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We consider finite-temperature effects upon theories with extra dimensions compactified via vac-
uum stress-energy (Casimir) effects. For sufficiently high temperature, a static configuration for the
internal space is impossible. At somewhat lower temperatures, there is an instability due to thermal
fluctuations of the radius of the compact dimensions. For both cases, the Universe can evolve to a
de Sitter-type expansion of all dimensions. Stability to late times constrains the initial entropy of the

Universe.

I. INTRODUCTION

The current interest in supersymmetry and string
theory has renewed discussion concerning theories with
extra dimensions. An example is the superstring: Upon
quantization it is found that Lorentz invariance is
preserved (or, assuming Lorentz invariance, negative-
norm states are absent) for ten space-time dimensions. If
we are to take theories with more than four dimensions
seriously, then a mechanism is needed for dynamically
compactifying the extra dimensions so that they presently
form a D-dimensional compact manifold with size of the
order of the Planck length. The most natural setting for
discussing the implications of compactification is the ear-
ly Universe.!

In cosmology, one method used to stabilize the size of
this compact manifold against small amplitude perturba-
tions is to balance a positive, “bare” (4 4+ D)-dimensional
cosmological constant A against the vacuum stress energy
of quantum and classical fields. By requiring that the ef-
fective four-dimensional cosmological constant vanishes
in the ground-state configuration, one finds that the “ra-
dius” by is a function of the bare cosmological constant.
Compactification stabilized due to the vacuum stress ener-
gy of quantum fluctuations? is in analogy to the Casimir
effect familiar in field theory, while compactification due
to classical stress energy can, for example, arise due to the
existence of nontrivial monopole configurations for the
gauge and matter fields in the theory.’> Another approach
to stabilization is to include curvature-squared terms in
the gravitational sector of the theory.* Such terms appear
in the low-energy limit of superstrings.’

For these methods, the ground-state manifold, taken to
be a product space of the form R!x Q3% S?, is semiclas-
sically unstable.® The classically stable ground state is, in
fact, metastable (a “false vacuum”) with nonzero probabil-
ity for decay via quantum tunneling through a potential
barrier. As a result of this barrier penetration to large
values of the radius of the compact manifold, the effective
four-dimensional cosmological constant is no longer zero
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and induces a de Sitter-type expansion in all 3 + D spatial
dimensions.

For compactification stabilized by the Casimir effect,
Frieman and Kolb obtain an approximate form for the
tunneling action: S,~165mp2/A. The decay rate per
unit  4-volume has the semiclassical form
T'/V4~mpexp(—S,). The probability that a given
point will no longer be in the false, compactified state be-
comes large after a time r~mp, ~lexp(41mp?/A). To
avoid conflict with observation, 7 should be longer than
the present age of the Universe, which is possible if
A<0.3mp? From the standpoint of naturalness, this
constraint on A poses no difficulty, not requiring fine-
tuning or implying an anomalous value for the size of the
compact manifold (A=0.3mp? implies for bo=11lp),
and so one might conclude that instabilities in the above
models, though not a desirable feature, are phenomena
one could learn to live with, at least for a few Hubble
ages.

At nonzero temperature, there is an additional contri-
bution to vacuum decay processes from finite-temperature
effects,”® and in general there exists a temperature T
above which the probability for thermally fluctuating over
the potential barrier is greater than quantum tunneling
through it. In this paper we consider the possibility of
classically rolling over the potential barrier due to thermal
fluctuations; we find that there exists a critical tempera-
ture T, for theories which balance the vacuum energy
against a bare cosmological constant, above which there
exists no stable point for compactification—the metasta-
ble ground state disappears; the Universe evolves directly
into a (4 + D)-dimensional space-time with exponential de
Sitter-type expansion in all spatial dimensions. In addi-
tion, for T4 > 7, the fraction of metastable vacuum
P(T) extant at temperature T, given that compactifica-
tion occurs at Teompact < Terig, is small if —InP(T)< 1.
Except for compactification in a very small range of tem-
peratures below Ty, stability of the compactified state
against thermal decays does not impose any serious con-
straints on the initial entropy 3-volume s;™ (i.e.,, Q3) at
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compactification.

