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Probing a nonperturbative method on the S matrix of the nonlinear Schrodinger model
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A recently proposed nonperturbative scheme of calculation for the S matrix of field theories is

tested for the nonlinear Schrodinger model. For the case of two-body scattering, we study the

dependence of the approximate S matrix on the following approximation parameters: the
momentum-space cutoff A, the number of nodes v, and the scattering time T. Vfe find convergence

towards the reference value, when the approximation parameters tend to infinity, in case of a weak

as well as a strong coupling constant. Also in the case of overlapping wave packets, which corre-

sponds to an infinite effective couphng constant, we obtain acceptable convergence.

I. INTRODUCTION

Since 't Hooft discovered that QCD is a renormalizable
theory, ' much effort has been devoted to derive the ob-
served properties of strongly interacting particles from
first principles. The major achievement in that direction
has been certainly Wilson's invention of lattice gauge
theory. i This has been the starting point of a renewed in-
terest for nonperturbative methods in field theory, and
there are, presently, many proposals to improve the stan-
dard perturbation theory. One of them is a time-
dependent method using a discretization of the Hamil-
tonian in momentum space. This method has been origi-
nally conceived by one of the authors for nonrelativistic
few-body scattering and has proved useful for a large class
of interactions. For nonrelativistic potential scattering
with potentials suitably chosen to guaranttu: the existence
of Moiler wave operators, it has been proven that this
scheme yields a strong approximation of the wave opera-
tors and a weak approximation of the S matrix. In field
theory, the analogues of Moiler wave operators are more
complicated constructions, as is known from the Haag-
Ruelle theory; hence one could try to generalize the
method for the approximation of the S matrix, which
proceeds without wave operators. Recently, we have sug-
gested how to apply this method in field theory, where we
have considered, as an example, the P theory. As a re-
sult we found in the weak-couphng case numerical agree-
ment of the approximated S matrix with the first-order
perturbation-theory S matrix.

The aim of this paper is to test the method for a field
theory, which has an analytically known S matrix, in the
regime of a weak and a strong coupling constant. For the
case of two-particle scattering we study the dependence of
the approximate S matrix on the following approximation
parameters: the momentum-space cutoff A, the number
of nodes v in cutoff momentum space, and the scattering
time T. We find convergence towards the reference value
when A, v, and T tend to infinity. In particular, we ob-
tain convergence for the following cases of the effective
coupling constant: A,eff (Q 1, A,,ff & 1, and A,eff 0 I As a
genera1 rule one can say that the smaller A,,ff is the faster

the convergence. Also, in the case of overlapping wave

packets, which corresponds to an infinite efftx:tive cou-
pling constant, we obtain acceptable convergence. We
give a criterion to minimize the errors, which can be ap-
plied when the exact solution is unknown. Finally, we ob-
serve that a scaling property of the model pertinent in the
S matrix is transferred to a very high degree of accuracy
to the approximation solution.

The paper is organized as follows. In Sec. II we present
the formalism. In Sec. III we briefiy describe the non-
linear Schrodinger model. The numerical results are
presented in Sec. IV. Section V contains the conclusions.

II. DESCRIPTION OF THE METHOD

The strong approximation of the Moiler (SAM) wave
operator approach is a calculation scheme for wave opera-
tors and the S matrix. It has been invented to solve few-
body nonrelativistic potential scattering problems with
short-range andjor long-range forces." Denoting by H
and H the full and asymptotic Hamiltonians, respective-
ly, one introduces H„and H„, approximations of H and
H in the sense of strong resolvent convergence. Based on
this, one introduces exp(iH„T)exp( iH„T) as an—approx-
imation of the Moiler wave operator in the sense of strong
convergence. Finally,

exp( iH„T)exp( i 2H„T)—exp(i H„T)

is used as an approximation of the S matrix in the sense
of weak convergence.

