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Supersymmetry in curved space
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%'e formulate supersymmetric quantum mechanics in a three-dimensional curved space of con-
stant curvature. It is shown that the curvature effect reduces the vacuum energy and supersym-
metry is broken dynamically. In the limit 8~ ao we recover flat-space (unbroken) supersymmetry.

I. INTRODUCTION

Supersymmetry' (SUSY) is a beautiful mathematical
construction and has been studied from a variety of angles
over the past few years. One of the thrust areas of
research has been that of supersymmetry breaking, since
supersymmetry has to be broken at one or another energy
scale if it is to describe a realistic spectrum. Another area
of vigorous activity is supergravity. Supergravity is the
local extension of supersymmetry and such an extension
becomes necessary in order to incorporate the effect of
curvature.

A few years back a further extension of supersymmetry,
namely, supersymmetric quantum mechanics (SSQM)
was introduced by Witten. SSQM serves as an excellent
laboratory for testing ideas pertaining to supersymmetric
field theory. In the present paper we shaH formulate
SSQM in a three-dimensional space of constant curvature
(which is actuaHy three-dimensional Euclidean space F.&

embedded in the four-dimensional Euclidean space E4).
The situation here closely resembles that of field theory
on a sphere. It will be shown that the effect of a nonvan-
ishing curvature reduces the vacuum energy and dynami-
cal supersymmetry breaking takes place. It will also be
shown that in the limit 8~ ao we recover the flat-space
(E3) result. The organization of the paper is as follows:
In Sec. II we describe some essential details of spherical
geometry of our space and give expressions for some of
the operators; in Sec. III we construct the Hamiltonian; in
Sec. IV the energy spectrum is determined and supersym-
metry breaking is discussed; finally Sec. V is devoted to a
discussion. In the Appendix we discuss the relation be-
tween the factorization method and supersymmetry.

x&
——R sinX sin8cos4,

xz ——R sinX sin8 sing,

x3 =R sinX cosP,

x4 ——R cosg,

where the angles vary in the following ranges:

0&X&m, 0&8&m, 0&/&2m .

The line element on the curved three-space is given by

ds =8 [dX +sin X(d8 +sin 8dg )] .

The canonical momenta are given by

l

R sinXsin8 BP

It then follows easily that the Laplacian is given by

g2 h2hi () g h3h, ()+
h, h h BX h, BX 88 h 88

a hth2 a
a((

%e also need the divergence operator and it is given by

V F— (Fxh2h3)+ (Feh3h ) )
1

I 2 3

(Fph)h2)

The three-dimensional curved space on which we shall
consider SSQM is a three-dimensional Euclidean space F&
embedded in the Euclidean four-space E~. The coordi-
nate x;, i =1,2, 3,4 are required to satisfy the following
constraint:

X1 =%2 +X3 +X42 2 2 2 2

where F(X,8,$)=(Fr,Fe,F~) and h ~, h2, hi are given by

A ) =R, A2 =R s1~, A3 —R sly sln6

[Relation (8) follows from Eq. (4).]

III. CONSTRUCTION OF THE HAMILTONIAN

In general any quantum-mechanical system whose
Hamiltonian can be written as

It will be convenient for us to work in angular coordinates
rather than Cartesian ones and to that end we write is called supersymmetric, provided the operators Q and
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Q t, called supercharges, satisfy the following
(anti}commutation relations:

IQ Q]=IQ' Q I =o

[QH]=[Q »]=o.
For the particular problem at hand, we construct the su-
percharges in the following manner:

Q=( —ip+A) gt,

Q =(ip+ A) f
where the function A is called the superpotential and ilr, f
are Grassmann parameters satisfying

=o,
(12)

K V=0. (19)

We note that the Hamiltonian given by (16) operates on
two-component wave functions

a . , a «i+1)
sin X &X &X sin X

Next we write

f+(X,8,$)=F+(X)G+(e,p) . (20)

Now separating the variables and using (6) and (7) one can
write the eigenvalue equations for the "radial" parts
F+(X) as

