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%'e prove duality relations between bound states and asymptotically free quarks by using relativis-
tic wave functions and couplings to currents. Our approximation is based on %KB formulas and on
an ansatz on the potential at very small distances, where the instantaneous potential approximation
for the Bethe-Salpeter equation is unreliable. %e apply our results to two-point spectral functions of
vector and axial-vector currents.

I. INTRODUCTION

During the last decade a large body of experimental evi-
dence has been collected giving support to quantum chro-
modynamics (QCD) as the theory of strong-interacting
particles. On the theoretical side, however, the situation is
more entangled, for lack of a unique treatment of small
and large distances; whereas in the former case perturba-
tion theory provides a calculational scheme based on the
asymptotic-freedom property of QCD (Ref. 1), in the
latter the dynamics of quark confinement can be ap-
proached only by nonperturbative methods such as lattice
QCD (Ref. 2). In this context, any approximate method
which is able to grasp the two aspects of strong interac-
tions at the same time should be welcome. In the 1970s
Bramon, Etim, and Greco and Sakurai suggested a
model of e+e annihilation into hadrons based on the
idea of duality between the free-quark behavior displayed
by rr{e+e ~hadrons) at high energy and the production
of infinitely many qq bound states in the process

e+e —+y*—+ V„—+ hadrons,

where y' is a virtual photon.
Such a research line has been pursued in the subsequent

years and some achievements have been obtained. Duality
has been shown to hold for nonrelativistic quarks, and in
the relativistic case for both vector ' and axial-vector
currents. s The extension of relativistic duality te bound
states made up by quarks that are asymptotically free, i.e.,
whose scaling laws are governed by quantum chromo-
dynamics, is not straightforward. In order to be definite,
let us consider the following relativistic wave equation for
a meson having mass M:

+ V( r)]g(r) =Mt/(r) . {1.2)

Equation (1.2) arises from the Bethe-Salpeter equation by
replacing the full interaction by an instantaneous local po-
tential. Assuming that, for r +0, V(r) behav—es according
to perturbative QCD,

4 a(r) 4 &0
V(r) ———

3 rln(r/r)

one obtains, if P(r) = 1'i~(r)Pi(r),

tI}i(r) —r'[ln(r'/r)] '
r —+0

(1.4)

with XI &0. This result has been obtained recently by
Durand in Appendix A of the present paper we give an
alternative derivation of this formula.

Such behavior is unphysical; as a matter of fact, the
coupling f„o of an S-wave vector meson to the elec-
tromagnetic current diverges, as it turns out to be propor-
tional to $0(0) (for a proof see Appendix A). This implies
that the ratio

o(e+e ~ hadrons)
e+e 0(e+e ~p+p )

is divergent as well; in fact, as we shall show in Sec. IV,
R, + is given by a sum of terms proportional to f„o or

f„2 (the coupling of a D-wave vector meson). Clearly
this divergence is an artifact of the instantaneous potential
approximation that, for lengths r & 1/M is not reliable.

The purpose of this paper is to prove duality for relativ-
istic quarks by assuming a potential comprising a long-
range linear confining part and a small-range piece given
by the perturbative QCD result, except that, for r smaller
than a meson scale r & 1/M, we assume a constant po-
tential. By exploiting this ansatz and using a WKB ap-
proximation for Eq. (1.2), we shall prove duality between
bound states and asymptotically free quarks up to order
a„moreover we shall derive canonical results for two-
point spectral functions of vector and axial-vector
currents.

Our result is based on the above-mentioned ansatz on
the potential, so that we do not pretend to have rigorously
proved duality in presence of the QCD short-range ef-
fects; nevertheless we obtain a consistent picture that can
be used to get some hints on the extreme r~0 region
where the approximation of an instantaneous potential
fails.

