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with application to CP nonconservation in X-meson decays
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%e develop time-dependent perturbation theory for quaternionic quantum mechanics. %e set up
the analog of the %eisskopf-%igner formalism for the decay of a degenerate set of states, identify
the mass and decay matrices, and verify unitarity. The results support the conjecture that the
asymptotic-state structure of quaternionic quantum field theory resides @@thin a complex subspace
of quaternionic Hilbert space. %'ith a natural ansatz for the CP behavior of the quaternionic Ham-
iltonian, the formalism is shown to imply the existence of an effective superweak CP nonconserva-

tion in K decays.

I. INTRODUCTION

Time-dependent perturbation theory' plays a central
role in standard, complex quantum mechanics. Through
the "golden rule" it describes the transition rates for de-
cay processes, and through the Weisskopf-Wigner formal-
ism it describes the line shape and other decay dynamics
of metastable states. In a recent series of papers, we have
formulated a quaternionic extension of standard quantum
mechanics, in which the wave function 4 is quaternion
valued:

Ho ——IOHO,

with Ip = —1, [Ip,Hp]=0, and Hp a quaternion —self-
adjoint operator with positive-semidefinite eigenvalues.
[In other words, Hp is the formal positive square root:
Hp =( Hp }' .]—The spectral representations for Ip and
Hp can be written in the form

Ip —+In

Hp=g In)Z„&n I,
0 =4,+i%,+J%2+k%, ,

with %p, z 3 real and i,j,k the quaternion units satisfying

)2 ~2 I 2

)g = —gt=k .

The inner product and norm in the quaternionic theory
are

(p, e)= J %e,
(3)

Ilq'Il=(q' +)=f q"p,

with q'=q'p i4t —j+2——kqt3 the conjugate of 4, and the
inner-product-preserving (or unitary) dynamics is

(4)

with H a quaternion —anti-self-adjoint Hamiltonian. Our
aim in this paper is to establish an analog of the standard
time-dependent perturbation-theory analysis for the
quaternionic quantum mechanics formulated in Eqs.
(1)—(4).

To begin, let us assume that 8 is the sum of an unper-
turbed Hamiltonian Ho and a time-independent perturba-
tion V, both of which are quaternion anti-self-adjoint. To
simplify the formulation of the problem, we invoke the
spectral theorem for quaternion —anti-self-adjoint opera-
tors, which when applied to 00 tells us that

and permits us to neglect the formal distinction between
the operator Ip and the quaternion unit i (Of co.urse,
having made this assumption, the eigenkets of any opera-
tor 0 which does not commute with H p will in general be
quaternion valued, since the transformation function
&o

I
n) is quaternion valued. ) Thus as the starting point

for our perturbation analysis we write

H =iHO+ V,

Hp=g
I

n )E„&n I, Z„&O,

with V a time-independent perturbation.
Let us now introduce some useful notation for matrix

elements of V. Since &n
I VI I) is a quaternion matrix,

we can write

& n
I

V
I
i) = Vp.i+i V1 /+J V2 l+ k V3 t (9a}

with V,„I, a =0, 1,2, 3 all real. The condition that V be
anti-self-adjoint tells us that

with
I

n ) a complete set of eigenstates of Hp. There is
no loss of generality in assuming that the kets

I
n) are

real and so commute with the quaternion uniti, which im-
plies that

Ip i g I

)n—&—In=i 1 =i,
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=(i
[ V[ n)

Voln+i V)1„+JV2ln+ k V31„,

which in1plies that

Vpnl = —Vpln, SkeW SymmetrIC,
(9c)

Vinl = V&ln~ V2nl = V2ln V3nl = V3ln Symn1etnC

It will also be convenient to introduce so-called symplectic
components V~, V~ by writing

( n
~

V
~

i ) = V „t+jVp„t,

cl(t) =cl (t)+jcttr( t),
&a =&aa+i&a p

we then find

ql =g ~1)e 'cl (t),

'Ptt ——g ~

l )e ' ctp(t),
1

c, (0)=+5„P., ctt3(0)=+5t, , rC, p,

where we have used the fact that
—iEIt . . 1Elt

J =Je

(16b)

