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An instantaneous nondemolition measurement technique for composite quantum-mechanical sys-
tems (those wvhich consist of several separate subsystems) is described, and that technique is applied
to the design of verification experiments for some nonlocal variables and states. Relativistic restric-
tions on the measurability of nonlocal properties are derived, and other, less familiar, varieties of
measurement are discussed.

I. INTRODUCTION II. MEASUREMENT OF NONLOCAL VARIABLES

There are a number of well-known difficulties in the in-
terpretation of the measurement process in nonrelativistic
quantum theory; and the theory of relativity produces new
restrictions on the measurement process: The measure-
ment of certain nonlocal variables is known to contradict
the principle of causality. It was once thought that in rel-
ativistic quantum theory only local variables are measur-
able; but lately it has emerged' that this is not so: certain
nonlocal states can be verified by experiment. On the oth-
er hand not all of them are measurable, and indeed there
are states whose measurement would contradict the prin-
ciple of causality. In this paper we will generalize the re-
sults of Ref. 1 and will give a description of the measur-
able operators and the measurable states in a composite
system.

In this work we start with the assumption that we can
measure any /oct2I operator, and we E'nuestigate which non-
local operators and states are measurable. We are interest-
ed in the following question. Does it have physical mean-
ing to speak about nonlocal variables at a particular time?
The measuring procedures we seek, in response to this
question, will consequently be instantaneous.

The organization of the paper is as follows. In Sec. II
we describe the method for verifying that a nonlocal
operator has a given value. This will also include a
description of the measurement of modular variables. We
will use those operator measurements in Sec. III for verifi-
cation of nonlocal states. %e will demonstrate the general
measurement procedure in an explicit example: the verifi-
cation of a nonlocal state of a system consisting of three
subsystems separated in space. The restrictions on our
method which follow from the causality principle will be
discussed in Sec. IV. %e will see there what nonlocal
operators and states cannot be measured by the methods
of the previous sections. Then in Sec. V we will propose a
new kind of verification for quantum states using local
"exchange" interactions that is suitable for those "un-
measurable" states. We will also describe an example of a
nonlocal measurable operator with nondegenerate eigen-
states (measurable, that is, in the familiar, von Neumann,
sense).

First we shall need to explain what we signify by "mea-
surement" in this particular section. It is different from
the usual definition of measurement in quantum mechan-
ics. We define a measurement here as the nondemolition
verification that a certain variable A has a given value a.
If before the measurement the observed variable has the
value a then the experiment will produce the result "yes,"
and the state of the system will not change. If our initial
state is a linear combination of eigenstates of the observed
operator with different eigenvalues of A then the experi-
ment will produce the result "yes" or "no" with appropri-
ate probability. In case the answer is "yes," the final state
will be the projection of the initial state on the degenerate
space of eigenstates of A with eigenvalue a. If the answer
is "no," then the final state will be orthogonal to that
space. The difference between this and the usual defini-
tion of measurement in quantum mechanics is that we do
not require that the other eigenstates of the observed vari-
able (with other eigenvalues than a) be unaltered during
the measuring process. The only requirement is that if we
start with a state wherein the A&a, then A&a at the end
of the measurement as well.

Our first nonlocal variable will be the sum of the local
variables A& and A2 that are related to spatially separate
parts of the system. We are interested in nonlocal mea-
surement; that is, after the measurement we would like to
know the value of the sum At+A& tuithout knowing the
values of Ai and Az separately.

We have to verify that A&+A& ——a. By redefining
A2~A2 —a we see that our problem is the verification
that

A)+32 ——0.

Our measuring device consists of two separate parts
which have canonical coordinates q& and q2. We prepare
this composite device in the nonlocal state

g1 —qz ——0, ~&+~2——0,

where m; is the momentum conjugate to q;. We can do
this by local interaction when the two parts of the
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measuring device are initially brought together. Then we
separate those parts and position them at the appropriate
parts of the observed system.

The next stage of our measurement procedure is the lo-
cal interaction between app«priate components of the
measuring device and those of the observed system. The
interactions are short and simultaneous. The time of the
measurement is defined by the time of this interaction.
The Hamiltonian of the interaction is

H;„,=g (t)(qi A i+qzAz),

where g (t) is nonzero only during a short interval of time

[ to, to+ e] and it satisfies the normalization condition
'o+

g t t=1. (4)

Then in the Heisenberg picture

vari g(—t)——Ai, i' ———g(t)Az .