For nonrelativistic few-body scattering, one can show
that this scheme is rigorous. It is also technically simple.
The sequence of approximated Hamiltonian operators can
be chosen to be finite dimensional; thus the problem of
the calculation of exp(iH„T) is formally equivalent to the
diagonalization of H„. An important advantage of this
approach is the conservation of unitarity. A generaliza-
tion of the approach to field theories has been presented
for the P theory in Ref. 5. There, one has not been able
to prove, rigorously, convergence of the approximate S
matrix in a manner analogous to the case of nonrelativis-
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tic potential scattering. The proof for nonrelativistic po-
tential scattering was based on the property of the Hamil-
tonian being a well-defined self-adjoint operator in Hilbert
space. But, in general, for local field theories H does not
exist in Hilbert space, so the generalization of the
mathematical proof is not obvious. The solution of this
problem has to be sought by looking for a suitable regu-
larization and nonperturbative renormalization, defining
the physical S matrix. However, scattering in the non-
linear Schrodinger model does not require any renormali-
zation, so we do not discuss this point further here.

We use a generalization of the approximation scheme
from nonrelativistic potential scattering, augmented by
the particle-number degree of freedom. This procedure
has already been presented elsewhere, so we will only re-
call the basic steps.

We want to calculate (n,„, i
S

i n;„), where the states

i n,„,), i n;„) are wave packets normalized to unity. We
introduce the following approximation procedure.

(1) We substitute H by H„=P„HP„, where P„ is the
projection operator on the subspace of the Fock space
consisting of 1,2, . . . , n particle states.

(2) We introduce a cutoff A in momentum space.
(3) The continuum of the cutoff momentum space is

discretized by the introduction of a partition in v cells
characterized by the mesh of each cell. Thus we obtain a
finite-dimensional Hamiltonian Httt, where N=(A, v, n) is
a collective index.

(4) The time limit is substituted by a large, but finite,
time 1.

Finally, we evaluate the approximate S-matrix element:

(n,„, I
s~(T)

i n;„)
= (n«t i

exp(iHN T)exp( 2iHtt T)exp(i—Htt T)
i

O.;„) .

For the analytically solvable nonlinear Schrodinger model,
one can compare 6 0 with

(n.„, i
s —s„(T)in,„)

(n.„,is in, ,)
(2.4)

As will be shown in Sec. IV, one obtains a minimum of b
whenever 5 0 has a minimum. Thus 5 0 might also

serve for nonanalytically soluble models to narrow the
domain of parameters. A condition on the mesh of the
momentum-space discretization, necessary for the conver-
gence of the S matrix, is the requirement that a
momentum-space integral such as the overlap of wave
packets (n,„,i n;„) should be well approximated by the
discretized sum. In general, the convergence of the S ma-
trix with respect to the different parameters can be
checked only numerically and is model dependent. An il-
lustration will be given in the next section for the non-
linear Schrodinger model.

Finally, we would like to mention that this approach is
equivalent to summing up all Feynman graphs using a
regularization procedure which preserves unitarity. As in
lattice theory, continuous space-time symmetries are only
recovered in the limit. The question of continuous inter-
nal symmetries is deferred to future analysis.

III. APPLICATION TO THE NONLINEAR
SCHRODINGER MODEL

The nonlinear Schrodinger model (NI.SM) is a simple
model of a self-interacting field theory. Sometimes re-
fered to as the 5-function gas model, it is a one-
dimensiona1 nonrelativistic model, the Hamiltonian being

H = f" a„y'a„y+Xy'y'yydx, (3.1)

where

(2.1) [P(x,t), P'(y, t)]=5(x —y) . (3.2)

The evaluation of exp(iH&T) is equivalent to the solution
of the eigenvalue problem for the finite-dimensional Ham-
iltonian H~ and H~, respectively. It can be solved using
standard techniques or, if the number of states is too
large, one can resort to statistical methods. In practice, it
appears that symmetries and a suitable choice of parame-
ters can reduce considerably the number of states which
have to be takeo into account. In general, one has to con-
trol the four parameters A, v, n, and T and, in general,
one cannot expect uniform convergence. So it would be
helpful to have criteria to determine domains of the pa-
rameter space which minimize the errors between the ex-
act and the approximate 5 matrix. One such criterion is
based on the intertwining property

H =fa„p'a„pdx .