Our discussion assumes a product space manifold for
the ground state of the form R'xQ3xSP, where Q° is
R?3, §3, or a 3-hyperboloid as k =0,1, — 1. The metric on
this mamfold is gy =diag( — 1,a%(t)gpmn,b (t)g,w) where
a(t) and b(z) are the scale factors for Q3 and S?, and
&mn»> &yuv are metrics on the maximally symmetric umt 3.
space and D-sphere. The indices M,N run over all values,

the indices m,n=1,2,3 and u,v=5,6,...,4+D. The
Einstein equations are
A —
Ryn=3Rgun — =8un=—87GTyy 1

2

with T,y the stress-energy tensor for classical and quan-
tum fields, including thermal terms, and G is the gravita-
tional “constant” in 4+ D dimensions (the four-
dimensional Newton constant is mp ~2=G /0%, where
QY is the static volume of the internal D-sphere). Con-
sistent with the symmetry of the product-space metric,
the stress-energy tensor has nonzero components
Tyn =diag(p,p3&mn-Pp&uv)s With p, p3, and pp functions
of b(t) and temperature. From Eq. (1), the equations of
motion for the scale factors are

3§+D% Dlz{A 87G[(D +1)p+3p3+Dppl} ,
2)
£+2L§+D%+%
D:—Z{A 87G[—p+Dpp+(1—D)p31} , (3
%( 1)—2—+3';—"+Db“21

=m—2-[A—81TG(~—P+3p3—2pD)] . @
The paper is organized as follows. In Sec. IT we discuss
the finite-temperature equations of motion for the specific
example of a model which compactifies due to quantum
effects. In Sec. III we outline the calculation of thermal
decays for this model. In Sec. IV we discuss our results
and briefly consider extensions to models constructed
from the low-energy limits of string theories.

II. CASIMIR COMPACTIFICATION
AT FINITE TEMPERATURE

Manifolds with nontrivial topology, such as D-spheres,
can have their curvature associated with stress-energy ten-
sors derived from 1-loop quantum fluctuations in matter
fields defined on them. We will assume that these matter
fields are noninteracting, spinless, and in thermal equili-
brium at a temperature 7. The free energy of such a sys-
tem to one-loop order is

BF=tIndet(—O+u?) ,

where B=1/T, O is the Laplacian on the Euclideanized
product-space manifold S!XQ3xS?, and u is a mass pa-
rameter. Since the system is at finite temperature, the

time direction is compactified to a circle of radius
r=pB/2m. By assuming that Q3=S3 (this is chosen for
simplicity; our results are equally valid for a k =0 space),
the (4 + D)-dimensional space is compact and O has
discrete eigenvalues on each n sphere of the manifold.
The free energy becomes’

BF=1 3 3 D,.In[Q2eD* +m(m +2)a~?

r=—ow mn=0

+n(n+D—1)b"24u?],

(5)
where

(m +1)*2n +D —1)(n +D —2)!
(D —1)'n!

Equation (5) is formally infinite and requires regulariza-
tion. The finite part is’

_i - —s—1
BF = 2F(—s f dtt

Dmn

X exp( —tu?)o (47t *B)os(ta ~2)op(th ~2) .

with

(2n +i —1)(n +i —2)!
(i —1)n!

=3 |

n=0

Xexp[—n(n+i—1)X].