A, and Az are not changed by interaction (3), and we
can take e small enough so that A i and Az will not be
changed (as a result of their oton dynamics) during the
time of the interaction. Then, using initial condition (2),
and normalization of g (t) (4) we find from (5) that

(ni+mz), ), +, —(Ai——+Az),

The last step of our measuring procedure consists of local
measurements of tri and nz We wil.l perform those mea-

surements immediately after the local interactions at tiine
t = to+ e T. his completes the measurement of A, +A z.

Indeed, we see from (6) that knowing xi and mz after
the interaction gives us the value of Ai+Az. At time
t =to+@ there is no local observer that knows the value
of Ai+Az. Such knowledge would require bringing the
results of the local measurements of n i and m.z together,
and that would require some additional finite period of
time. But since the values m1 and ~2 have been indelibly
recorded at time t =to+@ (by means of those final local
measurements), then the measurement of A i+Az (given
that the "measurement" of A i+Az is taken to mean the
indelible rtx:ording, in some macroscopic form, of the
value A i+Az at time to+e) is unambiguously completed
at that time.

The measurement is nonlocal. After the measurement
we know neither A, nor Az. It is nondemolition. If in
the initial state 31+32——0 then the interaction Hamil-
tonian acting on the initial state gives us zero:

H;„, I P;„)=g(t)q, (A, +A, )=0.
%e have shown that our measurement procedure is the

nondemolition verification that A i+Az ——0. Now, sup-
pose that we start with the initial state

a
I
Ai+Az ——0)+PI Ai+Az b), b——+0.

Then the measurement will induce the transformation

(a
I

A i+Az =0&+~tz)
I

A i+Az =b &)
I
~i+~z=0& ~a

I
A i+ Az =0&

I
~i+hz=0&+P

I
A i+ Az =b &

I
~i+~z= —b &

yes, p«ba»»ty
I
a I',

I
Ai+Az=0)

no, probability
I P I

',
I Ai+Az b) . ——

H. I A.&=g(t)q b
I A. & . (10)

We see that our procedure will satisfy all the require-
ments of our definition of measurement. More than this,
it is a measurement of A i +Az in the usual sense of quan-
tum mechanics. Indeed if we start with the state
IA, +A, =b) then

The interaction Hamiltonian is

N

H;„,=g(t) g q;A; .

Then we find g,. , A; by local measurements of m;

(12)

This Hamiltonian is not equal to zero as in (7), but it
acts only on the measuring device, and therefore all eigen-
states of the operator A, +Az are unchanged during the
interaction.

%'e can generahze this method to the measurement of
the sum of N local operators g,. , A; related to N
separate parts of the composite system. The measuring
device will consist of X parts and it will be prepared in
the initial state

q; —qj ——0, i,j= I,2, . . . ,&,

mi ——0.

%'e can also measure any linear combination

i a;A;. We define A =a;A; and then measurement
of g, , a;A; will be the measurement of g,. , A . We
can also measure g,.

i A; (in case the eigenvalues of the
operators A; are positive): This is equivalent to measur-
ing g,. , A;", where A;"=lnA;; but we cannot measure
all possible functions of A;.

A more general class of nonlocal variables that we can
measure are the modular sum of local variables:

(g, , A;) moda. In case the system consists of two parts,
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(a, +a2) m~ =b = a-, +@2=b,

A
&

moda, A
&

moda &b,
A ~ moda —b, 3

&
moda g b,

82 ——c42 01060
(14)

But if the system has more than two parts then mea-
surement of the modular sum is a new problem.