The plan of the paper is as follows. In Sec. II we
describe the potential and the %KB approximation; in
Sec. III we give formulas of particle-current couplings.
Section IV is devoted to the proof of the canonical
behavior of two-point spectral functions and contains our
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II. &KB SOLUTIONS AND THE SMALL-DISTANCE
BEHAVIOR OF THE POTENTIAL

We shall consider the case of a central potential in Eq.
(1.2), i.e., V(r)= V(

~

r
~
). In such a case the angular

dependence in the solutions f(r) can be factorized

uI(r)
g(r)=&~ (r)gi(r)=&~ (r) (2.1)

so that, using the spectral representation of the square
root of the operator ( —1 '(}' +m ), we get

conclusions. Finally, some details of our calculations are
contained in two appendixes.

(2.7)

Fo«&rl, by other techniques, one finds a fast ex-
ponential decrease of the wave functions. The WKB
method also provides the spectrum which is obtainable
from

to
o'(r)dr =n n +—+—

0 2 4

where n and I are the radial and orbital quantum num-
bers.

For practical purposes it is useful to have eigenfunc-
tions in momentum space; using the formula

[V(r) —M]ui(r)

f dr' f 1kg(k)

kr kr'
XX[ Xi ui(r )=0

(2.2}

+I pr+I kr r= —p —k
Q 2

one obtains

[g(p}—M]ul(p)

+ f dp' f dr V(r)

(2.9)

where Xi(x) =xjl(x) are the Riccati-Bessel functions and XXI Xi ui(p') =0,p r

g(k)=(k +m; )' +(k +m )' (2.3)

To start with, we recall WKB solutions of Eq. (2.2); ex-
tensive discussion can be found in Ref. 11. We remark
that the following formulas are valid for potentials that
are regular at the origin r~0.

Wave functions are given, in the WKB approximation,
b 1]

ul(r)=Ae ' X&[o(r)], 0(r (ro,
(2.4)

where

ui(p)= f drXi u&(r) .

The WKB method provides, in this case, the solution

(2.10)

(2.11}

cr &(r)
u, (r) =—e exp —

I
a'(x)

I
dx r, (r (re,

2 ro
u&(p) =&iXi(&(p) ) «p (po (2.12)

where A is a normalization constant and o(r), cri(r) can
be derived from (2.2) by using the saddle-point method;
the result is

o(r)= f cr'(r)dr,

X(p) = f X'(k)dk (2.13)

where A,i is a normalization constant, X(p) is defined as

[M —V(r)] mI +mj
cr'(r) =

2

(m —m 2)2
' 1/2

4[M —V(r)]

(a&2+m 2)1j2(a~2+m 2)1/2

o'(r)[M —V(r)]

and X'(p) is given by

V(&'(p)) =M —g(p) .

po is the turning point, defined by

&'(po) =0 .

(2.14)

(2.15)

These expressions are defined for r far from the classi-
cal turning point rQ, with

o'(ro) =0 .

For p &po, ui(p) has a rapid exponential decrease.
As discussed in the Introduction, we shall use in the

previous formulas the potential

V (r) =IJ, r + Vc(r),
Thus the WKB approximation is applicable if
o' ~gm;~, which implies that me can put o.

~

——const in
Eq. (2.4) and neglect it altogether. It should be also
stressed that, owing to the positivity of g(k) [Eq. (2.3)],
the WKB approximation cannot be used for r mrs' (Ref.
11),with

Vc(r}= ~

r (r
M

4 a(r )

3 r~
4 a(r)

r&rm i
3 r

(2.16)
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[2(m +m, ')]'"
&o= 1—

p
2 M

+O(m /M~), (2.17)

where a(r) —ao/In(r/r) is the QCD running coupling

constant and k is a constant. The Coulombic potential,
arising from one-gluon exchange in perturbative QCD,
has been substituted in (2.16) by Vc(r) which lacks the
unphysical I/r singularity for r~0. As we have stated
already, our assumption (2.16) will be justified later in
dealing with two-point spectral functions.

