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We present the symmetric Hadamard representation for scalar and photon Feynman Green*s
functions. We use these representations to give a simple definition for their associated renormalized
stress tensors. We investigate the connection between the accuracy of the WXB approximation and
the vanishing of the trace anomaly for these fields. %'e show that, although for scalars there is a
direct connection, this is not true for photons, and we discuss the relevance of these results to the ap-
proximation of renormalized stress tensors in static Einstein space-times.

I. INTRODUCTION

In a recent paper, ' we, together with Page, showed how

to derive approximate values for the renormalized elec-

tromagnetic stress tensor in static Einstein space-times
from a knowledge of its conformal transformation law.
Of central importance to this work was the condition to
be satisfied by the curvature of space-time in order that
the photon Feynman Green's function be well approxi-
mated, in sn appropriate sense, by its %KB approxima-
tion. We had in mind the analogous situation of confor-
mally invariant scalar field theories. There, one knows

that the requirements that the Feynman Green's function
have the Hadamard form and that it be symmetric in its
space-time arguments together imply that the covariant
Taylor-series expansion of the regular part of this func-

tion, W(x,x'), contains a conserved, symmetric, second-

rank tensor t', whose trace is the curvature scalar 2U&

(Ref. 2). In this case, a necessary condition for the WKB
approximation to be a good local approximation in a
neighborhood of any point x of the space-time is that

u'(x) should vanish. It is pmsible to restate this condi-
tion as "the trace of the renormalized stress tensor must
vanish, " provided we agree that the renormalized stress
tensor hss a trace proportional to U&. It is generally
agreed that this is so; in fact, the renormalized stress ten-
sor is taken to be proportional to the tensor t'b mentioned
above. However, especially for higher-spin fields, it need
not be the case that the vanishing of the trace of the re-

normalized stress tensor implies that the WKB approxi-
mation is good and vice versa: the trace of the renormal-
ized stress tensor is ambiguous in that it is definition
dependent whereas the condition for the WKB approxi-
IDation to bc exact to a g1vcn oIdcI 1s an unalnbiguous
constraint on the space-time curvature. The problem con-
fronting us in writing Ref. 1 was to find this condition for
the photon Feynman Green*s function. In that paper wc
inferred the condition from a knowledge of the trace
anomaly of the renormalized photon stress tensor, as cal-
culated by point-separation techniques, and threatened to
give a direct analysis of the Feynman Green's function at
a later date. Section III of this paper contains that
analysis. It is presented in a way which follows closely

the corresponding analysis of the scalar Feynman Green's
function —this is reviewed in Sec. II.

This analysis of the photon Feynman Green's function
is one reason for writing this paper. Another is to provide
a much needed simplification in the definition and calcu-
lation of renormalized stress tensors. Our dissatisfaction
with the current status of these objects arose from an in-
vestigation of the literature in an attempt to disentangle
from the vagaries of renormalization statements about
well-defined propagators. Here there are a number of
comments worth making; many have been made before
both by ourselves and others and we repeat them now in
an attempt to set the record straight.

The essential role of a renormalized expectation value
of a stress tensor operator in a given state

~
A)—let us

call it T~' [A]—is that it should provide an absolute
measure of the energy-momentum density of matter that
isin thestate

~
A). Foranygivenstate

~

A) thereisan
ambiguity in the definition of T~' [A] which can be
parametrized by the addition of any symmetric, con-
served, geometrical, second-rank tensor. There are many
such tensors —the ambiguity extends far beyond those ob-
tained from actions quadratic in the curvature. The ambi-
guity of the coefficient of the GR contribution to the vec-
tor trace anomaly is merely the tip of the iceberg. In
practice, this difficulty manifests itself where different
methods of regularization lend themselves, more or less
naturally, to different definitions of what is to constitute
renormalization. Regularization techniques are them-
selves conditioned by the chosen representation of the
Feynman Green's function —there are three serious con-
tenders: a mode-sum representation, the Dc%itt series
representation based on the Schwinger-DC%'itt proper-
time integral, and the Hadamard series representation.