In general, the free energy has a complex form; however,
it simplifies in the limits of high and low temperatures.
In these cases, with a >>b (the “flat-space” limit), the o;
take simple forms allowing the evaluation of the integral
in Eq. (6). In the flat-space limit o3~ V'ma3t 32
and for low temperatures, 1/27b>T >1/2ma,
0,~(47tT?)~ /2, The free energy for a single scalar field
reduces (in odd dimensions) to’

F=~Q, |cyb -4——T4

90 @)

where ; is the volume of physical 3-space. Note that the
volume of an n-sphere of radius R is Q,=V,R",
V,=Q2m)"+Y’2/T(n 41/2). The first term in Eq. (7) is
the one-loop zero-temperature quantum (Casimir) correc-
tion whose coefficient ¢y has been computed for various
models by Candelas and Weinberg.! When T is greater
than all scales in the theory (we will always assume
u < T), the system reduces to radiation in 4 + D dimen-
sions. For a single scalar field F then becomes

&D+4)
FP+2/2

D+4

Fa— Qp QTP+ . (8)
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Generalizing to a set of spinless, noninteracting fields in
thermal equilibrium, the free energy can be approximated
by a function of the form!!

Q
1r=-‘,,73[c1 —c,(2mbT) —c;2mbTIP+4], ®)

where the coefficient c; is the ¢y of Candelas and Wein-
berg, while ¢, and c; are thermal terms.'” This result as-
sumes @ =b =0, a >>b. Equation (9) has the correct form
in the high- (T > 1/2mb) and low- (T < 1/27b) tempera-
ture limits and is expected to be qualitatively correct.
Since we will be mainly concerned in the following sec-
tions with the high-temperature limit, we expect the ap-
proximation of the free energy by Eq. (9) to be adequate.
Using Eq. (9), the total entropy S in a comoving (3 + D)-
volume can be written

oF
S=— —
aT ab
Qs 3 D+3
=—l;;[cz(21-rbT) +(D +4)c;(27bT) 1. (10)

The functions p, ps;, pp can be computed using standard
thermodynamic relations (U =F +TS):

py=— 29U
3 30,Qp 3a |, ¢
:Q—ly[_c,+c2(21rT)4+c3(2¢rT)D+4], (11b)
D
___ b 29U
PP="Das0, @ |

1

=ﬂ b4 iCl*}"C:;(Z‘lT]ﬂ)D‘*—“
D

D

(11¢)

At T =0 a static solution for Eqs. (2)—(4) requires the
balancing of the 4 + D cosmological constant against the
one-loop fluctuations:

87Ge (D +4)
D42 2WYRIME TR
b =Yoo (12a)
A=D(Dz-l)(D-l-Z) (12b)
bo(D +4)

Here, by is the static radius of the D-sphere. The effec-
tive four-dimensional cosmological constant has the form

- boP+?
u Ay D=1 [ 1 5P+
=0, et (D+4) b bP+* |” 13
—-———1—— 4 D +4
s [e1+3¢,27T)"+(D +3)e3 27", so that Ag(b =by)=0. For finite temperature, choosing
(11a) k =0 in the external space, the evolution equations for
a(t) and b (2), Egs. (3) and (4), can now be written
]
a ,al dab D(D—1) bo”*? | 4 €3 b
a 5,8 | pl _ 22 Z3 +4
g T2 TPy =Aadb)+ = 5 , (2mbT)+ o, (2T (14a)
b b* .bi _ D—1 DWD—1) ||, o 4b®" | 5" c;
= D—1)—43—==_ - R D +4
p TP 3, 57 T Dra | |20 T D poer [T ppee ¢, (2D (14b)

For T <T_; (see below) the static solution is stable
against small perturbations 6b(¢)—b () +b,. In the limit
b(t)— w0, a(t)— o, Egs. (14a) and (14b) have the de
Sitter-type solutions a,b ~exp(+Ht) with
H?=A/(D +2)D+3). From Eq. (13), as b(t)—> 0,
Agfb)—>D (D —1)by~2/(D +4), ie., Ag{b)—A. There
are two regions of interest: 7T >max[(1/2ma),(1/2mb)]
and (1/27b)> T >(1/2ma). In the high-temperature re-
gion, a power-law solution of the form a(t)~at?/P+%),
b(t)=pPt?’P*+% obtains for t—0. The dependence of
temperature on the scale factors can be found from Egq.
(10):