By using Eqs. (2.6), (2.14), and the previous potential
one obtains

M2=M„ I ——4p ~ n +—+—„
I 3

(2.21)

III. CURRENT-PARTICLE MATRIX ELEMENTS
AND TWO-POINT SPECTRAL FUNCTIONS

Our analysis aims at evaluating the hadronic tensor

b,""(q)=i f d x e'~"(0
~

T'(J('(x)JJ (0) )
~
0)

g"—"q—'~J '(q')+q "q'~i (q')

dt

t —q —ie

IM V

qpv ())(r)+ q q p( )(r}

pc= (1+tu) 1 — ' +O(m /M )
M (1+to)

(2.18) (3.1)

where J= V or A and the vector and axial-vector currents
are

n) = a(k/M) = Qo

3k in(rM/k)
(2.19)

The potential (2.16), together with the spectrum condi-
tion (2.8) allows us to evaluate the density of states for
large n; as a matter of fact one gets

2
+O(l/M)dn 1 M

dM n 2p,
2

(2.20)

which shows that, for large n, M grows as V n. In fact
from (2.5), (2.8), and (2.17) one gets the spectral condition
in the large-n limit:

Vtj (x }=q; (x }y"qj(x),
(3.2)

A pj'(x) =q;(x)y"y'qJ(x)

(i,j = flavor indices). The spectral functions pq '(t)
(a=1,2} can be calculated in perturbative QCD for large
values of the argument; if duality between bound states
and asymptotically free quarks holds, they should be also
obtained as a sum of infinitely many resonances having
spin 1 or 0. In this section we give expressions of spectral
functions in terms of resonance masses and couplings to
currents.

First of all we give the explicit expressions of currents
in terms of quark and antiquark creation and annihilation
operators b, d, b, and d:

(2~)'" (2~)'" [ u;(q, r)b; (q, r, a)+u;(q, r)d;(q, r,a)]y"

X [uj (q', s )bj (q', s,p)+ UJ (q', s)d~ (q', s,p)], (3.3)

where a,p are color indices, E; =(q +m; )',EJ.
=(q'2+mj~)'~2; the axial-vector current Afz(0) is ob-
tained by substituting y" with y"y in Eq. (3.3).

Physical states that can couple to these currents are S&,
'Po, Dt (coupled to V") and 'So, 'Pt, P, (coupled to
Al'); the relevant matrix elements are listed in Table I.
Note that the entries of Table I should be multiplied by
the flavor factor Q,J [Q is the SU(Nf) matrix of the
mesons Q„(].

In order to evaluate the couplings f„& and g„& in our
approxlIQ ation schcIHc, wc have to express the states

I Qn, I ) as superpostttons of qq states with relative
InoncntuID I(];; thus we write

2S+ lL

Sl
3p
3g)

lg
3p
1p

((}
i

VP((}}
i g.,,(p})

&f.,o
p"f., )

&f..~

& 0
~
&~j(0)

~ g.,)(p })

&P gno
+go, I

&gn, I

TABLE I. Current-particle Inatrix elements for different
mesons Q~) having n and I as radial and angular quantum
numbers. %e employ the spectroscopic notation for the other
quantum numbers; all the entries in the table should be multi-
plied by Q;J, the flavor matrix belonging to the meson Q„).
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I'P, )= g Q~) f, (ox@ k) P)(k)
(2m }

)& b; (k, r, a}dJ ( —k, s,P} I
0),

5 d3k (cr k)

X b; (k, r, a)dk ( —k,s,P) I
0),

xb; (k, r, a)d~ ( —k,s,P)
I
0),

gP d kI'~, )=g Q,, f3 (2m)

&(b;"(k,r, a)d, ( —k,s,P) I
0) .

ln these equations the sum runs over repeated indices;
states are normalized as

( Q„( I Q„ t ) =2M„ I, (3.5)

ye'o „$2(k)b; (k, r,a)

xd~( k,s,P) —
I
o),

(3.&)

whereas the wave functions P~(k) are related to ut(k) ap-
pearing in Eq. (2.10) by