It has the eigenstates

H ik„. . . , k„)= gk; ik„.. . , k„),

(3.3)

(3.4)

A useful feature of this model is the property that the
number operator X = ' x commutes wit t e Harn-
iltonian. Therefore each sector of the Fock space for
NSI.M is independent and the particle-number degree of
freedom is frozen. As a consequence of this simplifica-
tion, the scattering states and the S matrix can be calcu-
lated very easily.

The free Hamiltonian is taken as

(2.2)

which reAects energy conservation. Considering a state
Q „,on which H is invertible, one can calculate

(n,„,is„(T) (H') 's (T)H in—;„)
(n.„„is„(T)i n,„)

(3.5)ik„. . . , kg)=at(k, ). . . a'(kg) i0),
a (k)= fdx e'~P'(x), (3.6)

the vacuum state
i
0) being defined by a (k)

i
0) =0.

The
i tP);„and

i P)«, states are obtained in the usual
resolvent approach by
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~ kn }&inout S=(k2 —ki —iA),/(k2 —ki+iiL), ki &k2 . (3.11)

= lim g [G (co+i@)H'"']
~
k„.. . , k„), (3.7)

e—++0( O

G (z) =(z H—) ', H'"'=H H— (3.8)

(3.9)

The S matrix is defined by

( k 'i, . . . , k„'
~

S
~

k i, . . . , k„)
=,„,(tP(k', , . . . , k„')

~
y(k„. . . , k„});„. (3.10)

For two-particle scattering the S matrix is given by
Thacker:

We will only consider the two-body sector in the follow-
ing; results on N-body states and states with a finite den-
sity of modes are given in Ref. 6. Let us note that there is
no mass scale in the model; thus the parameter which
plays the role of the coupling strength in perturbation
theory can only be measured relatively to k2 —k~. For
wave packets with a we11-defined momentum, one can de-
fine A,,rr=k/(k2 —ki) as an effective coupling constant.

ff « 1 means weak coupling and A,,fr ) 1 strong cou-
pling.

Because in our approximation we use a momentum-
space cutoff A, it would be instructive to compare our ap-
proximate S matrix not only with the exact S matrix
given by Eq. (3.11), but also with the S matrix obtained
when a cutoff is imposed on the interaction. The latter
can be calculated analytically in a way which is similar to
the calculation of the exact Smatrix. It is given by

2k, +A
SA —— k2 —k )

——ln
2k] +A

2k2+ A
k2 —k) ——ln +lA,

2k(+A
(3.12)

One verifies immediately that Sz is unitary and leads in
the limit A~ oo to the expression (3.11).

In the preceding section we have suggested the use of
energy conservation, which is a general property of the S
matrix, as a check for our approximate S matrix. The S
matrix of the NLSM has another invariance feature,
namely, scaling invariance, which could serve the same
purpose. From Eq. (3.11) one immediately reads off that
the S-matrix element remains invariant, if one multiplies
all momenta and the coupling constant by a real number

I

~y(k)&= I dk q„(k') ~k'),

rlk(k') =(2ir bk)
(3.13)

and analogously a two-particle state, by

a. This also holds for the cutoff S matrix given by (3.12),
if the cutoff A is also multiplied by a.

Now let us discuss the approximations used. Let us de-
fine the following normalized one-particle Hilbert state:

k ) +hk/2 k~+5k/2
~
p(ki), g(k2)) = I„,J„„,dkidk2i}k, (ki)ili, ,(k2)

~
ki, k,') . (3.14)

I = g ~
y(k, ), y(k, ) ) (y(k, ), y(k, )

~

. (3.15}

The partition of the cutoff momentum-space interval

[—A, A] is chosen such that the cells are disjoint. The
simplest choice is an equidistant partition of the v cells
( kz ——j b,k). We write the finite-dimensional projector:

This has the effect of simplifying the problem to the diag-
onalization of Hz in each subspace of total momentum
contributing to the initial and final wave packet. This is
not, however, a particular feature of the NLSM. Hence
we use for each total momentum Q the reduced set of
basis states

and Hz ——I'~HI'~. In this basis the interaction reads
/
pl) =

/
@(k()g(k~), g =k;+kj ) . (3.17)

2m

(3.16}

(b) Secondly, Eq. (3.16) shows that the interaction in the
two-body sector is separable after splitting off the
momentum-conserving 5 function. Using the basis (3.17),
we can write Eq. (3.16):

Equation (3.16) displays two properties of the NLSM in-
teraction, which can be used to simplify the solution, i.e.,
the diagonalization of H&.