In giving a prescription for renormalization it is impor-
tant that one gives a method that can bc applied to all
space-times. Hence one needs to give a representation of
the Feynman Green's function valid in all space-times. It
is very difficult to say anything about mode sums in any-
thing other than highly symmetric space-times and wc
shall not discuss them further. This leaves two possible
representations and here is the first simplification that can
be made: %'e would argue strongly that the DeWitt series
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representation of the Feynman Green's function should be
abandoned in favor of the Hadamard series representa-
tion. Both representations agree in their description of
the singularity structure of the Feynman Green's function
but the DeWitt series representation has the profound
disadvantage that, in general, it is known not to con-
verge. Its only legitimate use is for massive theories
where it provides an asymptotic solution of the wave
equation, valid when the Compton wavelength of the par-
ticle is much less than the characteristic radius of curva-
ture of the space-time; but here again this information is
easily extracted from the Hadamard series. The interested
reader can find the details in Ref. 6.

If it can be agreed that the DeWitt series representation
be dropped then one also removes the need for dimension-
al and g-function regularization of the stress-tensor opera-
tor. These methods can be applied to the Hadamard rep-
resentation but the singularity structure of the Feynman
Green's function is already made manifest as a function
of the geodesic distance between its two space-time argu-
ments and any further parametrization is unnecessary.

This leaves those methods of renormalization which
make use of the Hadamard series represet}tation of the
Feynman propagator. Most significant among these is the
work of Adler, l.ieberman, and Ng,

' as later corrected and
I

II. SCALAR FIELD THEORY

Here we shall review the essential elements of, and
describe the renormalization of the stress tensor for, a free
scalar field theory in a curved space-time. The theory will
be taken to have action functional

S[P]=—, J d xg'~i/(E) gR —m—2){I}.

This action gives rise to the field equation

(2.1)

g
'~ =(C3—gR —m )/=0,

5$

and the classical stress tensor T' defined by the equation

(2.2)

modified by Wald. What we propose as a definition of
Ta' [A] is essentially a more tidy version of this work-
no disrespect is intended. Our definition is given in Secs.
II and III for scalars and vectors, respectively.

In Sec. IV we shall discuss the consequences of our
analysis for the approximation scheme of Ref. 1. In Sec.
V we conclude with some remarks on how renormalized
stress tensors should and should not be used.

Our space-time conventions follow those of Hawking
and Ellis' and we shall work in natural units
(A=G =c =k =1).

(2.3)

= (1—2$)P"P' +(2$——,
' )g' P.,P"—2(PP" +2'�'«/CIA+ g'(R'« 'Rg'«)P' ——,' m 'g'«P—i—. (2.4)

It will prove convenient to write this tensor as

T'«= [7. '«({I}(x)P(x'))]= lim 7. ' (P(x)P(x')),

(2.5)

is the biscalar form of the VanVleck-Morette determinant.
V(x,x') and IV(x,x') are regular biscalar functions pos-
sessing expansions of the form

where 7. ' = 7. ' {x,x') is a differential operator defined in

any way so as to give the limit (2A), for example,

7 '«= (1—2$)g««V'V«+ (2$——,
' )g'«g, 'V'V'

2(V'V«+—2(g' V, V'

+g(R" ,'Rg'«) —,' —m'g",—— (2.6)

where g««denotes the bivector of parallel transport,
which is defined by the equation o "g« .,——0 together with
the boundary condition that it be equal to the identity ma-
trix when x'=x.

The inhomogeneous wave equation

(H —g'R rn }G(x,x'—)= —5(x,x')

admits the Hadamard solutions

(2.7)

~ g 1 /2

G(x,x') =
2 + V 1n(sr+is)+ W'

8~' 0.+~~
(2.8)

where 2cr(x,x') denotes the square of the geodesic distance
between x and x',

b, —:—g
'~ (x)det(a. ,«)g ' (x')

V(x,x') = g V„(x,x')o",
0

W(x,x') = g W„(x,x')o'",
0

(2.9)

and

(CI —gR —m )V=O (2.10)

~(Z —gR —m') IV= —2V —2~"(V..—Vw-'"S'"..)

—(0—gR —m )6'~ (2.11)

In turn these equations yield differential recursion rela-
tions for the coefficients V„and W„(Ref. 12). These re-
cursion relations completely determine the coefficients V„
(n )0); they also determine the coefficients 8'„(n ) 1)
once Wo(x, x') is given. W ( 0, x}xis undetermined and
corresponds to the freedom to add to G (x,x') solutions to
the homogeneous wave equation.