Now we have to choose a suitable representation of the

P s and we take them to be

+a+ tan X—2R E'+ F+(X)=O,

Q;= —,'(Ci+C7;), i =1,2,3, (13)
where

(21)

01

vZ

0—1

vZ 0

0 0'
C'=~2 o' o

0 Xi
C4=~2 r, o

I' 0
Cq ——~

0 ) 0 0
o' ' ' ~ o o'

where the matrices C; are given by

(14)

F+ (X ) =cscXE+ (X) (24)

a+ ——w2R +wR, (22)

3N

2
(23)

In obtaining Eqs. (21) we made use of the fact that the
second and third terms of the operator (6) are the angular
momentum terms. Our next problem is to solve Eqs. (21).
To do this we perform the following transformation:

0= p+ —A +- —V A+iK V
2

(16)

1 0
0 —1

and Vis given by

V=& (iie~e+Pe~e Pe~ +Px~e Px"e+Pe~x} (17)

and E is a vector, whose explicit form will not be re-

quired, formed by linear combination of the matrices C;.

IV. DETERMINATION OF THE ENERGY SPECTRUM
AND DYNAMICAL SUSY BREAKING

For our purpose we shall choose a superpotential which
in the fiat-space limit becomes the superpotential corre-
sponding to harmonic oscillator. To this end we take

A~ ——wR tang, A~ ——0, A~ ——0,
where w is dimensionless.

Then from (5) and (17) we find

(18)

where Xi,Xi,Xi are 4)&4 representations of Pauli matrices
and

0'=& zgo1, 0 =o'zg&cr2, 0 =oigio'z . (15)

Using (11) and (13) we get, after a straightforward alge-
bra,

and obtain, from (23),

+ +a+ tan X E+(X)=A,+K(X), (25)
d i (i + 1)

dX slii X

where A, + are given by

A+ ——2R E++1 . (26)

Now Eq. (25) has to be solved and first we consider the
(+ } sector. We proceed to solve this equation by the
method of factorization. En this method the equation has
to be resolved into two factors and we write it as

+P +P E+(X)d d
dX dX

=[A,+ —(I+ 1) 2wR (1+1)—(w—R +1)]J+(X),

(27)

P =(wR +1)tanX —(1+1)cotX . (28)

Then the energy eigenvalue can be immediately deter-
mined and following Enfeld we write

E"+ (n +3)w+-—(n +1}
R

(29}

where n =0, 1,2, . . . and it denotes the sum of principal
quantum numbers.

To obtain the spectrum corresponding to the ( —) sec-
tor, we write it as
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dX
I—', K (X)=[A, —(1+1}—2(mR —1)(1+1) m—R ]K (X), (30)

I i =mR tanX —(? + 1)cotX .

In this case the spectrum is given by

tl' 1E" =wn+
2R R

(31)

(32}

In the flat-space limit R~ oo the energy spectra are given
by

E+" (n +3)m——,

EF"=un .

(33)

(34)

E+ ——3m + 1/R ',
E+ =3w,FO

E = —1/R

E =0.
(37)

(38)

From (37} it follows that in flat-space supersymmetry is
unbroken while (38) tells us that the vacuum energy is re-
duced in the presence of curvature and supersymmetry is
dynamically broken.

Now that all is said and done, a crucial question
remains: Are the states of the system described by (30}
and (32) acceptable as physical states'? In other words, are
they normalizable? The answer to this question is in the
affirmative' and since the proof requires some algebra
not connected directly with the contents of this paper, we
present it in the Appendix. Incidentally, this also estab-
lishes a relation between factorization method and super-
symmetry.

We note that (33) and (34) agree with the energy levels of
a supersymmetric harmonic oscillator. Now from (29)
and (32)—(34) we find that

same dynamical symmetry.
A second aspect that has emerged out of this investiga-

tion is the relationship between the factorization method
and supersymmetry. It has been shown' that those
supersymmetric models which are solvable by this method
are related to a host of other SSQM systems in a peculiar
fashion. It appears that the factorization method is par-
ticularly suitable for solving SSQM models without per-
forming much calculation.
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APPENDIX

In this appendix we shall establish the normalizability
of the solutions corresponding to the eigenenergies given
by (29) and (32). However, this requires some considera-
tion about one-dimensional SSQM and below we present
them.