(a) Firstly, Eq. (3.16) reflects total momentum conser-
vation, which is indeed preserved in the discretization.

' 1/2
4A, hk

2m

(3.18)
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Her I 41 & =&I
I

t)'I & ~ (3.19)

Then the diagonalization of H~,

which clearly displays the separability. Using this basis it
is simple to diagonalize HN. Firstly, one notes that the
states ~P(k;), g(kj)& diagonalize H~, hence ~@1& are
eigenstates of H~..

1&4 I
&& I

'
1=

Q 7

Ei —EJ

and for the eigenvector Pi,

&1(, ~X&

where x is a normalization constant.

(3.21)

(3.22)

Hx l4'I &=&i I 6& (3.20) IV. NUMERICAL RESULTS

is most easily obtained by the solution of the equation for
the eigenvalue EI,

We have calculated the following two-particle S-matrix
element &QiQ2

~

S
~
QiQ2&, where Q; are both one-

particle Hilbert spaces given by

k,.

i Qi & =a; I dk [1 cos—[2n(k kg),—„)/(k;„p k;i,—„)j) i
at(k)0&,

i lo~
(4.1)

where lr; is chosen to normalize
~
QiQ2& to unity. Q;

represents a bell-shaped wave packet with a peak at

klp (kl lip+ ki ](&~)/2

and a half-width of

k;„=(kgb —k;i,„)/2 .

First, we consider the case without overlap between Q~
and Q2, i.e.,

k) 1' & k1 uP + k2 1OW & k2 uP

A,,rr=k/(kgb —le) . (4.2)

As a first example, we study a weak-coupling case with
A, =2.0X10 fm ' corresponding to A,,tr=4. 0&&10

t

We take ki)0„——0.25 fm ', ki„p ——0.5 fm ', k2io„——0.75
fm ', and k2„~ ——1 fm '. We should remark here that
our definition of an effective coupling constant was given
for sharp momentum states. In order to give a meaning-
ful definition for wave-packet states, we replace the sharp
momentum by the peak momentum of the wave packet,
1.e.,

TABLE I. The approximate matrix element (Q,Qz
~

S
~

Q~Q2& dependent on the parameters T and
the number v of momentum-space cells (A'=1). The coupling constant is A, =2.0X10 ' fm ' and the
cutoff interval is [O,A], with A=2.0 fm '. The reference value for the exact S matrix is
9.9997X 10 ' —8.0822 X 10 3i, while for the cutoff-dependent S matrix it is 9.9997X 10
—8.0910X 10 i.

350

80

120

9.9998x10-'
—5.3339X10 3i

9.9997x 10-'
—7.6221 x 10 i

9.9997x 10-'
—8.0388x10 'i

9.9997x 10-'
—8.0818x 10 i

9.9997x 10-'
—8.0881 x 10 i

9.9997x 10-'
—8.0897x10 3i

9.9997x 10-'
—8.0903x 10 i

9.9997x 10-'
—8.0908 x 10 i

9.9998x 10-'
—5.3279 x 10 i

9.9997x 10-'
—7.6202 x 10 i

9.9997x 10-'
—8.0392x 10

9.9997x 10-'
—8.0825 x 10 i

9.9997x 10-'
—8.0887x 10 i

9.9997x 10
—8.0901x 10 i

9.9997x 10-'
—8.0905x 10 i

9.9997x 10-'
—8.0907x 10 i

9.9998x 10-'
—5.3252 x 10 i

9.9997x 10
—7.6204 x 10 i

9.9997x 10-'
—8.0386x 10 i

9.9997x 10-'
—8.0829 x 10 i

9.9997x 10-'
—8.0890x 10 i

9.9997x 10-'
—8.0903x 10 i

9.9997x 10-'
—8.0907x 10 i

9.9997x 10-'
—8.0908x 10 i

9.9998x 10-'
—5.3254x 10 i

9.9997x 10-'
—7.6205 x 10 i

9.9997x 10-'
—8.0396x 10 i

9.9997X 10
—8.0829 x 10 i

9.9997x 10-'
—8.0890x 10 i

9.9997x 10-'
—8.0903x 10 i

9.9997x 10-'
—8.0907x 10 i

9.9997x 10-'
—8.0908x 10 i
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In this case we have taken an asymmetric cutoff interval