Va.l = Vo.l+ I VI.l (10)

VPnl V2nl l V3nl ~

so that V „l and Vtt„l are C(l, i) complex and, from Eq.
(9c), satisfy the conditions

VPnl = VPln

with an asterisk denoting the C(l, i) conjugation i~ i-
Thus the starting point for our perturbation analysis takes
the final form

in moving j to the left in the p piece of the equation.
Combining Eqs. (12)—(16), and making use of the quater-
nion algebra of Eq. (2), we get the following complex
C( l, i) equations for the coefficients c« tl(t):

i {E„—EI )t
C~a = —g( Va„le Cla

—V p„te
" ' ctt3)+5(t)+5„, X,

0=iHp+ V +jVp, (12)
d — —i(E„+EI)t

C„AS= —g( Vtrnle
"

Cla
1

a C(l, i)—anti-Hermitian matrix and V~ a
C (l, i)—symmetric matrix in the basis

~

n ) of real eigen-
kets of Ho (which have eigenvalues E„)0).

II. TIME-DEPENDENT PERTURBATION THEORY

Let us now analyze the following tim'e-dependent per-
turbation theory problem: Let

~
s, ) be a degenerate set of

eigenkets of the unperturbed Hamiltonian Ho. Then to
second order in the perturbation V, we wish to find at
time t the state %(t) which obeys the quaternionic dynam-
ics of Eq. (4), and which at t =0 reduces to a general
quaternionic linear combination of the states

~
s, ):

4(0)=g
~
s, )E, .

The solution to this problem is greatly facilitated by the
use of complex variable methods in the subspace C(l, i),
and so it is natural to introduce a symplectic decomposi-
tion for 4 by writing

+ V"„le ' " ctp)+5(t)+5„, K,p, (18)

c«(t)=c„ts(t)=0, t &0 .

In writing Eq. (18), we have followed the standard pro-
cedure of converting an initial-value problem on the
domain 0 & t & co into a problem defined on —oo & t & 00,
by reinterpreting the t =0 imtial conditions as step func-
tions at t =0, with a boundary condition that all c„'s van-
ish for t &0.

To solve Eq. (18) we introduce Fourier transforms with
respect to t as follows:

c„(t)= — f dE e " c„(E),
(19a)

c„ls(t)= . f dE e " c„tt(E),
2&1

which can be combined into the single quaternionic for-
mula

c„(t)=c„a(t)+jc„tl(t)

f dE e " [c„(E)+jc„ts(E)je
2&l

(19b)

From Eq. (19), we see that vanishing of the c's for t & 0 is
guaranteed if c„(E)and c„ts(E) are analytic in the upper
half of the E complex plane. Substituting Eq. (19) and

with ~II, +ttEC(l, i). By analogy with standard time-
dependent perturbation theory, ' we expand 4 on a basis of
unperturbed zeroth-order eigenkets

~
i)exp( iElt) of the-

time-dependent Schrodinger equation, with time-
dependent quaternionic coefficients cl(t):

Making a symplectic decomposition of cl and E„
i5(t) = — . dE e

2&l

into Eq. (18) gives the following equation for c„a tr..
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(E E—„}c„(E)=—i +[V „ici (E)+Vp„icip(E)] c„(E)= —i +[V c, (E)+Vp e, p(E)]
b

X(E+ie E—„) '+O(V ),

(E+E„)c„p(E)=ig[Vp„ici (E) V—*„icip(E)]

—+5„,K,p.

