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Lorentz invariance and the composite string
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It is shown that in space-times of dimension 3, 4, 6, and 10 there exists a parametrization of the
string coordinates which automatically solves the nonlinear constraints of the theory and which per-
mits the implementation of the Lorentz transformations of the string in terms of a linear action
upon these parameters. Supersymmetry transformations are also discussed. The prospect of quan-
tizing the string in terms of a set of commutators for these parameters invariant under this action is
exam led.

I. INTRODUCTION

In the present reincarnation of the string model, the
favored method of quantization is allied to functional-
integral techniques and is inspired by Polyakov's work. '

Originally, however, the string was quantized using
canonical methods. In their classic paper, Goddard,
Goldstone, Rebbi, and Thorn (GGRT) carry out the
quantization in the light-cone gauge, using a Fock space
constructed from the transverse oscillator modes to create
physical states. Although rotations in the transverse
space are automatically realized linearly, the full Lorentz
algebra must be realized nonlinearly. The closure of this
algebra requires both that the dimension of space-time is
26 and that the mass squared of the ground state is
—1/a', where a' is the conventional slope parameter.
This state is a tachyon. In a later paper, Goddard, Han-
son, and Ponzano repeated the calculation using a covari-
ant formulation, employing Dirac s modification of Pois-
son brackets when firstwiass constraints are present, with
the same conclusions.

The constraints of string theory arise very simply: in
order to linearize the equations of motion obtained from
the Nambu-Goto reparametrization-invariant Lagrangian,
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one is led, in the now familiar fashion, to the constraints
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which may be reexpressed as
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where X+-denotes the light-cone components (X +X ')
and X' denotes the transverse components of the coordi-
nate vector X". There is a parametrization (see Sec. II}of
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which permits a parametrization of (4) using
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for the identity in (o+~). There is a similar identity in
(o ~) Notice .that if the variables a, b, c, and d are tak-
en to be Grassmann, the identity (6) is only true if the
minus sign in the last term is changed to a plus sign. This
possibility is discussed somewhat further in Sec. III.

II. LORENTZ TRANSFORMATIONS

The advantage of the parametrization (6) over that of
GGRT, which is a special case of (6), is that Lorentz
transforinations on X& may be implemented by the action
of transformations of the constituent fields a, b, etc. This
action may be reahzed in various ways; the simplest
can be seen by introducing a complex variable
g=(X' iX'z}/(X—'o+X' ), where the prime denotes par-
tial differentiation with respect to (o+~). Then we can
re~rite the identity as

X' iX' —X o—X'i c id—
X'+X' X'+iX' a tb—

There is a similar representation in the 6- and 10-
dimensional cases, where g is represented as the right or
left quotient of two quaternions or octonions, respectively.
Notice that the parametrization is highly redundant. %'e
observe that Lorentz transformations in (8) will be in-
duced by SL(2, C ) transformations on the complex vari-
able g of the form

the constraints which exists only in space-time dimensions
3, 4, 6, and 10 based upon the identity '

zllz'
I

=
I

zz'

where the z and z' belong to a division algebra. The vari-
ous dimensions result from taking z and z' to be real,
complex, quaternion, or octonion, respectively.

For the case of four dimensions, for complex numbers,
(5) is simply
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An independent set can be found in the cases where d =6
by reversing the order of the two tensor products in each
A. These independent sets together span the real, an-
tisymmetric matrices in d =6.

The identity (5) in this representation reads

XXPQ= (XA;g) (12)

The action of the Lorentz group is generated by four
types of matrices,

IS[A;,AJ), aseA;, io2tIA;, oiA;,
which act on the column vector

(13)

in a representation where all the matrices are real. These
matrices close under commutation on the Lorentz group
in d dimensions: the number of matrices of the first type
is —,

' (d —3)(d —4), and of each of the other types is d —2.
This gives a total of

(d —3)(d —4) d (d —1)
2 2

— +3(d —2}=

the correct dimension for SO( l, d —1).

where a,P,y„5E C and u5 —Py = 1. [In the three-
dimensional case the transformations are induced by
SL(2, I).]

Another way, which more readily generalizes to higher
dimensions, is to notice that the parametrizations can all
be expressed as follows. Consider two Majorana spinors g
and X with either 2, 4, or 8 components and define

x+=xx, x =qy, x'=xA, q,
where X denotes the conjugate (transposed) spinoi. The
matrix A« ——I and the real, antisymmetric matrices A;
(i =2, . . . , d —2) which satisfy IA;, AJ j = —25;J are con-
structed as follows:6

For what follows it will prove useful to exhibit the six
infinitesimal transformations in the four-dimensional case
explicitly:

C —c —d —Q

d —c —C
P
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III. QUANTIZATION

+ (a'c ac' b'd+ bd')—f(z ——z'),
(18)

ax' ax' =(a'c+ ac' b'd bd'}g (z——z')—
BZ BZ

—(a'd+ad'+b'c+bc') f(z —z'),

where a' denotes a(z'), etc. The evaluation of the com-
mutators is tricky as it involves a normal-ordering ambi-
guity for the definition of X" from Eq. (7) assuming f
and g to be singular as z~z'. The reason that the com-
mutators (18) are not Lorentz invariant but only covariant