Pt(k) = ut(k) . (3.6)

As a consequence of Eqs. (3.5) and (3.6), u~(k) are nor-
malized as

gP d'k

xb; (k, r, a)dj ( —k,s,P)
I
0),

dk
I u, (k)

I
'=2M„, . (3.7)

By using Eqs. (3.3)—(3.6) and canonical anticommutation
relations for the operators b, d one obtains the following
formulas for the coupling constants:

(E;+rn;) (Ej+mj) 1 E; —m;1/2 1/2

2m' 3 E) +mj

00 E —E+m —m
f, , = dk ui(k)k—

2nM„i o E' E ' z(E+m;)' (EJ+m )

E —m.
1—

E)+mjgn, o=

gn, 1
=

g„ t —— f dk u i(k)k
2 3'

dk u2(k)
3m o E ' E ' ~(E+m. )' (E + )'

(Et+rn;)'/ (EJ+mq)'/
dk uo(k) ]/2 ]/2

n, 0

2 E; +E)+m;+mj.
E ' E ' (E+m )' (E +m )'

dk u&(k)k

E —E +m —m.J & 1

E /E ' (E;+m;)' '(E, +mJ)' ' '

where /= ~3 is a color factor.
The coupHngs f„t and g„ t will be calculated in the next

section by using &KB wave functions; for the time being
we exploit the duality ansatz and write the two-point
spectral functions pJ (t) of Eq. (3.1) in terms of these
couplings; the situation is depicted in Fig. 1. One obtains

J~ J J~; J'.Ima
n, l n, l

FIG. 1. The hadronic tensor A~q"4,'q) is given, according to the
duality relation, by a sum over infinitely many resonances.

p'v"(t)= g [f„p 5(t —M„ o') +f„2'5(t —M„ 2')],

p'v '(t) = g [f„o 5(t —M„ o ) + tf„ i 5(t —M„ i )

+f„,'5(t —M„,')],
(3.9)

p~"(t) = g [gn, i'5(t —Mn, 1')+g., i'5(t —M.,
i')]

pq' ——g [tg„o 5(t M„o )+g„) 5(t——M„) )

+g„) 5(t —M„) )] .
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IV. PROOF OF RELATIVISTIC DUALITY

In the section we shall evaluate the two-point spectral
functions (3.9) and shall apply the results to the calcula-
tion of the ratio R + and the Weinberg sum rules.

To begin with, we evaluate the coupling constants given

by Eqs. (3.8) for large n. The integrals appearing in these
equations take contributions mainly from the large-k re-

gion; as a matter of fact it has been proved elsewhere that
for a potential consisting only of a linear confining part,
the dominant contributions to such integrals come from
values k-M„i/2; this feature is not destroyed by the
short-range potential [ Vc(r) in Eq. (2.16)], which is con-
stant for r-+0 and dies off for r~ ao. By expanding Eqs.
(3.8) in powers of m;/k one gets

m;+mj.
fa, o

2 3
Zo, o+ '

4 Zo, l

. 2(m; —mj) 3 2Z02 +O(m /M )

f„,i= Zi i+O(m /M ),m; —ml 3 3

n, 1

m( +mj.f.,2=
3m ' 2

Z2, 0 Z2, 1

(m; —mj)
-Zz2 +O(m /M ),

(4.1)
m;+mj 3 3g„o= Zo ( +0 (m /M )

n, 0
r

gn, i= ~6
(m;+m& )

2Zi 0 — Zi p +O(m /M ),

g„ i
—— (m; —m~)Z& i+O(m /M ),

2& 3a

(4.2)

where Zi „are defined as

Zi „—f dk ui(k)k '

and calculated in Appendix B. Using Eqs. (B6) and (B9)
we obtain

Pl) +mjf.,0=v
3 so+

(m; —mj). 2

8

m; —mjf., i =0
n, 1

m;+m,f.,z=C
3

po—

m;+ m)
g.,o=k-

Mn, 0

(m; —mq ). 2

8
( 1)ll

Mn 2 2P

(4.3)

r

(mi+mj )
2eo — '