In the quantum theory the Feynman two-point function
for a unit-norm state

~

A ) is defined by the equation

where again V„(x,x') and IV( ,x}xare regular biscalar
functions. Imposing Eq. (2.7) for x&x' it follows that V
and IV satisfy the equations
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G„(x,x')=i(&
~

T(P(x)P(x'))
~
&), (2.12) (CI —gR —m ) W(x,x')

where T denotes time ordering. By definition Gq(x, x')
must be symmetric in x and x', and satisfy the inhomo-

geneous wave equation (2.7). We shall consider only those
states whose related Feynman two-point functions have

the Hadamard form:

—6V, (x,x') —2V, (x,x') ,.o'+O(cr)

= —6ui(x)+2ui(x). ,cr'+O(o'), (2.19)

where o —=o', ui(x) =[Vi(x,x')], and we have used the
fact that

g1/2
+ V ln(o+i e)+ W„

8~~ a+i p

Vi (x,x ') =u i (x ) ——,
'

u i (x ).,o'+ O(o ),
(2.13)

see Appendix A [and Eq. (2.31)]. Thus, we find that

(2.20)

The symmetry of the Green's function Gz (x,x ') is
equivalent to the symmetry of the regular biscalar
Wz (x,x').

As is clear and well known, the naive expression for the
expectation value of the stress-tensor operator in the state

Unlike the tensor [ r ' Gq(x, x')], the tensor

r b[W„]—:[7' W„(x,x')], (2.1-5)

is clearly well defined, and it is of interest to study its
properties. Later we shall relate it to the renormalized
stress tensor but here our discussion is quite independent
of this.

r'b[W„] is symmetric, but, as we shall now show, it is
not, jn geneia], conserved. Under the infinitesimal coordi-
nate transformation

x'~x'+5x',
the metric and scalar fields transform as

g,b ~g,b
—5x, .b —5xb.„g~g $.,5x' . —

The action (2.1}is invariant under this transformation, so

5S 5S 5gbc 5S 5$, +5x' 5gb, 5x' 5P 5x'

It follows that

(2.16)

T' b ——p"(CI—g'8 —m )(I) . . (2.17}

In turn this implies that

& b[W~]=[g" V', (Cl —gA —m )Wz(x, x')] .

Equation (2.12) gives

(2.18)

(A
~

T'b
~
A) =[7' Gg(x, x')],

is divergent and therefore meaningless. This reflects the
deeper problem that the stress-tensor operator has not
been defined. If

~
8) is another unit-norm state whose

Feynman two-point function has the Hadamard form
then the difference in stress-energy density between the
states

~
A) and

~
8) is well defined and is given by the

equation

(g
~

Tob~g) (g
~

j'b~g)
=—[ r ' (Gq(x, x') —Ga(x, x')) j
= [7. 'b( Wz (x,x') —Wir(x, x') )] .

(2.14)

H .b[ W„]= —2ui' . (2.21)

(2.23)

Clearly this definition is closely related to that of Adler,
Lieberman, and Ngs as modified by Wald; however, we
feel that it has the advantage of being more direct.

The tensor Ta' [A] is obviously conserved; its trace is
given by

Ta', [2]= 2 [2ui (x)+ —,
'
(6g—1)Clio' (x)

—m iud(x)] . (2.24)

For the conformally invariant theory (g= —,'„m2=0) we
obtain the standard trace anomaly

Ta', [A;g= —,,m =0]= ui(x) .
4m

(2.25)

The definition of the renormalized stress tensor given
here satisfies Wald's axioms and so agrees with other def-
initions up to the possible addition of conserved geometri-
cal tensors. Among these, a standard ambiguity lies in the
choice of the implicit length scale making the argument
of the logarithm in Eq. (2.8) dimensionless. In our
prescription this ambiguity corresponds to adding to
Wz(x, x') an arbitrary multiple of V(x,x') (which is a
symmetric, geometrical solution to the homogeneous wave
equation). The resulting additional tensor
r' [V]—=[7' V(x,x')] is a conserved, geometrical tensor
derivable as the metric variation of an action at most
quadratic in the curvature. Of particular interest is the
conformally invariant theory for which it can be shown
that

(2.26)