For performing this measurement we wiii use the same
Hamiltonian and the same measuring device. The differ-
ence will be in the initial state of the measuring device:

q; —qj ——0, i,j =1,2, . . . , N,

moda =0, q; mod — =0 .
2m'

(15)

the measurement of the modular sum is equivalent to
measurement of the sum

III. MEASUREMENT OF NONLOCAI STATES

Now we are going to describe the method for measuring
nonlocal states using sets of measurements of the type
considered in Sec. II. What we mean by measurement of
state 1P & is the nondeinolition verification that the state
of the system is 1P &. If we start with the state

y&=a
I 4&+&I yi& where 14i& is orthogonal «

I y&
then the measurement will produce the result "yes" with
probability 1a 1, and the final state will in those cases be

1P &; it will produce the result "no" with probability 1P1
and the final state in those cases will be orthogonal to
11I) & (but wiii not necessarily be 1/2 &). To begin with we

study a system that consists of two separate parts with K
orthogonal states in each. %e will designate local bases in
each part as

I
i &1 and

1j &2 ij =1 2 K. T"e general
state of the system can be written as

(20)

We have the same Hamiltonian; therefore, again

, A; will be equal to the change of g, , m; during
the interaction. But now g, , tr; in the initial state is de-
fined only modulo a. So the measurement of g,
after the interaction will give us the value of
(g,. , jI;)moda:

moda =
t & to+6

HlodQ (16)

We now show that this measurement procedure is the
nondemolition verification that (g, , A;) moda =0. We
will see that the time-translation operator during the mea-
surement, which acts on the initial state of the system and
the measuring device, does not change that initial state:

%e can always find new bases in the separate local
parts such that the state 1P& will have the form (we will
call it canonical)

(21)

More than this, we can choose local bases such that all
n; will be real and non-negative.

%e will prove this statement in matrix language. U'
and U will be unitary transformations that relate the new
and the old bases in local parts of our system:

11&1=2U1I lr&1
1 j&2 g vj's 1~&2

(1 r &1 and 1s &2 are new bases).
Then the statement we wish to prove will be equivalent

to

exp ——f, Hi.s« I A.&=10.&

This is equivalent to

(17)

1 2
Itplj Vjs 1 ss

or in matrix notation {a—=a,5„)
O' I3U =a . (23a)

tO+6—f H;„,dt mod2n
1 g;„&=0 . (18)

A; and q; do not change during the interaction; therefore,
using (4) we get

(19)

and taking into account the initial state of the system and
the measuring device we deduce that Eq. (18) is satisfied.
Therefore our measurement is a nondemolition measure-
ment,

If we start with a state that is a linear combination of
eigenstates of the operator g, , A;, then the measure-
ment will be described by a transformation that is similar
to (9); it is easy to see that it satisfies all other require-
ments of our defmition of measurement.

The matrix 0 can be diagonalized by a similarity
transformation with a unitary matrix U'. The diagonal-
ized matrix will be non-negative and we will call it a:

Now we define

VI ( V~ —1)T U2 V
—1 V~

(25)

(26)

V1TpV2= V 'HVV 'V'=a . --

We have to show that for any matrix P there are uni-
tary matrixes U' and U such that the matrix O' Pv
will be diagonal. Any matrix P can be decomposed into
the product of a Hermitian semipositive matrix H and un-
itary matrix U:

(24)
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Therefore any state
I g) can be brought to the canoni-

cal form (21). Now we will give the measuring procedure
that verifies the state 1$), the canonical form of which is

K

X I
l & i I

l &z (27)
K;

The measurement of the state will include measure-
ments of two nonlocal operators. The first is verification
that A ~+32 ——0 where

(28)

This measurement is a nondemolition verification that
our state has a canonical form in given local bases without
defining the coefficients a;. The next measurement has to
specify a;; in our case, it has to verify that all a; are
equal.

We define unitary local operators that will act in every
local part of the system:

Ui
I

l )i=
I
i+I&» Ui l&&i=

I
1&i

Uz
I

l &2 ll +1&z Uz I
&&z=

I 1&z

It is easy to see that among the states that have canoni-
cal form in our basis only the state 1$) (27) will not
change under the transformation Ui Uz.

system that has M ~ 2 separated parts. %e mill measure
the state

K

K; (35)

Again, the measurement procedure has two stages. The
first is a verification that the state has only terms such as

, I
i )~ and the second stage is a verification that all

these terms have equal coefficients 1/~IF.
For completion of the first stage we have to perform

E —1 measurements of the sum of two local operators.
The operators are

Ai ll )i= —l I l )i,
Al li )l i li ——)l, l =2,3, . . . , M

and the measurements are verifications that

(36)

Ai+Al 0, ——1=2,3, . . . , M . (37)

The second stage is exactly the same as in the case of
the two-part system. We define U and 8 as in (29)
and (31) and our state will be specified by the equation

M

(38)

(30) that is equivalent to

Now we define 8 i and Bz ..

e '=Ui, e =U2 .l82
(31)

Then, taking in account that Bi and Bz commute we
f(BI +Bg)

have U] Uz ——e and therefore Eq. (30) is equivalent
to

(Bi+Bz)mod2m'=0 . (32)

So the second measurement that will complete the veri-
fication of our state is the measurement of the modular
sum of 8, and 8,. 8, and 8, a e He~itian local opera-
tors; therefore we can relate them to physical variables.