[O,A], with A=2 fm '. The corresponding mesh is
Ak =(2/v) fm '. We find as reference value of the exact
S matrix 0.99997—0.808 22 X 10 i, while the value of
the cutoff-dependent S matrix Sz is 0.99997
—0.809 10X10 i T. he dependence of the approximate S
matrix SN(T) on the approximation parameters v and T
is displayed in Table I. One finds convergence towards

the reference value. As one expects, the agreement be-

tween S~(T) and Sz, which both depend on the cutoff, is
better than the agreement between S)v(T) and S. From
Table I one reads off for T= 160 fm and v=350 that the
relative error between Sst(T) and S is of the order of
10, while the relative error between S~(T) and S is of
the order of 10 . In other words, among the three ap-
proximations used in Sz(T), namely, the cutoff A, the
partition in v cells, and the finite time T, the largest error
comes in this case from the cutoff A.

Figure 1 displays, for v=200 as a function of T, the

IO

relative error b. between SN(T) and S as defined by Eq.
(2.4), but with S replaced by SA. It is compared with hH,
given by Eq. (2.3). The function 6, is calculated using

only the approximate S matrix Sz(T) and is a measure of
the violation of energy conservation introduced by the ap-
proximation. One observes that the minimum of 6, cor-

responds to a region of stability, close to the minimum of
the function b, . Thus the function 6 0 serves to deter-

mine a suitable time parameter T.
In Fig. 2 we display for the case A, =10 ' fm ' and

ff 2 X 10 ', the relative error b, between the approxi-
mate and exact 5 matrix, keeping the mesh
hk =2A/v=0. 03 fm ' fixed. We display the curves cor-
responding to (a) v=300, A=4.5 fm ', (b) v=500,
A=7.5 fm '; and (c) v=700, A=10.5 fm '. For all
three curves their minima and region of stability nearly
coincide. For v=700 the relative error is on the order of
10 i. In Tables II and III we display the results for a
strong-coupling case A, =1 fm ', Agff=2. 0. In comparison
to the weak-coupling case, we need to increase the cutoff
but also keep the mesh of the cells reasonably small. In
Table II we use the cutoff interval [—A, Aj with A=12

IO

IO

IO

IO

10

IO

IO
g lo

IO

IO
ll

lo

Ol

0
I I I I

80 l60 240 520 400 480
T(fm )

l

SO
l l l l

l 20 1 60 200 2 40
T (fm~)

FIG. 1. Graphs of

(n, n, i
s„(T)—(a')-'s„(Tyr'i n, n, &

and

(Q(ni
i
S~(T) Sp i

Q)ni&—
(Q)ni isg i Q)Q2&

for A, =2.0&(10 fm ' and v=200 as a function of T.

FIG. 2. Graphs of

(Qin2 i
S~(T) S

i
Qin2&—

(n,n, is in, n, &

for A, =10 ' fm '. The solid line corresponds to v=300 and the
cutoff interval [—A, A] with A=4.5 fm ', the dashed line cor-
responds to v=500 and A=7.5 frn ', the dashed-dotted line
corresponds to v=700 and A=10.5 fm ', all corresponding to
the same mesh 5k=0.03 fm
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TABLE II. The approximate matrix element (Q,Q2
~
S

~
Q~Qq) dependent on the parameters T and

the number v of momentum-space cells. The coupling constant is A. =1 fm ' and the cutoff interval is

[—A, A], with A=12 fm . The reference value for the exact S matrix is —0 59. 93 —0 7.965i, while for
the cutoff-dependent S matrix it is —0.6322 —0.7705 i.