To solve these equations to order V, ~e note that the
c„'s for n+ [s, j are 0 ( V), whereas those for n = [s, j are
—1. Hence we can immediately solve for the former in
terms of the latter, giving, for n& [s, j,

c„p(E)=i g[Vp, c,, (E) V—',c,,p(E)]
b

X(E+ie+E„) '+O(V'),

where eve have replaced F. by E+ie in the energy denom-
inators to achieve upper-half-plane analyticity. From Eq.
(21), the equations for n = [s, j are

(E+le E~)c. —(E}=—i'+[V ici (E}+Vp, icip(E)]+Kaa
I

i g—[V,,c,, (E)+Vp. ..c, p(E)]+K,
b

+[V~ ([V t,,c,, (E)+Vpi,,c,,p(E)](E+ie Ei)—
i~Is I b

+V ps, i[Vai, cs,p(E) Vpi.,—c.,~(E)](E+&&+Ei) 'j+O(V'), (23a)

(E+i&+E,)c, p(E)=i g[Vp, ici (E) V~ icip(E—)] K,p-
l

=&' g[ Vp. ..c,, (E) V'. ..c,,p(—E)] K,p-
b

+ X X[Vp,.i[V.~,c„.(E)+ Vp&,.„p(E)](E+ie—E,)-'
i~Is I b

+ V l[Vpl c (E) V g c p(E)](E+lE'+El ) j +O( V }, (23b)

where the second line of Eqs (23a) and (23b) is obtain~ from the first line by substituting Eq. (22). Grouping similm
te~s together, and using a summation convention for the repeated index 5, pq. (23) gives the following set of coupled
»near equations which determine the occupation coefficients c, p for the initial degenerate group of states:

(E+ie E, )5,b+iV,—+ g V I V V, V (E)
+~~ E~ ~ E +~~ +E

+ 'Vp ~ + X V iE . E VpI +Vp &E . V'i, , cp(E)=K,E +iE—g~ b g +lp+Eli~IS I

(E+' +E, )5,s+iV', —g Vp, , V'„V', V, (E)
a E'+ jg E' b g E+ +g cKsg sl

i~IS I

j. 1

I~IS I

For the subsequent analysis, it is convenient to use the familiar formula

1 P
in 5(E+Ei)—

I-+&I+ie E+EI+ie

to split the inte~~iate state sums in Eq. (24) into generaliz~ mass and 1~ay matric, giving

c...(E)= —K.p. (24)
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(E+ie Eg}5,b —M,b+ —l,b c,,a(E)+ —M,b~+ —I g c,,p(E)=K,

't r

4

M—ab+ I—ob c~ a(E)+ (E+iC+Et)5ab M— ab+ —l,f c, P(E)= K,—P . (26b)

The coefficient matrices in Eq. (25) are given by the fol-
lowing formulas, in which we have made use of the anti-
Hermiticity conditions of Eq. (11):

ab a

mfa

+T
~ab 3 a3 b

T
Zab ~a ~b

with

Val.. V pl,

(28a)

P P=xab+ g ~ab, l E E + ob, l El I I

' E —Fr ' F-+El
'iaa Iatl

'

= ii", Il't,'

=2m y [r b l5(E El}+Z—
b l5(E+El)];

1~Is I

(27a)

3'a =
Vpr,

Za —Vers.
(28b)

the decay matrix I is positive definite, and so contributes
to Eq. (26) with the same sign as the explicit i@ As a. re-
sult, Eq. (26) is guaranteed to give solutions for c, i3( E)
which are upper-half-plane analytic, and thus Eqs. (19)
and Eqs. (26)—(28) give the desired solution to our time-
dependent perturbation-theory problem.

Zab, r

I Vp bs, cxsb s

4 T=Xba

r

V rs, Vers,

Vpr. V r.,

Var. V prb

Ph Pls&

T=Yb,

V pr. Vpls„

—V r. Vpl.,

—V pr. Vr;

Vr, Vl,
eT

Zba

—iV ss —iVp. ..