In a similar way we can verify the state that has the fol-
lowing canonical form:

X

g I
l. & i I

l. & z& a=i
(33)

Ui
I ln &i=

I
l.+i&i

Uz
I in &z=

I
l.+ i &z, Uz 14 &3=

I
i i &z,

and the rest of the procedure is exactly the same as above
[see (30}, (31},and (32}]. As we will see in the next sec-
tion, states for which the a s are nor of the one magni-
tude cannot be verified by this procedure.

Now we mill generalize this method to the composite

where Ii„ I is any subset of the set of indices [1, . . . , &I.
We start with nondemolition local measurements (it is

enough to perform them in one part only) which verify
that the local state is not Ii, )i, where ti, I = —Ii„I.
After measurement of the sum of A i +Az [see (28)], then,
rather than using (29},we will define

T

g 8 mod2m =0, (39}

and we know how to verify this last proposition.
%e will demonstrate our methods on a simple example

of the measurement of the nonlocal state of the system
that consists of three parts with two orthogonal states in
each part. The state that we are going to verify is

(
I

1 & i I
1 &z I

1 &3+ 12& i12&z12&»
1

2
(40)

and the other will show that the state is of the form

&zl 1&3+~zl2&il . &zl2&3.

(43)

The last stage is a verification that a i ——az.
We will use a measuring device that consists of three

separate parts with two orthogonal states in each part. It
is similar to our system. The local states of the measuring
device shall be designated as

I i), i =1,2; m =1,2,3.
The local interaction between parts of the measuring de-
vice and parts of the system will be

Our measurement procedure wi11 have tmo stages. The
first is a verification that the state has the form (in a
given basis)

14 & =~i
I

1 &i I
1 &2 I

1 )3+lzz12&112&z12&3

and this will be done by two measurements. One will be a
verification that the state has the form

&3+~212&112&z I &3
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1».11&.- I ». I »- .
11) 12)„11) 12)

(44)

The local measurements will be the measurements of
operators A ~:

and if the state has the form (41) but a,~ai then it will
have other terms such as 11)112)111)1,for example,
that do not satisfy Eq. (49).

To verify that (+8 ) mod2m. =0 we will prepare the
measuring device in the initial state:

I ArD & =
4

(11&1 I
1 &211&1+ I

1 & i12»12 &1

I
i) =i

I
i)„. (45) + 12 & i I »11»1+ 12 & 1 I Z&1 I l&1)

U 11) = 12) , U 12) = 11)

or in matrix representation

0 1
U

I 4

The operators 8 are defined by

i8

(47)

Therefore,

Now we will change the local bases in such a way that
8 will be diagonal. The required unitary transformation
1s

l I
—1 1

0 0
8~ +K 0

and we have to measure

mod2m=o . .

In the new basis our state 1$ ) is

(
I

1 &111&211&1+I
1 &112&112&1

+ 12&i I
1 &112&1+12)1 I 2&111&1) (50)

For performing the first measurement of the first stage
we will prepare two parts of the measuring device (MD) in

the state:

I ArD&= (11&i I 1&1+12&i IZ&z) .1

2

Then we perform the local interaction (44). This will not

change our state 1$) (40). After the interaction we will

perform local measurements of A 1 and A 1 We s.ee that

only if the results are A, =l, 2 1——1, or A, =2, A 1
——2

does the state have the form (42). We will repeat the pro-
cedure for parts 1 and 3 and we will verify that the state
has the form (43) also. Therefore it has the form (41).
now we have to verify that ai ——ai.

Our method tells us to define the unitary operator U~
(30):

We will perform the local interaction (44) (in the new lo-
cal bases). We see that state 1$ ) (50) will not be changed
by this interaction:

14'& I
ij'MD & 14' &ArD & (52)

Now we will perform local measurements of 3 . If and
only if the results satisfy the equation

gA ~ mod2=1, (53)

then we will have verified that the state is
I p).