— +( —1) ~
g„ i

——g(m; —mj)/v 3,

where

( —1)"pv 3
~2m'i/1+ co

(4.4)

II„„(q}=f d'xe' "(O~ [J„' (x),J'„(O)] ~O)

=2ImWq (q)=(g„„q q„q )II(q ) . —

The ratio R + is given by

(4.6)

and p is defined in (2.16), po in (2.18), and co in (2.19).
From Eqs. (4.3) one can easily derive the two-point spec-
tral functions for vector and axial-vector currents. To
start with, we calculate the ratio 8 +, related to the

spectral function p'v'(r).
Let us define

o(e+e ~hadrons)
6 & z

+ =6+iI qa(e+e ~p+p )

The spectral function II(q ) is related to p,"'(q ) by

(4.7)

W„„(q)=i f d"x e'e"(0
~

T'(J'„(x)J'„(0))
~
0) .

%e have

(4.5)

so that (e; = the charge of the i quark)

(4.8)
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H(q ) = g e; g [f„o5(q —M„o )+f„i 5(q —M„ i )]
n

2

ge f dM[f '5( ' M—')+f '5( '—M'))= ge ' — '= ge ' (4.9)

Thus we obtain the result

R +, ——3+e; (1+co) (4.10)

The relativistic wave equation (2.2),(2.3) gives, for r~0,

u, (r)+ f—dr' f dk kX, (kr)
4 a(r) ac oo

3 r 0 0

which coincides with the perturbative QCD result provid-
ed that

XXi(kr')ui(r') =0

2 a(q)
a, (q )=

3k '
m

(4.11)

because the integral in k takes contributions mainly from
the region k &&m. By using

This fixes the constant k in Eq. (2.16): k =4m. /3.
As a further application we evaluate the spectral func-

tions p'v ' „——p'v ' —pz '. The asymptotic behavior of
p~i

'
z determines the rate of convergence of the Weinberg

sum rules' and can be calculated in perturbative QCD
(Ref. 13). Using Eqs. (3.9) and (4.3) we obtain

oo 1+zf dy yX((y)Xi(zy) = Q/ (A3)

where Q/(x) =dQi(x)/dx and Q((x) are the Legendre
functions of the second kind, we can rewrite Eq. (A2) as

(i) 3m;mj a, (t)
pv-~(&)=

2~2 jm
(4.12)

oo $ +Z2—', a(r)(t, i(r) =—f dz Qi Pi(zr)
2Z

(A4)

(2)

mmmm

j ga( )r
pv —A (r)

m

These results are obtained by substituting

(4.13) with pi(r) =uI(r)/r. Finally we can recast Eq. (A4) into'

—:a(r)y()=—f d — [zy((z))+ yl(rz)=2 " a' l (l +1)
o gz2 Z

as in Eq. (4.9); moreover terms behaving as ( —1)" in f„(
and g„ I [see Eq. (4.3)] have been neglected. The reason is
that in the fmite width of a resonance with mass M one
finds, by Eq. (2.20), a large number: b,n -I M /2m(u, of
states; this implies that oscillating terms are canceled out
in the sum. Equations (4.12) and (4.13) agree with the
parton-model and perturbative QCD results quoted in
Ref. 13.

Our results, contained in Eqs. (4.10)—(4.13), show that
our ansatz on the short-range potential, Eq. (2.16), pro-
vides a consistent picture for the asymptotic behavior of
two-point spectral function. We have been able to prove,
in this way, a relativistic version of duality between
asymptotically free quarks and bound states which uses
relativistic formulas for the leptonic widths and the wave
functions.