20

120

-1.4847 X 10-'
—5.7290X10 'i

-5.0691X10-'
—7.5365X10 'i

—6.2140X 10-'
—7.2272X10 'i

-6.7256 X 10-'
—3.6240X10 'i

-2.9796X10-'
5.2833X10 'i

6.0431 X 10-'
4.7693X10 'i

7.4939X10-'
—2.4219X10 'i

7.7535 X 10-'
—3.2125X10 'i

—1.0238 X 10-'
—S.7181X10 'i

—5.0202 X 10-'
—7,5315X10 'i

-5.9566X 10-'
—7.7782X10 'i

-6.0891 X 10-'
—7.8065X10 'i

—6.1681X 10
—7.6155X 10-'i

-6.5515 X 10-'
—6.0867 X 10

-3.7983 X 10-'
1.0833X10 'i

3.2934 X 10-'
5.2413X10 'i

-6.5990X 10 '
—5.7120X10 'i

—5.0723 X 10-'
—7.5762X10 'i

—6.0401 X 10-'
—7.8266 X 10

—6.1379X 10
—7.8411X 10

6.1506X 10
—7.8411X10 'i

—6.1544X 10-'
78309X10 'i

-6.1620X 10-'
—7.7276X10 'i

-6.3948 X 10-'
—6.9966X10 'i

—7.0340 X 10-'
—5.7136X10 'i

—5.0765 X 10
—7.5761X10 'i

—6.0407 X 10
—7.8260X10 'i

—6.1366X 10
7 8408X10 'i

-6 1498X10-'
—7.842SX10 'i

-6.1525 X 10-'
—7.8425X10 'i

-6.1533X 10-'
—7.8412X10 'i

-6.1548X10 I

-7.8343 X 10

fm ' and vary v between 400 and 1000. The reference
value for the exact S matrix is —0.5993—0.7965i, while
for the cutoff-dependent S matrix the value is
—0.6322 —0.7705i. For T= 160 fm and v=1000 the
relative error between SN(T) and S is 2.5X10 and the
relative error between S~(T) and SA is also 2.5X10

In Table III we use [—A, A] with A=24 fm ', i.e., the
three columns of Table III correspond to the last three
columns of Table II with respect to the mesh b.k. In
Table III we vary v between 1200 and 2000. The refer-
ence value for the cutoff-dependent S matrix is now

0 615—3 .0 784—3i . For .T=100 fm and v=2000, the

TABLE III. Same as Table II, with v and the cutoff A doubled. The value of the cutoff-dependent S
matrix is —0.6153—0.7843i; the value of the exact S matrix is —0.5993—0.796Si.

20

80

120

-4.8076 X 10-'
—5.7491X10 'i

—4.9460X 10-'
—7.S85SX10 'i

—5.879SX 10-'
—7.8371X10 'i

-6.0118X 10-'
—7.8661X10 'i

—6.0937X 10-'
—7.6768X10 'i

-6.4974 X 10-'
—6.1620X10 'i

-3.8820X 10-'
1.0347X10 'i

3.1460X 10-'
5.3377X10 'i

-1.1705X 10-'
—5.7428 X 10

—4.9976X 10
—7.6304X10 'i

-5.9625 X 10-'
-7.8858X10 'i

—6.0601 X 10-'
—7.9008X10 'i

-6.0728 X 10-'
—7.9009X10 'i

-6.0767 X 10-'
—7.8908X10 'i

-6.0861 X 10-'
—7.7881X10 'i

-6.3285 X 10-'
—7.0651 X 10 'i

—1.6024 X 10-'
—5.7445X10 'i

5 0019X10
—7.6303X10 'i

—5.9631X 10-'
—7.8852X10 'i

—6.0588 X 10-'
—7.9005X10 'i

—6.0719X10-'
—7.9024 X 10 'i

-6.0746 X 10-'
—7.9023X10 'i

—6.0755 X 10-'
—7.9011X10 'i

—6.0771 X 10-'
—7.8942X10 'i
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TABLE IV. The approximate matrix element (QiQq ~S ~Q~Qq) for a case of overlapping wave

packets. The coupling constant is A, =2.0&10 fm ' and the parameters of the wave packets are
k $ f0~ 0 25 fm s k ) ttp —0 5 fm ', k2 I,„——0.4 fm ', and k2 „„——0.65 fm '. The reference value of the
exact 5 matrix is 0.998 17—0.33249X 10 'i.