In our example ihe system and the measuring device
may have physical realizations. They may consist of three
separated spin- —,

' particles. The local measurement of
A ~ will in that case be a Stern-Gerlach experiment.
There is no theoretical problem with the realization of the
interaction Hamiltonian related to the local transforma-
tion (44). This is the reason we chose this way for verify-
ing our state rather than using our general inethod [see
(15)].

The measurement of nonlocal states which we have
considered so far all consist of sequences of measurements
of nonlocal operators. These separate nonlocal operator
measurements all consist of a number of couplings of the
measuring apparatus to lacal operators of the measured
system (the operators A~ of Sec. III), and consequently
those nonlocal operators all invariably possess complete
sets of eigenstates which are also eigenstates of all of the
local oper'atol's ('tile A ) 111 qllest1011.

%'e have been unable to imagine, and we suspect that
there do not exist, any measuring procedures for nonlocal
states which satisfy the requirements of relativistic causal-
ity, and which satisfy the definition of state measurement
given in Sec. III, which are not of the general type just
described.

%e shall prove, in this section, that any nonlocal state
of any composite system which is measurable by such
procedures as these (which, as we just said, we believe to
be the only procedures available) must necessarily have
the following property: If the system in question is divid-
ed in any way whatever into two nonempty parts, and
bases of the state spaces of these two separate parts are
chosen so that the state of the composite system (written
in these bases) has the canonical form (21) (which, as we
have shown above, can always be done) then the absolute
values of the nonzero coefficients a; must all be equal.

It should be noted that such states as these (states
which have the property just described) are precisely those
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which were shown in Sec. III to be measurable, and con-

sequently, the results of Sec. III, when combined with

those of the present section, imply that states are measur-

able (by means of such procedures as we have here
described) if and only if they have the property just
described.

Our proof will proceed as follows. We shall first
describe the restrictions on measurable operators which
arise as a consequence of the requirement of causality, and

then we shall show that there exist quantum states that
cannot be specified by specifying the values of any com-
bination of measurable operators.

We shall designate as
l
i ) the eigenstates of the local

operators that we will use in our measuring procedure
[A of the formula (12)]. Then the eigenstates of the
nonlocal operator will be g i li ), where i may
have all possible values. Some of these states will be de-

generate. (If not, what we do amounts to the verification
of a local state. ) We shall start with considering the case
of a two-part system. For example, the measurement pre-
viously described, that which verifies that the system has
the canonical form in a given basis, has degenerate eigen-
states li) lii)2, while other eigenstates li)& l j)i, i&j
have different eigenvalues.

The causality principle gives us the following restric-
tion on the degenerate eigenstates

l
i ) i l j)q of a measur-

able nonlocal operator. If
l ii)i l ji)2, lii)i l ji)2,

I i2 &1 I ji &2 are degenerate then
I i& & i I j2 &i is a»«egen-

erate with the above states. We shall prove it by showing
that if

l
i2), l j2)2 is the eigenstate of the nonlocal opera-

tor with a distinct eigenvalue then we can send informa-
tion from one part of the system to another faster than
light. The proof runs as follows.

We shall prepare the measuring device that will per-
form the nonlocal measurement of the operator at time
r = to. Before the measurement we prepare the state

l ijj) 2

in the second part

I f&2 +I IJI)2++2 1 J2)2~ ~l~t 2+0 (54)

In part one we decide to prepare state
l
i i ) i or state

l
i2 ) ~

at the time t = to —e. In part two we perform a local veri-
fication measurement of state

l f) 2 at the time r =to+@.
If at the time r =to ewe prepare stat—e

l
i i ) i then the

nonlocal measurement will not change the state
l P) 2 and

the result of the last measurement in part two will be posi-
tive with probability 1. But if the initial state of part one
was li )2 then the state of part two after the nonlocal
measurement will be either

I J i )i «
1 i2 )2 with appropri-

ate probabilities, and the probability of a positive result in
the verification experiment of

l P)2 will be less than 1.
Therefore, local actions in part one can change the proba-
bility of results of local measurements in part two that
take place a time 2e later. Since e may be arbitrarily
small, this completes the proof of the statement.