The trace of P [W„] is readily computed to be

r, [W& j= —6ui(x)+ —,'(6(—l)Oiuq(x) —m iu„(x),

(2.22}

where iud(x) —= [Wz(x,x')].
Elsewhere we have argued that the quantum theory

should properly be formulated in terms of differences
such as in Eq. (2.14). Here, however, we wish to make
contact with standard renormalization theory and obtain
an absolute measure of the stress-energy density of the
state

~
A ). We define the renormalized stress tensor to be
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~ab —it2 de il2C Cedef
edef

5g,b

(2.27)

2Cacdbg +4CQcd&

where 8' is the Bach tensor, which is defined by the

equation

tab 0 (2.36)

Eq. (2.7) will be satisfied to this order if and only if T~'
is conserved and has trace given by Eq. (2.24). In particu-
lar, for the conformally invariant theory, given a sym-
metric tensor t' satisfying the equations

+ —,
'
u,b, (x)o'o' o'+ (2.29)

If the biscalar is symmetric in x and x' then the odd coef-
ficients in this series are determined in terms of the even

ones. The general symmetry constraint on the coefficients
can be written

n
u(c s u u a )=( '} ua(a& af 12 r r+1 n 12 n

r=0
(2.30)

This follows from taking the symmetric nth derivative of
Taylor-series expansion of the equation

U(x,x')=U(x', x} and noting that [o;(..., . , (]=0 for

r p3. The lowest-order coefficients are related by the
equations

1Qa= —2Q a,
3 1

~abc 2 ~(ab;e)+ 4 ~;(abc)

Using these equations to write

W(x,x') =w(x) ——,w.,(x)o'+ —,w,b(x)o'o

1 1

4 [w(ab;c)«) —
6 w;(abt;)(»]

(2.31)

(2.32)

From the definition (2.27), 8'" is symmetric, conserved,
and trace-free. We give useful alternative expressions for
8~ in Appendix B.

It is of interest to discuss H"[Wz] in relation to the

symmetry of the Green's function Gz (x,x'). Since
V(x,x'} and b(x,x') are symmetric' the symmetry of
Gz(x,x') is equivalent to the symmetry of the regular bis-

calar Wq(x, x').
An arbitrary regular biscalar U(x, x') can be expanded

in a covariant Taylor series:

U(x,x') =u(x)+up(x)o'+ Turb(x)(T'&

1
t a=

4m
(2.37)

there exist Hadamard Greens functions satisfying Eq
(2.7) to order o for which the renormalized stress tensor is
t' . It should be stressed that this is a local statement: it
may be that there exist global obstructions to obtaining
this Green's function as the vacuum expectation value of
a time-ordered product of field operators for a Fock vac-
uum state.

We appreciate that many of the equations in this sec-
tion appear elsewhere in the literature. %'e have presented
them in a way which we feel makes most plain the logical
structure of the theory. The key element in our develop-
ment has been the well-defined Hadamard representation
of symmetric Feynman Green's functions. The regular
parts of these functions contain information about the
energy-momentum content of states of massive and mass-
less matter. However, the definition of a renormalized
stress tensor is a matter of convention. Our convention,
contained in Eq. (2.23), has been chosen in such a way as
to be in agreement with those generally accepted, but has
been based as firmly as possible on the physical Green's
functions of the theory in the physical space-time.

III. ELECTROMAGNETISM

(3.1)

where F,b =Ab. ,—A, .b, and is invariant under the gauge
transformation A, ~A, +A., for an arbitrary scalar field
A. The wave equation derived from this action is

Electromagnetism presents the technical complication
of gauge invariance. In terms of the vector potential,
A, (x), the Maxwell action is

S~————,
' 4X g '"I",bI"b,

g cr'a 0'+ (2.33)
C}A, R~ Ab V—,(Ab—' )=0. (3.2)

Gauge invariance implies that this wave operator is singu-
lar. Hence to continue our discussion of Green's func-
tions we follow the standard procedure of adding to the
action (3.1) a gauge-breaking term and introducing a com-
pensating complex ghost field c(x). We choose these ac-
tions to have the form

[ W] —3uig'"+ —,
' (1—2$)w'

+ —,'(2$ ——,
' )Clwg' +JR' w

gm Ta'b Uig' +——,'(1—2$)w-"
+ —,(2g ——,

' )Clwg' +Pt ' w .

