac brackets instead of Poisson brackets are used. If
this is done, the fields m and E can be replaced with the
help of Eqs. (52}. This gives rise to a Hamiltonian theory
which manifests a gauge invariance and which is nonlocal
before the gauge is fixed.

Although the number of real degrees of freedom in the
theories described by (50) and by the same Lagrangian
~ith E removed is the same, although the classical
theories are the same, the quantum theories could be dif-
ferent. The comparison between both approaches is for-
mally interesting but is outside the scope of this paper. It
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is, however, worth noting that the non-Abelian extensions

are completely different. For K =0, the completely
gauge-invariant term' ,'d—'"~F„„(mA~—X iiBPp) does

indeed not reduce to the Chem-Simons density

d—"%~A„Ap +g d'~—f~p„A „AfA p~

which is invariant only up to a three-divergence.

VII. CONCLUSIONS

By considering a generally overlooked gauge field of
scalar nature in addition to the usual vector gauge field,
we increased the possibility of building aphelian gauge-

invariant theories. Four physically interesting theories
can be constructed to which we add a special case ob-
tained with a vector gauge field submitted to index-
dependent translations and coupled to a derivative. Also
the special properties of one, two, and three space-time di-
mensions have been discussed. Most of the interesting
new theories, including their non-Abelian extensions, have
been discussed elsewhere, either by us or by other authors.
We refer to these papers "' ' for details on the partic-
ular subject they treat. This paper presents an overall
view of the problem of building generalized Abelian gauge
theories. The presentation is made on the n-dimensional
Minkowski manifold with relativistic invariance. It can
easily be generalized.
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