Nondemolition verification that the operator has a
given value is defined as the nondemolition verification
that the state can be any linear combination of degenerate
eigenstates with that eigenvalue. In our case the operator
measurement will tell us that in the basis of the eigen-

states of the local operators our nonlocal state has the
form

(55)

P U1T U2 (56)

and it will be nonsingular again. Our measurement veri-
fies that P has block form. But a matrix in block form
may be nonsingular only if it is block diagonal. So all
that any single measurement can do is to verify that in
some basis P has block-diagonal form.

By mixing the eigenstates of the basis inside the blocks
we can bring the matrix P into the diagonal form (but not
necessarily into the matrix a). We can perform the mea-
surement verifying that it is diagonal in the basis and
clearly this wiH give us no less information than the origi-
nal verification of block-diagonal form. Therefore what
we have to investigate is to ascertain which are the states
that cannot be specified by knowing that they have canon-
ical form in various different bases. We shall prove that
there are such states, and that for each state, its canonical
form has at least two nonzero distinct

l
a;

l
.

We can see that the density matrices in every local part
of the measured system have the same block-diagonal
form as the matrix P. Indeed

P 1 =g j3;tP~, l

i &»&j l,

P &~j X I &I ~Jt l
i &2 2 (J l

(57)

or in matrix representation

p'=W', p'=~'~; (57a)

therefore if P is diagonal then p' and p are also diagonal
and p,j =p,j =

l y; l 5,J.. The set of characteristic values
of any matrix is basis independent and therefore the set

( l y; l I is equivalent to the set I l a; l I. If all the
l a; l

are distinct, therefore there is a one-to-one correspondence

where the matrix elements P;J. are nonzero only if
l
i ) i l j)2 is one of the degenerate eigenstates of the ob-

served operator. The meaning of what we have just prov-
en about degenerate states of the operator is that we can
bring the matrix p;J to the block composed form by ap-
propriate reshuffling of the eigenstates

l
i ), and

l j)i.
Thus all the information about the state

l P) that we can
get from one measurement of such an operator is that the
state has the form (55), wherein the P;J are known to be
zero outside of the given block and their values within
that block are unknown. Our method of state measure-
ment is a verification that the matrix P;~ has the given
block forms in different bases.

For any state, we can verify that it has canonical form
in a given basis: g a; l

i ) i l
i)2. We can assume that all

a; are nonzero. (If some of them are zero our method
simply and automatically ignores the appropriate states

l
i ) i and

l
i )i.) The first stage of the measurement of

the state is the verification that in one basis (the basis of
canonical form) the matrix P is diagonal. It is the matrix
a and it is nonsingular. If we change the local bases by
transformations U' and U then the matrix will be



MEASUREMENT PROCESS IN RELATIVISTIC QUANTUM THEORY

between characteristic values
I
a; I

and the local eigen-
vectors or, in operator language, between the eigenvalues
Ia; I

and eigenstates
I i)i (or I i)z). In this case the

state has canonical form only for one set of basis eigen-
states. We can verify that the state has canonical form in
one basis and this is the maximal information about the
state that we can get by means of nondemohtion experi-
ments.

If some
I a; I

are equal we can mix between appropri-
ate local eigenstates of the basis (I i)„ in one part and

i )z in the second, wherein all
I
i ) correspond to equal

eigenvalues
I ai I ), and then we can verify again that the

state has canonical form in the new basis. By this pro-
cedure we can specify relative phases between appropriate
a; (for all sets of equal

I a; I
). If al!

I a; I
are equal then

we can specify phases of ail a;, we find the value
I a;

I

from the normalization, and consequently we verify the
state. %e demonstrated this procedure explicitly in Sec.
III. However, if there are distinct

I
a; I

we cannot mix
the states corresponding to these eigenvalues

I
a; I, there-

by getting canonical form in the new basis. Therefore we
can verify neither relative phases between these u; nor rel-
ative absolute values and consequently we cannot verify
those states.