(27b)

III. THE DECAY OF A SET OF CL,'1, i) INITIAL STATES

Let us now apply the formalism of the preceding sec-
tion to the case j',p

——0, in which the decaying states have
wave functions which are initially C(l, i). This will be
true, for example, if the decaying states are produced
from C( l, i) asymptotic states by physical processes which
involve only the unperturbed Hamiltonian 00. Substitut-
ing K,il ——0 into Eq. (26b), we can solve for c, gE) in

terms of c,, (E), giving

In Eq. (27b) the superscript T indicates transposition of
the indicated 2X2 matrices, and we see that the general-
ized mass and decay matrices M and I are Hermitian.
Since the coefficient matrices I',b and Z,b admit the fac-
torization

iVp, , +0(V )

F. +&e+E,
(29)

Substituting Eq. (29) back into Eq. (26a), the second term
on the left-hand side of Eq. (26a) then becomes

—m ~+ —I.P c, i3(E)= —g . +0(V') c...(E)

Zab, s
c, (E),E +ie+E 'b (30)

and so it just supplies the missing 1&[s,I terms in the Z,b l pieces of M and I . Thus, we can rewrite Eq. (26a) for
Csea

(E+ie E, )5 b Mb —(E)+ I—ob (E) c, (E)=—K

~aatot(E} ~aa+ y Iraa +y ZaaP P
(31)

I'.b"'(E)=2~ g I;bl5(E E,)+QZ.bl5(E+E—l),
l
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which has the saine structure as the equation for the de-

caying state amplitude in complex quantum mechanics.
In other words, for C( l, i) initial states, the quaternionic
decay problem formulated in Sec. II reduces to an effec-
tive complex quantum-mechanics decay problem, given by
Eq. (31).

%e now follow the classic %eisskopf-%igner treat-
ment of decaying states, and make the approximation of
replacing the energy-dependent mass and decay matrices
appearing in Eq. (31}by their values at the energy E =E,
of the decaying group of states. This approximation is
motivated by the observation that the dominant term in
the coefficient of c, in Eq. (31) is the zeroth-order term

(E+ie E, )5,b—, and so c,, (E) is small unless E=E,.

Quantitatively, when the first-order term in the mass rna-

trix X,b is zero (as will be the case in our discussion of K
decays below), the error of assuming constant mass and
dray matrices will be of order I, /E„with I', the max-
imum decay rate of the group of states Is, j. With this
approximation, we have

E,'+El' —2A, =E,+El . (35)

Thus the mass and decay matrices of Eq. (32) are left in-

variant under the transformation of Eq. (34), as they must
be under a simple change of variables which does not af-
fect the underlying physics. The argument just given
shows, however, that when we specify that the perturba-
tion V in Eq. (8) is time independent, we no longer have
the usual freedom to shift the unperturbed energies by a
uniform constant.

A second unusual feature of Eq. (32) is the fact that the
Z,~ l terms contribute to the second-order mass matrix,
but not to the decay matrix, which naively would appear
to contradict unitarity. But since the quaternionic
dynamics of Eq. (4) is manifestly unitary, unitarity must

be satisfied order by order in V, and we shall now verify
this by explicit calculation to order V . To simplify the
analysis, let us consider the case in which the group Is, j
contains only a single state s, so that the indices a and b

can be dropped, and let us take the initial-state amplitude
K to be unity. Equation (32) then becomes

(E+ie E, )5,b——m,b+ y,b c—
g ~(E)=K «,0 Sb&

l
c, (E)= E+ie E, —m+ ——y

X&b + g ~ah, l E E +g Zab, l Es —
l l s+ l

y.b I'b'"(E,——)=2~ g ~g, 5(E, E,), —
1~Is )

or, Fourier transforming back to time as a variable,

=x-+y r,- p +yz,-
s I l s+ l

y =2m'g Fi 5(E, EI),—
l~s

~P =
I

V i. I

'

zP =
I vpi, I'

(36)

—+iE, 5,b+im„+ —,'y, b c, ~(r)=K«5(t) . (33)

Equations (32) and (33) are the standard starting point for
the discussion of decaying systems, with the new feature
here being the presence of the Z,b i terms in the mass ma-
trix.