The expression of the string variables as bilinears in the
gauge fields X and f, creating what may be called a com-
posite string, naturally invites consideration as to how
much of string theory can be recast in terms of these more
basic fields. It is evident that, if X and g depend upon
(cr+r) only, then this parametrizes the left-moving modes
of X", and the right movers are parametrized in terms of
other fields X(cr r), f(cr ~—). Since the parametrization
is Lorentz invariant, unlike GGRT, the question arises as
to whether it is possible to quantize the string by the im-
position of commutation relations among the X and f
which preserves the invariance. There is a basic difficulty
if X and g are quantized as Majorana spinors, for then the
light-cone components in (10) automatically vanish. An
analogous problem arises if a particular choice of bosonic
quantization is assumed. In the case of four dimensions,
it is easy to verify that the commutators

[a (z),c (z')] = [d (z),b (z')] =f (z —z'),

[a (z),d (z')] =[b (z),c(z')] —=g (z —z'),
with all the other pairs having vanishing commutators,
are invariant under the infinitesimal action of (16). (If in-
variance up to rescaling is permitted, then there are more
possibilities. ) Furthermore, by considering variations in
the commutator [a (z),a(z')] =0 under (16) we can deduce
that f (z z') and simila—rly g(z —z') are even under inter-
change z~z'. Evaluation of two typical commutators
gives

' ax' ax' =(a'd ad'+b'c bc')g—(z —z'—)
az

' az'



DAVID B. FAIRLIE AND CORINNE A. MANOGUE 34

is that the Lorentz transformations on the X" are realized
nonlinearly. This is the same sort of problem which one
finds for the X+ in GGRT, forcing one to 26 dimensions.

Suppose one asks for the commutation relations (18) to be
satisfied at the classical level. Then a consistent solution
of (17) and (18) and their Lorentz transforms is

a =ib, c =id,

f=ig =(z —z')5'(z —z') .

It may be significant that this solution leads back once
again to X =X =0, the same restriction which arises us-

ing fermionic parameters.

IV. OTHER TRANSFORMATIONS

If we subject a, b, c, and d to an arbitrary transforma-
tion, then the vector r)X"/B(o+r) remains null. It is pos-
sible that this parametrization of the constraints by (7) is
an avenue to explore the relationship between analytic
transformations of g' and general coordinate transforma-
tions. This point is under investigation.

An interesting subclass of transformations are those of
supersymmetry where Xi' is regarded as a superfteld. We
consider the class of transformations which maintain the
distance function:

s =g& —$2 —8,82,

where 8~ and 82 are Grassmann parameters. Then up to a
conformal scaling factor they include the SL(2, C )

transformations (9) together with

88»
ye+5

and also the supersymmetry transformations

where q and v are Grassmann parameters. Under these
transformations the function s transforms as

s =s(1+ri8i)(1+g82) .

Equivalently these transformations may be realized as
an action on a, b,c,d The transfor. mations

a~a+a8, b~b+b8, c~c, d~d,

correspond to (22) with v=0, while the transformations

@~a, b~b, c~c+c9, d~d+dg,
correspond to (22) with ri =0.

(25)

V. OTHER PARAMETRIZATIONS

There exists an interesting parametrization of the classi-
cal solutions of the string equations of motion in four-
dimensional Euclidean space due to Eisenhart, and
rediscovered by Shaw. It is linear in the parameters It (z)
and k(z) where h and k are analytic in the complex vari-
able z =(r+ia) It is. given by

X =h —zh'+k'+c. c. ,

iX =h —zh' —k' —c.c. ,3=

X' =k —zk' —h '+ c.c. ,

iX = —k+zk' —h' —c.c. ,

(26)

2)2 (21 m n)— —3(m —n )

4
(28)

thus providing a partial parametrization in terms of 24
parameters of the constraint (4) in a Lorentzian space of
27 dimensions. The possibility exists that such a space
can be coordinatized by the 27-dimensional representation
of a noncompact E(6), or even that the 27 parameter ex-
ceptional Jordan algebra over the octonions is involved.
Work is in progress in deriving a superstring from this
point of view. See also Ref. 10. The difficulty is to
reduce to 26 dimensions.
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where c.c. denotes the complex conjugate. It defines a real
solution and is the analogue of an instanton for the string.
There is no such linear parametrization known in Min-
kowski space-time.

In 26 dimensions there are hints that three octonions
l, m, n can be combined to give a bilinear parametrization
of the string using the identity (5) three times:

I m +m n +n21 =
~

lm
~

+ j
mn

~
+

~

nl (, (27)

where I denotes
~

ll ~, etc. The left-hand side of this
identity may be rewritten in the canonical form
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