The conjecture that there is no other causal way to per-
form nondemolition verification of a nonlocal state, ex-
cept for by a set of nondemolition operator measurements
using only local interactions, gives us the following result.
The only nonlocal measurable states of a system with two
separate parts are the states that have canonical form with
all Ia; I

equal. We can generalize this statement for
composite systems with many parts. We divide any sys-
tem into two subsystems and then the measurable states
have to be of the form

K

~ g Iit &ilk&2
i=i

where 1$;), i =1,2, . . . , k are orthonormal states in
part tz, et=1,2. Ft'om this follows that for any measur-
able state of a composite system the density matrices in
each separate part of the system must be similar to the di-
agonal matrix, where all its nonvanishing values must be
equal.

V. OTHER VARIETIES OF MEASUREMENT

Let us discuss again our nonlocal measurement. %e
verify by a nondemolition experiment some nonlocal
property of the system. In Sec. II that property was that
the nonlocal operator has a certain given value and in Sec.
III that property was that the system is in some given
nonlocal state. The measurement is instantaneous in the
sense that was described in Sec. II. It is nondemolition
only for states that have the property for which we are
looking. If we start with some other state then the mea-
surement will give the answer "yes" or "no" with ap-
propriate probability. If it says "yes" then the final state
has the property, while if it says "no" then the final state
definitely does not have the property.

If we use our definition of measurement then the state

14& =—~i I
1 &i I

1 &2+~21»i I
»»

is unmeasurable. We can prove that the measurability of
1$) contradicts the principle of causality. But there are

other kinds of measurement for which 1$) is measurable
(and it is this which gives us possibility of speaking about
thestate 1(t) )).

First, we can prepare state 1$). We prepare locally the
states

ai I
1 ) i+a212) i and ( 11)2+ 12&2)

1

2

Then the initial state of the system will be

(~i I
1 & i+~212 &1)(11)2+ 12 &t)

1

2

(~i
I » i I

1 &2+~212&i12&»
1

2

(60)

+ «i I
1 & i12&2+~212& i I

1 &2)

Now we verify by the measurement procedure of Sec. II
that the state has canonical form. This will give the
answer "yes" with probability —, and in these cases the fi-
nal states will be 1$). The experiment, of course, may or
may not be successful.

Another variety of measurement is a particular kind of
nondemolition verification that the state is 1$). We
know how to accomplish this for euery nonlocal state
1$). This verification measurement does not satisfy all

the requirements of our definition of state measurement.
It is nondemolition for the state 1$) but this time the fi-
nal state will be 1$) in any case, without dependence on
the initial state.

In this measurement we will use a measuring device
which has a Hilbert space isomorphic to our system and
we will prepare it in a state

I
iI)) that corresponds under

the isomorphism to 1$). Then we will switch on some
local simultaneous interactions that will produce an "ex-
change" between the state of the system and the state of
the measuring device. The interactions that will do that
are interactions between every separable part t of the sys-
tem and the corresponding part of the measuring device.
These will be described by the transformation

I J&~ li&, , (62)

where
I

i ), is a set of orthogonal states in one separate
component t of the measuring device.

We see, indeed, that this transformation leads to ex-
changing of the states

Therefore if we prepare the measuring device in a given
state 1$), then the final state of the system will always be
1$). This measurement procedure brings, instantaneous-

ly, all information about the state of the system (indeed
the state itselfl into the measuring device. Now, albeit the
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Hilbert spaces of the measuring device and the measured
system will be isomorphic, their Hamiltonians may be
very different. Indeed, the free Hamiltonian of the device
may be effectively zero, so that the effect of the exchange
will be to freeze the state of the measured system at the
instant of the exchange in the measuring device. But
there is another sense in which it is difficult to claim that
the measuring process is complete after the exchange. It
is not only that there is no local observer that can im-
mediately know the result of the measurement (that we
have encountered before), but also that we cannot perform
local measurements on the measurement device and there-
by obtain a set of results (in separated places) that, after
being brought together, will give us the answer. %'e need
to bring the parts of the measuring device itself together
in one place. Then the state of the measuring device will
be local and we have assumed that we can measure any lo-
cal state.

This "exchange" measurement has another limitation as
we11. It may be used only as a state measurement. We
cannot produce an "exchange" measurement of an opera-
tor. This is true not only for the usual definition of an
operator measurement but, also, for verification of the
given value of the operator in the case that there are de-
generate eigenstates with this value. We can perform this
verification using the methods described in Sec. II for a
quantum system that is correlated to another system. We
can do this without destroying the correlation. However,
this is something that clearly cannot be accomplished by
an "exchange" measurement without touching the "other"
system. Let us come back, now, to the measurement that
was discussed above.