(2.34}

S = —, f d xg'~ (A, ") (3.3)

(2 35) and

one can express v [W] and TI(' in terms of w and w'".
This relationship can be inverted to give

Conversely, we may ask, given a regular, symmetric bis-

calar, W(x,x'), when does the Hadamard distribution de-

fined by Eq. (2.8) having W as its regular part satisfy the
inhomogeneous wave equation (2.7) to order cr? The
answer is straightforward: Using W(x,x') we may define
a symmetric second-rank tensor Ta by Eq. (2.35). Then

Soh= —
2 f d xc C}c (3.4)

OAa —R, Ab ——0, (3.5)

This choice of SG.~, corresponding to the covariant
Lorentz gauge A, '=O„has the advantage that the wave
equation derived from the combined action S~+SGB,
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1/2

G,b —— + V,b ln(cr+ie)+ Wab8+ o+ie (3.6)

admits Feynman Green's functions with the Hadamard
form. This means that the vector Feynman Green's func-
tion G,b (x,x ) can be written as

r

%e can write

where, for example,

abed' g abed' & ab g ecd'

(3.13)

(3.14}

where V,b (x,x ) and W,b (x,x } possess expansions simi-
lar to those for the scalar field.

The ghost field c (x) is a complex scalar field satisfying
the minimally coupled wave equation

with

f abed '(g d'g blab' g gbd'pe')

+ (gee@
a gaep e) (3.15)

Clc(x)=0 . (3.7)

G.b" +6;b =O (3.8)

which expresses the gauge invariance of the action. Equa-
tions (3.7) and (3.8) require that G has the Hadamard
form appropriate to a minimally coupled scalar field. In-
serting the Hadamard expansion for these Green's func-
tions into Eq. (3.8}one obtains the equations

We shall denote its Feynman Green's function by
G (x,x').

The theory defined by the total action
S=—Sbr+Soii+ Sob corresPonds to electromagnetism
when the Green's functions G,b and G are related by the
equation

In the quantum theory, following our procedure for
scalar fields, rather than consider the meaningless object
[7. '+d G„,d ] we shall study the well-defined object

gb[W ] [ ~ abed W'

By definition this tensor is trace-free, but, as in the scalar
theory, it is not conserved. Its divergence can be calculat-
ed by repeating the argument of Sec. II. Under the infini-
tesimal coordinate transformation given in that section

Aa —+Ha —5X .aAb —5X Aa. b .

From the invariance of S~ under this transformation it
can be shown that

Tbl'b. b (2 b" ——3"b)[D—Ab —Rb'3, —Vb(A, ")] .
Vb' +Vb' 0 (3.9)

(3.17)

(6 ~ g,b )' +b ~
b + V,b a + Verb

+0(W,b "+W.b )=0, (3.10)

where V and 8' are the biscalars appearing in the Ha-
damard representation of the ghost propagator. Equation
(3.9) is an identity on the geometrical bitensors V,b and
V, while Eq. (3.10) is a constraint on the state-dependent
bitensors 8'~ and 8'.

The classical stress tensors T~', TGS', and T~h' are
defined in the standard way in terms of metric variations
of their associated actions. The expectation values of the
bare quantum operators in the state

~

A ) can be expressed
as coincidence limits of second-order differential opera-
tors acting on Gd, b for TM' and Ton', and on Gd for
Tob' . One can show formally that Eq. (3.8) implies that

0.
Requiring that any procedure for renormalizing these
stress tensors should respect gauge invariance implies that

(A
i
Ton' +Toh'

i
A )„„=0. (3.11)

We shall require that Eq. (3.11) be maintained. Thus we

need to consider only the Maxwell stress tensor, and from
here on the argument is presented so as to parallel that of
Sec. II as closely as possible.

The classical Maxwell stress tensor is given by

ab y acy b l gabFcdF
M — c 4 cd

=(A"'—A"')(A ' —A )

The wave equation for Gd, b implies that

(5b'& Rb') Wd.d—= —6Vibd —2Vibd;. cT'+ ' ' '

while Eqs. (3.8) and (3.9) imply that

Vi,d "———Vi.d +O(cr'~ )

(3.19)

(3.20)

W„,d' ———W„.d —Vi,d o —V, od +O(o ) .ic c 3/2

(3.21)

Furthermore, it can be shown that [see Appendix A and
Eq. (3.32)]

gbb Vi'b (x,x') =ui' (x)+[——,
' ui' .,(x)+ui('bl, (x)]o'

+O(cr) .