An unusual aspect of Eq. (32) is the presence of energy
denominators E, +El, which are not invariant under a
uniform shift Ei~Ei+A, of the unperturbed energies.
Such a shift is induced in the complex case by multiplying
the wave function by exp( i Ar); in the—qua. ternionic case,
this multiplication gives

—'p'(r) = —H '0 '(r),
3t

Since the dynamics of Eq. (4) is norm preserving substitu
tion of Eqs. (15) and (16a) into the norm IIVI I

gives, for
all times t & 0, the unitarity sum rule

1 =
I
lq'I

I

=pl: I ci «}
I

'+
I cip( &)

I

'1

= Ic„(&}I'++Ici(&)I'++Icip(&)I'. (37)
l~s l

To verify perturbative unitarity, we must calculate each of
the three terms on the right-hand side of Eq. (37) to order
V and check that their sum is unity.

We begin with the first term on the right in Eq. (37).
Substituting Eq. (36) for c, (E) into Eq. (19a) and (for
t & 0) closing the contour down, we get

ql'( i):—exp( i At) '0( t),— .

H'=exp( ik.t)H exp(ik, t)+i—A,

(34) c,~(r) =exp( imt —,
'

y—r), —

g}vlng

(38a)

=i (Ho+ A, )+ V +je ' '
Vp .

Hence when the wave function is rephased, in the quater-
nionic case dao things happen: the unperturbed energies
are shifted according to El~El' ——El+A. , and the time-
independent perturbation Vp is changed to a time-
dependent perturbation exp(2ik, t}Vp. When the analysis
of Sec. II is repeated for such a time-dependent perturba-
tion, the resulting formulas are the same except for a
change in the energy denominators of the Z,~ l terms to

I
c, (t)

I
i=exp( yr) = 1 yt—. — (38b)

—iV l,

(E+ie EI )(E+ie E,}— —(39a)

We turn next to the second term on the right in Eq. (37).
From Eqs. (22) and (29) we get (for 1&s)

V bc, (E)
ci (E)= i-E+ie—El
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~ ~~ls i (,EI —E~ )t
ci~(t)= (1—e ' '

) .
l s

(39b)

Hence the second term on the right in Eq. (37) is given by

and substituting this into Eq. (19a) and closing down gives

t~, (Ei+E, )' (2E, )'

&4 Ivy I'
t~, (Et+E, )' (406)

sin~[ —,
' t(Ei E,—)]

QIct (t)I =4+I Vt
I 2

. (39c)
l~, l~,

"
(EI E,—)2

sin'[ —,
' t (Ei —E, )]

,' ~t5(E( E,),—
(Ei E )i

(39d)

and Eq. (39c) becomes

g I
ct (t)

I
=t2n g I

V t, I 5(EI E, )=y—t .
l~s l~s

(39e)

When the set of states l forms a continuum around s, we
can make the "golden rule" approximation,

since for / near s the individual terms in the sum are ex-
pected to be similar in size. %'e now express the right-
hand side of Eq. (40e) in the form

I Vpt. I

'
2 - dE

(Et+E ) ~ 0 (E+E )
y

yp(E) =2m g I Vpt, I
5(Ei E),—

and approximate yp(E) to be a constant by writing

yp(E)-yp(Eg)=2m. g I V@, I'5(E, —E, )
l~s

Thus the first two terms on the right in Eq. (37) exhaust
the unitarity sum rule, up to the errors inherent in the
Weisskopf-Wigner and golden rule analyses.

We turn our attention finally to the third term on the
right in Eq. (37). From Eqs. (22) and (29) we get (this
time for all l)

giving finally

(40g)

(40h)

i Vpac, ~(E)
etp(E) = E+ia+El

i Vpi,

(E+ie+Ei)(E+ie E, )
'— (40a)

Hence Pp is of the order of the errors inherent in the
Weisskopf-Wigner analysis. For example, in our applica-
tion to E-meson decays in the next section we have

2

-2X&0 ',
substituting into Eq. (19a) and again closing down gives

(41)

l+ s
(40b) 10 ' I' 10

E, Mg

Hence the third term on the right in Eq. (37) is given by

sini[ —,
' t(Et+E, )]