9.9988 X 10-'
—1.3932X 10 i

9,9972X 10-'
—2.2538 X 10 i

9.9956X 10-'
—2.8089X10 2i

9.9948 X 10-'
3.0119X 10 i

9.9942 X 10-'
—3.0936X10 2i

9.9937X 10-'
—3.1400X10 2i

9.9930X 10
—3.2606 X 10 i

9.9988X 10-'
—1.3935X 10 i

9.9972 X 10
—2.2541 X 10 i

9.9956X 10-'
—2.8092X10 2i

9.9948 X 10-'
—3.0123X 10 i

9.9942 X 10-'
—3.0940 X 10 i

9.9937X 10-'
—3.1404 X 10-'i

9.9932X 10-'
—3.1795X10 'i

9.9988X10-'
—1.3936X10 2i

9.9972 X 10-'
—2.2543X10 2i

9.9956X 10-'
—2.8094X10 2i

9.9948 X 10-'
—3.0125 X 10 i

9.9942 X 10
—3.0943X10 ~i

9.9937X 10-'
—3.1407X 10 i

9.9932X 10-'
—3.1768X10 2i

relative error between SN(T) and S is 1.3X10 and the
relative error between Sz(T) and S~ is also 1.3X10
We observe in Tables II and III that the value of the ap-
proximated S matrix SN(T) for T=160 and v=1000
(Table II) and v=2000 (Table III) lies closer to the exact
S matrix than the cutoff-dependent S matrix, which may
be an accident.

In Table IV we present results for an asymptotic state
with overlapping wave packets QI and 02 given by
ki~,„——0.25 fm ', ki„s—0.5 fm ', k2i,„——0.4 fm ', and

ki„z ——0.65 fm '. We take A, =2.0X10 fm ' and a
cutoff interval [O,A) with A=2 fm '. We have seen in
Tables I—III that keeping the approximation parameters
fixed but increasing the effective coupling constant leads
to increased errors, or in order to keep the error level with
increased A,,rr, one has to increase the approximation pa-
rameters. From our original definition of the effective
coupling constant A,,rr=Al(k2 —ki), one sees that in the
case of overlapping wave packets, there are contributions
from ki —k, =0, i.e., A,,rr is infinite. Thus one could ex-
pect the worst for the approximate S matrix. The results
displayed in Table IV, however, show an acceptable con-
vergence towards the reference value.

Finally we mould hke to discuss the scale invariance.
The exact 5 matrix has a scaling property which corre-
sponds to the following scaling property of the approxi-
mate S matrix. If we denote by

~

aQ) a state generated
from

~
Q) by multiplying all momenta by a common fac-

tor a, then one has

&Q.„,~S'(A, v, T)
~
Q,„)

=(aQ,„,~S "(aA, v, T/a )
~
aQ;„), (4.3)

We have tested a nonperturbative scheme for the calcu-
lation of S-matrix elements in quantum field theories on
the nonlinear Schrodinger model, which has an analytical-
ly known S matrix. We find convergence towards the
reference value in the weak- and in the strong-coupling re-
gime. Stronger coupling constants require more numeri-
cal effort; i.e., the matrices have to be larger. We have
also examined the case of overlapping wave packets,
which means an infinite effective coupling constant, and
find acceptable convergence. Finally, scale invariance of
the 5 matrix is also observed in the approximate S matrix.
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Chercheurs et d' Action Concertee du Quebec; H.K. has
been supported by the Natural Sciences and Engineering
Research Council (NSERC) of Canada. The authors are
grateful to NSERC and Environement Canada for com-
puter time on the Cray 1-S.

where S means the S matrix corresponding to the cou-
pling constant A, . This scaling relation for the approxi-
mate S matrix was found to be satisfied within the nu-
merical accuracy of the calculation.

V. CONCLUSION
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