Combining these equations it follows that

+;b[Ww]=4ui;b —
2 ui b' +ui'

(3.22)

(3.23)

where u, (x)=[V,(x,x')].
%e can now define a renormalized stress tensor by the

equation

«'[W~] —4ui'+ ~ ui'.g"—uig") .

In turn this implies that

rrab [W ] [(gbdgaa p gad gbb p )

X (5b'0 Rb' V'b V'—) Wd, d—] . (3.18)

(3.12} (3.24)
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This tensor is conserved and has a trace, The first four constraints are

(3.25) ~ab ~(ab) (3.31)

in agreement with the standard point-separation value for
the electromagnetic trace anomaly.

Again there is an ambiguity in our definition corre-

spoildlilg to the freedom to add to %gab (X,X ) ail al'bl-

trary multiple of V,b (x,x'). Using the expansions of Ap-

pendix A and the geometrical identities of Appendix B,
one finds

~b[Vj && gab

where, as before, 8' is the Bach tensor defined by Eq.
(2.27}.

Now we turn to a discussion of H[W„] in relation to
the symmetry of Wq, b Fo. r Gz~ (x,x'} to represent the
expectation value of a time-ordered product of field
operators it must be symmetric. Since V,b (x,x } is sym-
metric' this requires that the regular bivector Wq, b (x,x')
be symmetric.

To give a Taylor-series expansion for a smooth bivector
U~(x, x') one first parallel transports the primed index
back to the point x (Ref. 12). The resulting object
gb U,b (x,x') is a second-rank tensor at x and a scalar at
x'. One can novv write

1

2 ~(ab);c+~[ab]c ~

~abed ~ {ab)cd ~ [ab){c;d)
3

abcde 2 ~(ab}(cd;e}

1+ 4 ~(ab);(cde) +~ [ab]cde .

(3.32)

(3.33)

(3.34)

For convenience, we now drop the subscript A on
Wzab (x,x'), and introduce the following notation for its
Taylor-series coefficients:

Sabc e =+(ab)c. e ~

Qabc o ~ + e l8 [ab]c r ~ s e 4

(3.35)

We shall also need the Taylor-series expansion for the reg-
ular part of the symmetric ghost propagator, viz. ,

8'(x x ') —co ——'co o'+ —'co o'cr"+ (3.36)

Now we can transcribe the equations of the earlier part
of this section into constraints on the Taylor-series coeffi-
cients for gb W,b and W. The wave equation (3.19}re-
quires

gb U,b (x,x')=u, b(x)+u, b, (x)o'
1+ Tuabcg(X)o' O'

1+ 4 uabcgc(x)o' o' o' + ' ' ' and

;C ~C
ubc ~ [aSb]c

C C
Sabc ~ (uSb)c 6Ulab ~

(3.37)

(3.38)

where, by definition,

uab, . . . ,(X)=uab~c. . . ,~(X) .

b;c 1 bc bcd
Sb ac TSb c;a +~a Ocdb + 4 (~b ) a

b c 1 bc b+ 2R, sc b
—Y~ sbc a+2Ulb;a . (3.39)

bl bt I

gb Uab'=gb Ub'a ~gb ga (ga' Ub'c ) i (3.28)

Suppose now that U,b (x,x') is symmetric in the sense
that U,b (x,x') = Ub, (x',x), then we have

We note that Eq. (3.19) imposes further restrictions at the
same order as Eq. (3.39), but Eq. (3.39) is all that we shall

use in the following. Furthermore, Eq. (2.19) for the
minimally coupled scalar ghost field yields the constraints

and hence

Qub +QubcO' + ' ' '

=gb g (ub +ub ~ cr + ) . (3.29)

and

Nu =—6Ul

;b I
~ab' =

4 (I-I~);a+ Y~~a ~;b —Ui;a

(3.40)

(3.41)

Differentiating and taking coincidence limits we obtain a
series of constraints on the expansion coefficients in the
Taylor series. These constraints determine the symmetric
part of the odd coefficients and the antisymmetric part of
the even coefficients. The general symmetry constraint on
the coefficients can be written as

Finally, the gauge condition (3.21) gives the relations

1 1 ~ b
ub

——2. a+ ~Sub

c 1 ;c 1 ;c
'