T____Kx(a3bD)—l/(D+3) , (15)
with
1/(D +3)
— |s—1 _1,(217.)D+2 a’(1)
(D +4) C3 3

When Q3 does not have positive spatial curvature, Q; is
the volume within a casual horizon size. If the internal
dimensions have stabilized then in the low-temperature re-
gion (T < 1/2wb), the Universe is effectively four dimen-
sional since the temperature is now less than the energy
scale for exciting the compactified dimensions (“freeze-
out” of the extra dimensions). Conservation of entropy
then implies the familiar relation T <a ~!(2).

III. CALCULATION OF THERMAL DECAY

How does the stability of the compactification point de-
pend upon temperature? Specifically, how is stability af-
fected by compactification in the high- or low-
temperature regions? To answer this note that the equa-
tion of motion for the scale factor b(z) can be written in
the form of an equation of motion similar to that for a
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scalar field minimally coupled to gravity in four dimen-
sions.!* As dictated by the requirement that there can be
a canonical kinetic term for the scalar field, define
d(b)=mp(b/by)P*[(D —1)/2wD]'%. With ¢o=0(b,)
=mp[(D —1)/27D]"?, we can define ®=¢/¢. In
terms of this new scalar field ®, Eq. (14b) becomes

(D —1 )Amplz
8m(D +2)

(D +4)
(D -2)

Ve, T)=

We have chosen the constant of integration such that
V(®=1,T)=0; this is a local minimum of the 7 =0 po-
tential and in this limit Eq. (17) corresponds to Eq. (10) of
Ref. 6. The temperature dependence of the potential is il-
lustrated in Fig. 1. For ® > ®,,, where ®), > is the lo-
cal maximum of V(®,T), the potential is unbounded
from below. For sufficiently low temperature (T < T, ),
the potential has a local minimum &, while for suffi-
ciently high temperature (T > T, ) the potential is mono-

tonically decreasing for increasing ®. The potential bar-
rier separating the stable compactification point from the
unstable (unbounded) region decreases as T increases.
Note that at T5£0, ®=1 is not the minimum of V(®,T)
(here and in the rest of the paper, mp;=1):
) _ (D—1)A ¢3 Didy —1
V(<I’,T)|¢=1——-2————87T(D+2) o 2wboT)" T7¢o ™ .

Therefore, the true local minimum, @, is greater than one.
Similarly, ®(T+0) is less than P, (7 =0). However,
we have found numerically that for T < T, the relative
difference between the points @ and ®=1 is less than 1,
so that the choice ¥y~ 1 is reasonable and allows a rough
estimate of T, by requiring that at that temperature,
@y~ 1 be an inflection point:

4

D

R

1/(D +4)
D }

.1 e
T 2wbg | ¢4

This relation overestimates 7.5 (found numerically) by
~20% (since ®y>1). The range of temperatures in
which V(®,T) has no (meta)stable compactification point
is T > T, while the region of high temperature is de-
fined by T > Ty =1/2mb. In terms of the scalar field ¢

Ty =2mwby®¥P)~! |

and, in particular, when ®y=®=1, Ty =1/27b,. Since
T, is proportional to Ty, as A—0, T and Ty —0.
Decreasing A shifts the region T > T > Ty downward.
At zero temperature, the requirement that V(®,T) be
stable against semiclassical decay implies that A <0.3.
This gives the values Ty<1.49%X107% and
Torie <2.44% 1072 ( < 1.975 % 10~ 2 numerically).

As noted by Frieman and Kolb, if the gravitational de-
grees of freedom a(t¢) are treated as a classical back-
ground, we must look for barrier penetration solutions
(bubbles) which are “thick walled” due to the unbounded
nature of the potential.'* The bubble interior is approxi-
mately de Sitter, while the exterior is asymptotically flat.