First note that the supercharges can be written as
r

1Q= —. iW o—+,

Q = — +iW cr
1 Gf

t dX

where

0 1 0 0
+ 0 0 ' —

1 0

and W(X) is called the superpotential.
The Hamiltonian is given by

V. DISCUSSION H= —,p + —,
' W (x)+ —,

'
'W( )xo, 3 (A2)

Quantum mechanics in curved space of the type con-
sidered here was first studied by Schrodinger. " It was ob-
served" that spectral lines in the hydrogen atoms were
displaced in the presence of curvature. Here our aim was
to find how supersymmetry reacts to the presence of cur-
vature within the framework of supersymmetric quantum
mechanics, and it has been shown that curvature effects
cause dynamical supersymmetry breaking. The results of
this paper can be summarized as follows: consider the
mappings m, :E4 +S3 l.e., 77i.(xi,xi,x3 x4)~xi 2

+x2 +x3 +x4 R; n2.S3~E3, th——rough the first map-
ping, curvature is introduced and through the second
mapping we come to the usual three-dimensional Euclide-
an space. It may also be shown that the dynamical sym-
metry of the SUSY oscillator on S3 is SU(1,1) and that as
R~ao we recover the flat-space dynamical symmetry
group [viz. , O(2, 1)j of the radial harmonic oscillator. '
Thus the change in the status of SUSY is related to the

where

1 0
0 —1

and it operates on two-component wave functions:

Using (Al) in (A3) one finds

P+(x) =C+exp I W(t)dt

(x)=C exp —J W(t)dt (A4)

The condition for unbroken supersymmetry is given by
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The ground state is thus given by K+(I;X)=C+exp —f P(1;X)dX

(A5) =C (cosX) " +'(sinX)'+' (Al 1)

Notice that the bosonic sector can be written as

1 d d+W +8'
X dx

(A6)

K (I;X)=C exp —f P, (1;X)dX

=C (cosX) (sinX)'+' .

Hence for each value of I, i.e., I =0, 1,2, . . . ,

(A12)

Now observe that both Eqs. (27) and (30) can be identified
with (A7) provided we make the obvious replacements

K~(I;X)-+0 as X~O,m'/2,

K (I;X)—+0 as X +O, n-/2.

(A13)

(A14)

(AS)

[The factor —,
'

appearing in (A7) can clearly by absorbed
in the energy. ]

We now make an interesting observation: for each of
the eigenvalues given by (29) and (32), the right-hand sides
of Eqs. (27) and (30), respectively, vanish identically. This
implies that for each value of I we have a superpotential
and the solutions are the ground-state solutions of super-
symmetric systems corresponding to these superpotentials.
Therefore, to check renormalizability of the solutions, we
have to determine whether or not the ground-state solu-
tions behave properly. To this end, we write

P(I;X)=(mR +1)tanX —(I+1)cotX,

P
&

( I X ) =mR tanX —( I + 1)cotX . (A10)

From (A4) the ground-state solutions corresponding to
(A9) and (A10) are found to be

(We note that here we have taken X~tr/2, since the inter-
val relevant for the potential under consideration is
0&X &n/2. )

Hence all the states corresponding to the spectrum
given by (29) and (32) are normalizable. Finally, we sum-
marize below some important observations regarding fac-
torization method as applied to the present problem.

(i) Equations (27) and (30), which correspond to the fer-
mionic and bosonic sectors of the original three-
dimensional supersymmetric Hamiltonian (16), are not
components of a single one-dimensional supersymmetric
Hamiltonian; in fact, both of them represent bosonic com-
ponents of different one-dimensional supersymmetric
Hamiltonian.

(ii) Each energy level of Eqs. (27) and (30) correspond
to a ground state of a supersymmetric system in one di-
mension. In other words, in one-dimensional SSQM prob-
lems solvable by the factorization method, the ground
state of a system generates excited states of another sys-
tem.
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