Q I ctp(t) I'=4+
I Vpt I

'
l l (Et+E, )

We can estimate the sum in Eq. (40c) by noting that the
time t, characterizing the decay of the initial state s is
t, -y ', for such times the argument of the sine is very
large (since E, /y && 1) and the sine function is very rapid-
ly oscillating, and so we can approximate
sin [ ,' t(Et+E, )] by its—average value of —,'. So Eq. (40c)
becomes

Pp =—g I
e,p(t) I

'-2 g I vpi. I'
l (Et+E, )

(40d)

showing that the total probability in the P (or intrinsically
quaternionic) amplitudes does not grow linearly with time,
but rather at large times approaches the constant value of
Eq. (40d).

To estimate the magnitude of Pp, we rewrite Eq. (40d)

and I'p is very small indeed.
The fact that Pp remains bounded and very small

means that an initially C( l, i) state does not decay, under
the infiuence of a quaternionic perturbation Vp, into an
intrinsically quaternionic state. Put another way, a com-
plex C( l, i) asymptotic state space is stable with respect to
quaternionic perturbations; this fact lends strong support
to our conjecture' that the asymptotic state space of a
quaternionic quantum field theory resides within a com-
plex subspace of quaternionic Hilbert space.

IV. AN APPLICATION: A MODEL FOR CP
NONCONSERVATION IN E DECAYS

~a lHweak C~ eVen

V~ ——V2 —i V3, V2 ——CI' odd, V3 ——CI' even,

(42)

%e procecxi now to apply the calculation of the preced-
ing section to a model which we have introduced' for CI'
nonconservation in E decays. Following Ref. 10, we iden-
tify

+0 ~strong+electromagnetic ~
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so that under the quaternion-extended CP operation

(CP)q =j CP (43a)

all terms in 0 transform uniformly:

( CP)q
' H( CP)q —— H—.

We take the set of states (s, I to be the degenerate eigen-
states

~
E& ) (which is CP even) and

~
K2) (which is CP

odd) of Ho, with zeroth-order rest-frame energy E, =Mtc.
Under the usual assumption that H„~k has no AS=2
piece, the first-order contribution X,b to the mass matrix
of Eq. (32) vanishes, and we have

aa ~aa
mab g Yah, l M E +g ~ah, t

1~Kl K2 K 1 1 K+

y,b
——2m g Y,g t5(Mg E—t) .

I~Kl, K2

The Y,b terms are the usual weak contributions m, b

and y,"b' to the K-meson mass and decay matrices; since
no other terms contribute to y,b and since we are assum-
ing H„k to be CI' even, we see that in our model no
direct CP-nonconserving effects are present in K-meson
(or other) decays. All CP nonconservation must arise
through the Z,b 1 term in the mass matrix. To study the
form of this term, we substitute Vtt = Vz i V—3 into

Zgb, l V pls Vplsb ' giving

K) Kt, , l K)K2, 1 ( Vzttc, ) + ( V3uc, )' t ( V3(K) V2!icp V2!Kt V3ti'c2 )

4ECC QCK

t ( V3a, Vztx, —V2ttc, V3u, ) ( V2ttc, ) + ( V3uc, )
(45a)

where we have used the fact that the intermediate states I
can be chosen to be CP eigenstates, with the consequence
that

( V2uc„)'+( V3ttc„)'
(46b)

V21K, V21K, = V31K, V31K, =o (45b)
V31K V21K V21K V31K

%VCRk weak
Plgb =Vl gb +MPP1 gb p Pgb —Pgb (46a)

with the quaternionic contribution hm, b given by

since one of the two factors must always vanish. Substi-
tuting Eq. (45a) into Eq. (44), we have Equation (46) describes a CP nonconservation which is

phenomenologically of "superweak" form, ' but arises as
a second order perturb-ation theory effect. Physical conse-
quences of such an interpretation of superweak CP non-
conservation are discussed in Ref. 10.

T

hmK K, hmK, K,

~~K,K, ~IK,K,

m
~

ltO

—jfg Pl p
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