(@2/DID=2)_ 1), p—8/D_

- d. P2 v
P43 -4 —=——— (16)
3T e = de
which, aside from the term ®2/®, is the equation of
motion for a minimally coupled scalar field. The form of
the potential can be read off:

c C
1+—ci(2wboT>D+4 REN|
1

O+ —(2mbo TP+ . 17

€1

In the present case we must consider false vacuum decay
at finite temperature.'” For finite-temperature field
theory, a formal equivalence can be established with Eu-
clidean field theory, the Euclidean time being periodic in
B. Rather than requiring solutions with O(4) symmetry,
O(3)-symmetric solutions periodic in B must be found. At
high temperatures, the time integration in the four-
dimensional action, Sy, is trivial: S,=pS; with S, the
three-dimensional action. For a minimally coupled scalar
field,

Sy= [ d’x[$(VOP+V(®,T)]. (18)

The Euclidean equation of motion satisfied by ® becomes,
at finite temperature,

d’®  2d® dV(®,T)
dr* 4 dr  dd

Solutions to Eq. (19) with boundary conditions ®—0 as
r— oo are finite-temperature bounce solutions which ex-
tremize (minimize) S;. The extremized action gives the
(thermal) decay probability per unit 4-volume:

(19

L ptexpl - S;(@, D],
2

where (again for high temperatures) we have set the pre-
factor equal to B~*, since the relevant energy scale of the
calculation (at the moment of bubble formation) is

T/mP’ =0 )
_______ T/mg,= 19 x 1072
S T/mp, = 19751072
....... T/mpy= 125%1072

\ ~ 465x10°2

0.37 0725 0955

<b/mPl

FIG. 1. The temperature dependence of the potential given in
Eq. (12).
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B~!'=T. Thermal decays, characterized by bounce solu-
tions to Eq. (19), dominate quantum decays (and so dom-
inate the total decay probability) when BS; < S, equality
between the actions holding when T =T,,. Using the
value S4=165/A from Ref. 6, T > T (T < T,q) implies
BS3<165/A (BS;>165/A). Because of the exponential
nature of I'/V, (and the strong power dependence of the
temperature term) thermal decays are dominant in the re-
gion T > T, while for T < T, semiclassical decays are
dominant.

Because of the complexity of the equations, the bounce
solutions and actions were evaluated numerically. A
representative sample of our results are presented in Table
I. To place the metastable minimum near the origin, the
potential is evaluated with respect to ®=®—1. Initially,
=0, so that ® is nonsingular at the origin (the initial ki-
netic energy of ® can be damped by particle production).
For our model, the internal space is a 7-sphere'® and, con-
sistent with semiclassical (low-temperature) constraints,
A <0.3. The massless matter fields which give rise to the
Casimir and thermal terms are assumed to be minimally
coupled so that c¢3/c;=3.81X10~3 which is kept fixed
since both coefficients scale with the number of matter

fields. From Eqgs. (12a) and (12b), A is a function of the
number of matter fields (for ®=~1):

[D(D—1)]AD +2)
8me (D +4)?

With ¢;=8.16X10"* (a single field), A=~6.4Xx10°. In
preparing Table I, we have adjusted the number of matter
fields such that A=0.3, 0.1, 0.01, 0.001. Finally, note
that T, > Ty so that we need only consider the high-
temperature region. For each value of A, there exists a
temperature T at which BS3 vanishes. If ®=&, for
T > T, stabilization is impossible. Though T decreases
as @ increases, this only assures that ®>®;, when
T < Terir-

Compactification at high temperature brings with it a
finite probability for decay. Given the temperature
dependence of the problem, we take the following ap-
proach: The fraction of false vacuum remaining by the
time ¢ is!’

A=

P(t)=exp | — ft;dtl—:;—R e W (t,1) (20)
4

TABLE 1. Decay actions at finite temperature.