A possible application of our result could be in the
realm of potential models and quarkonium spectroscopy
where our guess on the short-range behavior of the poten-
tial could be independently tested.

By inspection we find that

P((r) —r '[in(rjr)] '
r~0

is a solution of (A5) provided that v&
—I and

Tao —— (2l + I)A,iI(, —4 4

where'4 "

I,=T dzz —
Q,

1 +Z
0 2Z

~ 1(I+—,')= f dH Qi(cosh8)cosh8=
0 4 I! m

Using (AS) we obtain

1 t!Vm.
XI= 30!02' 1 (I + —)

(A5)

(A6)

(AS)

(A9)

APPENDIX A

In this appendix we study the behavior of relativistic
wave functions near the origin for a potential

4 a(r) 4 aoV(r)—
3 r ln(rjr)

which coincides with the result of Ref. 10.
A consequence of Eq. (A6) is that the coupling constant

f„o of an S-wave vector meson to the electromagnetic
current diverges.

As a matter of fact, in the asymptotic limit, from Eqs.
(3.8) in the text one gets
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f„c- f ku o(k)dk
2

eo oof dr uo(r) f dk k sinkr
3m' 0

= &u,'(0) =&{(,(0)3' 3'
that diverges because ko ~ 0.

(A10)

where po and co are defined in (2.18) and (2.19), respec-
tively. For r =0, 1, Zt, in (82) takes contributions main-
ly from the large-k region, thus we may write

po
Zi, =l,t f dk sin[X(k) —ln/2]k'

Po
=1m', I f dk k' "exp[i(X(k)—Im. /2)]

APPENDIX 8 1 2~

I
X"(po)

I

1/2

pc
' "sin[X(po ) —le /2 —n /4],

In this appendix we evaluate the integrals

Zi, —f dk ui(k)k ' (81)

for l, r =0, 1,2. As discussed in Sec. II, contributions to
Zi„ for k ~pc are negligible. Thus, using Eq. (2.12) we
can write

(84)

where we have used the saddle-point method to evaluate
the integral. X(po) can be calculated from its definition
(2.13) and the spectral condition (2.21), with the result

po
Z&, „=f dk A&X&(X(k))k' (82)

First of all we calculate A,i. According to Eq. (3.7) it will

be given by

] pof dp Xi'(X(p) )
2M„ i

f dp sin (X(p) —lm. /2)
e, l

+O(1/M) = +O(m /M ),
2M„ I 2 8

M l 3
X(po)= [I+O(a/M )]=n. n+ —+-

4@ 2 4

Together with

I
X"(po)

I
=2/p +O(1/M )

and Eq. (83), we obtain ( i =0, 1,2)

V2trp, ( —1)" v 2np( —1)"
I 0 ~I Po» 11=

(85)

(86)

(83) For r =2, on the other hand, we have

~0 dp 2@2 x(Po) Xi(y)
&I &P

0 p M„ i' o Ql —y/ X(P )o[
—I V'I —y/X(P)o]

(87)

These integrals can be calculated for large n by using the expressions giving Xi(y) in terms of trigonometric functions,
the formulasts

1
»

dx x" '(1 —xF 'sinax = — 8(p, ,v)[&Ft(v—,v+p;ia) &F&(v,v+p; —ia)], —
1

dx x" '(1 —xF 'cosax = ,'8(p, v)[(Ft(—v,v+p;ia)+)F)(v, v+p; ia)]—

~2nis( —1)"
V I+co

2 ~ 2+( —1)"
M„~ Vnp

V 2mp, ( —1)"
V I+co

and asymptotic expansions for the confiuent hypergeometric functions. ' We obtain
»

(88)

V 2m@( —1)"
V I+co

( 1)»»

M.,

+
2p

tFor a recent review, see G. Altarelli, in Proceedings of the J9g5
Europhysics Conference on High Energy Physics, Bari, Italy,
edited by L. Nitti and G. Preparata (Laterza, Sari, 1985), p.
731.
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