The usual definition of measurement in quantum
mechanics is different from the one we have outlined here.
We want to inquire whether our measurement procedure
satisfies the requirements of the usual definition of mea-
surement. If it does, then there is a complete set of
orthogonal states that are unaffected by the measurement
procedure. These are the eigenstates of the measured
operator. We can see that the measurement procedure of
Sec. II is, indeed, measurement in the usual sense. It is, in
particular, the measurement of the nonlocal operator

g A;. The eigenstates of that operator will not be
changed (except in overall phase) by the interaction Ham-
iltonian (12) when the initial state of the mechanical de-
vice is given by (11).

So we know how to do a measurement of certain nonlo-
cal operators in the usual sense. All the measurable non-
local operators that were considered in Sec. II have degen-
erate eigenstates. Those measurements do not specify the
state of the system completely. This was done in Sec. III.
But the measurement procedure of Sec. III is not a mea-
surement of an operator. It has no complete set of eigen-
states. So we cannot generalize our earlier statement: We
cannot say that any complete orthogonal set of states that
are measurable in the sense of Sec. III defines a measur-
able operator.

Let us give an example of a nonlocal operator the
measurability of which would violate causality. The
operator will have the following set of nondegenerate
eigenstates:

(
I

1&i
I

1&2+ I2&] I2&2),
1

2

142& (
I 1&]

I
1&z—

I
2&i

I »2»1

2

I
6&= Il&i I2&2

(63)

We wi11 contradict the principle of causality in the fol-
lowing way: (i) preparing state

I
2)2 in part two at time

r « to', (ii) preparing state
I 1)]or

I 2)] at time t =to —e",

(iii) measurement of the operator at time t =to; (iv) local
verification of the state

I
2) q at time t = to+ e.

The probability of the result of the local measurement
(iv) in part two at time to+e ]]]i/l depend on our choice at
time to —e in part one, albeit part one is separated by an
arbitrary distance from part two

Therefore not every nonlocal operator with measurable
eigenstates is itself measurable. Thus the following ques-
tion arises: Does there exist a nonlocal measurable opera-
tor with nondegenerate eigenstates? The answer is yes.
The nonlocal operator that we will take will have the fol-
lowing nondegenerate eigenstates:

I y]) = ( I 1)]
I
1)2+

I 2)] I 2)2),1

( I 1&i I 1&z—12&]12&2»
1

2

I
'It]3 ) ( I

1 ) ] I
2 )2+ I

2 ) ] I
I ) t)

1

2

144& = ( I
1 &i I 2&2 —

I 2&] I
2&2) .1

2

(64)

VI. CONCLUSION

In this work we have presented a method for the mea-
surement of nonlocal states in composite systems that
have N separate parts with E orthogonal states in every
part. The general form of the measurable states is

We will take the local operators A; (28); then
I P]) and

I Pz), as well as
I Ps) and

I P4) will be degenerate eigen-
states of the operator (A]+32)mod2 that we know how
to measure. Next we will perform the appropriate local
unitary transformations (48) and we will measure the
operator (A]+At ) mod2 as it is defined in the new bases.
Now the degenerate eigenstates will be I]I)]) and I]))s) as
well as I/2) and I/4). For the measurement that con-
sists of these two measurements, the states

I P; ) are eigen-
states and they are nondegenerate.

There is no contradiction between the measurability of
this operator and causality. This happens because the
probability of any given result for any local measurement
in all separate parts of the system is the same for all four
eigenstates.
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Some of those states are familiar ones. If E =X =2,
(65) is the Einstein-Podolsky-Rosen (EPR) -Bohm state
that was used later by Bell in his original paper about the
Bell inequality. If N =2 and K~ao, then the state is
similar to the original EPR state. %e proved that at least
for N =2 these are the only measurable nonlocal states,
all of which have the following local property: any local
measurement in any separate part has the same probabili-

ty to produce any given result. In other words the density
matrix in all separate parts is proportional to the unit ma-
trix. This explains why these measurements do not con-

tradict causality. Finally we saw that there are measur-
able nonlocal operators. The eigenstates of those opera-
tors have a form (65).
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