A T BS;
1.5 %1072 3.4 x10°
1.7 x1072 2.5 xX10°
0.3mp? 1.9 %1072 1.1 x10°
(Ty=1.5%1072) 1.95 x10~2 5.5 x10?
(S4=5.5%x10% 1.96 X102 4.2 x10?
1.97 x 1072 1.3 x10?

1.975x 102 0
8.6 x1073 1.0 x10*
9.0 x1073 9.4 x10°
0. 1mp? 94 x1073 8.6 x10°
(Ty~8.6x1073) 9.8 x1073 7.5 x10°
(S,=1.65%10%) 1.125x 1073 1.65x10°
1.135x 1073 6.5 X107

1.137x 1073 0
2.7 %1073 1.0 x10°
30 x1073 8.4 x10*
0.01mp> 3.2 x1073 6.7 x10*
(Typ=2.7x10"%) 34 %1073 4.3 x10*
(S4=1.65x10% 3.56 x10~3 1.65x10*
3.60 %1073 49 x10?

3.601x 1073 0
8.6 x10~* 1.0 x10°
0.01mp? 9.0 x107* 9.4 X10°
(Ty=2.7X1073) 1.0 x1073 7.0 xX10°
(S4=1.65x10% 1.124x 1073 1.65% 10°
1.135x 1073 5.60 10*

1.136x 1073 0
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with
4qr t -1 3
V(t,,t)=T [f;ld“R (tz)]

the coordinate volume of a bubble at time ¢, formed at ¢,.
Since Eq. (20) can be rewritten as a function of tempera-
ture, if we assume freeze-out of the extra dimensions
occurs instantaneously at 7 =Ty, the integral can be
evaluated as a sum of separate integrations over regions
(1) T> Ty and (2) T < Ty. However, the contribution to
the integral from region 2 can be dropped due to the ex-
ponential suppression of the decay rate. The fraction of
false vacuum remaining at 7 =0 is (remembering that for
the ground state b ~b,)

In P(T =0)=BI(T =0), (21

where
I(T=0)~— fTT°°'"‘”’°‘ dT,T,~P+4D+91/6
H

 ( Tl —(D+2)XD+3)/6

_ T
— Ty~ P+2D 463

Va
and
p__4m|_6 * cHD+4D+3)/6 Db s4e
3 [(D+3) | (D+27(D+4) '
The constant C is given by C=Ka ™3 P+3_ If we take

5™ to be the initial entropy per 3-volume (volume within

a causal horizon size if k%1 for Q°) at compactification,
then s =(D +4)c;CP+3/(2m)?*+% From Eq. (20), de-
cay at the temperature T of the ground state compactified
at Teompact (the temperature for which ®=®y) is implied
by the condition —InP(7T)> 1. To avoid this decay, we
must require that

C<|2(D+27D +4)
4
4 6/[4(D +4)(D +3)]
x (D;—3) ()~ bg/w+3).

For a given A, we consider the compactification tempera-
ture in the range Tehe> Teompact > Tw- The case
T compact = Terie imposes the strongest constraints on C,
ie, for A=0.001, C<10~* while s5™ <10~%. In gen-
eral, A—0 implies that the upper limit of C take on
smaller values. When Tcopmpace <Terie the constraint
on C can be a&:proximated by C<nexp[(6/
440)BS3(T compact)104”'° where 1~1072. As one expects,

TABLE II. Constraints on C (T compact = Trit)-

A Tcompact C(
0.3 1.975x 102 1.3 102
0.1 1.137x 102 5.2x107?
0.01 3.601x 103 7.8%x10~*
0.001 1.136 1073 1.2x10~*
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the constraint on C becomes rapidly less severe as
T compact— T3 when A=0.3, C<«l1 for
T compact > 1.96X 1072 The results for Teompact = Terit are
summarized in Table II.

IV. CONCLUSION

We end here with some comments concerning our ap-
proximations and results. Though curved-space correc-
tions may serve to enhance the decay rate,'® we have omit-
ted them because their contribution does not significantly
change our results. For V(®,T7 =0) the flat-space ap-
proximation for the solutions is acceptable since!® M > H
where M is the mass parameter in the potential and H is
the de Sitter—Hubble constant. In the present case this
result is expected to hold since for ® large, the finite-
temperature mass parameter M(T)=M. The Casimir
contribution to the free energy in Eq. (9), was computed
for the static limit ¢ =b=0. The time dependence of the
scale factors will introduce corrections to both the poten-
tial and kinetic terms in the action.’® As in Ref. 6 for
T =0, we conclude that such corrections will not alter the
existence of the Ts40 instabilities.

Our analysis leads us to the conclusion that there exists
a range of temperatures for higher-dimensional cosmolo-
gies in which compactification via Casimir effects is un-
stable due to thermal fluctuations. For T > T, there is
no way to avoid this instability: the Universe evolves
directly to a state of de Sitter-type expansion in all
dimensions. For compactification in the region
Trit 2 Tcompact > TH, stability against thermal decays
does not strongly constrain the parameter C except
when  Teompac~Tie (When A=0.3, C<1 for
T compact > 1.96 X 1072). The low values for T, (i.e.,
Tt < 1.975%X 1072 for A=0.3) seem the most serious
objections to hot initial conditions for such theories. Out
of economy one might expect T .ompact ~1 (compactifica-
tion at the Planck scale) since it is the only scale available.
However, this is not a strong objection; serious difficulties
arise when these results are considered in light of theories
which are more physically significant.

As in the case of the semiclassical instabilities found in
Ref. 6, we believe our results have bearing on superstring
theories.”! Though the mass scales for the string tension
mg,, compactification m ompact, and the Planck scale mp
are independent, very general arguments?? based on the
validity of a semiclassical approximation for the string
and the strong coupling of the nonlinear o model on the
world sheet imply that my. ~m qmpact =mp;. Our work
indicates that compactification may not occur if there are
hot initial conditions (A <0.3mp? implies Ty
<107 %mp;). Still, an obvious implication of the mass
scale result for compactification in string theories is that
the massive string modes can no longer be ignored and
consistency would require study of the superstring in non-
trivial background fields.?* To first order in the string
tension, the equations of motion for the background fields
are the same as those obtained from the modified
Chapline-Manton action.?* The bosonic sector of the ac-
tion contains the field strengths Gy and Hypyo. Using
the ansatz of Freund and Rubin,?® the equations of
motion for the scale factors contain, in addition to quan-
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tum and thermal contributions, terms of the form A4 /b
where A is a constant. This model will have thermal in-
stabilities similar to what we have discussed if a cosmo-
logical constant is present. Note that we do not need to
include a cosmological constant to stabilize compactifica-
tion since this can be achieved by balancing monopole and
Casimir terms.2® It is possible to avoid decay of the
ground state in this case when the effects of fermionic
condensates are included.

Curvature squared terms appear at second order in the
string tension in the equations of motion for the back-
ground fields, corresponding to the lowest-order massive
modes. Introducing such corrections will not, in them-
selves, alter our results in the presence of a cosmological
constant and possible vacuum contributions. For higher-
dimensional curvature squared theories of the type con-
sidered by Shafi and Wetterich,?’ the effective four-

dimensional action has a potential consisting of two
terms: a scalar part, which has the same form found in
theories with vacuum compactification, and a curvature-
dependent part. For a particular choice of coefficients,
the second term pulls the de Sitter region out to infinity.
However, the thermal term enters in the potential with the
same power of @ as the curvature part and dominates at
high temperature. For the specific case of the dimension-
ally continued Euler characteristic?® (for which the de Si-
tter region is not at infinity) these considerations imply an
instability, which is expected as well for the corrections
obtained by Callan et al.
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