1 ~ c
Sac b 4 Sac;b + T, ~acb + T~a Scb

(3.42)

n yg

ab(u1a2 - a, ;u„+1. - a„)= ba(u1u2 ~ ~ a„) ~u . . . . . . . =(—1)"u
r=0

(3.30)

1

+~ab —
4 ~;ab —U lab+ Ul tab . (3.43)

W«an express & [lV) in terms of the above Taylor-
series coefficients. Using Eqs. (3.37)—(3.43) we can write

r b[ fp] ——'g c'a"+ 'Sab'c
& ~a'b~c+g ~—a&bk cab 2 (ab);c, 2 ab

C 2;C C

+4Ui —
4 g (CISc —2$cg' —2Cko+ 10Ui 12U&)— (3.44)
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and, correspondingly,

8+T abr tggl )
s c;ab, ' sab;e s (a;b)e, g (asb)c s eab 2 )ab);c

EVE 2$e

+2'' —cu' ——,g' (Ose' —2s,d" —2Uco+4ui, ' —8u, ) . (3.45)

It can be explicitly demonstrated that v [W] satisfies Eq.
(3.23) and that Tit'"[W] is conserved having a trace given
by Eq. (3.25).

In Sec. II we showed how the tensor r'b was contained
in the Taylor-series expansion of the Feynman Green's
function. Here H appears naturally in the Taylor-series
expansion of the "once-traced" field propagator

g, (&
~
T(F"( )F"( '))

~

3) .

We shall discuss this further in the next section.

IV. TRACE ANOMALIES
AND THE %'KB APPROXIMATION

Here we shall discuss the relevance of the analysis of
Secs. III and IV to the approximation scheme of Ref. 1.
We shall be more precise in a moment but it is worthwhile
first to sketch the general ideas: In a general curved
space-time the Hadamard representation separates the
Feynman Green's function into two pieces, its singular
and regular parts. In certain special space-times the
singular part alone is a solution of the Green's function
equation (for our purposes it is sufficient that it be so to
order cr). The condition that this happens can be stated in
a number of different ways depending on the precise cir-
cumstances: viz. , the singular part be a solution, the
WKB approximation be exact, and the Gaussian approxi-
mation' be exact (in all cases to order cr) When .this con-
dition, however stated, is satisfied one might expect that
the renormalized stress tensor derived from that Green's
function would be zero and, correspondingly, that the re-
normalized stress tensor in some state

~

A) would be
given by v »[W„]. This is so for scalar fields but as we
shall describe in detail below it is not necessarily so for
photons.

For scalars the argument runs as follows: We are in-

terested in the condition that

[

It is worth noting that for conformally invariant field
thixiries on space-times conformal to Einstein space-times
V( x, x') =0(o ). It follows that the above argument ap-
plies equally well to the Gaussian approximation of the
Feynman Green's function given by Bekenstein and Park-
er, viz. ,

g1/2
Go,„„(x, x')=

8m o+« (4.3)

gbd (A i
T(F' (x)F 'd (x'))

i
A ) .

In the classical theory we can write

Fab(x }Fcd (x i
}
''g c'f abed'g (4.4)

where f '+" is defined by Eq. (3.14). In the quantum
theory we shall study the regular part of the once-traced
field propagator defined by

P" (x,x') =gb' f ' W e(d,xx) . (4.5)

The Maxwell equations impose constraints on the bivectorP" (x,x') we have—

&'[K=[g',P" ] .'g"lg—d.—P"] (4.6)

For photons it is desirable to phrase the analogous dis-
cussion in terms of physical, gauge-invariant objects. Of
fundamental importance is the field propagator, defined
for a unit-norm state

~
A) as

(A i
T(F' (x)F' (x'))

~

A ) .

For the purposes of our discussion of stress tensors it will
be sufficient to consider the "once-traced" field propaga-
tor

~ g1/2
G„„,(x,x'}=— . + &»(o+ ie)

8 o+i@
and by Eq. (3.23) the Maxwell equations require

(4.1)

(4.7)
be a solution to the inhomogeneous wave equation (2.7) to
order o.. It is clear that this condition is equivalent to the
requirement that W( , x)x=0 be a solution to Eq. (2.19}
and this will be the case if and only if

u)(x) =0 .

%e wish to stress the important point that this is a
geometrical constraint on the space-time curvature and is
not necessarily related to any property of the renormalized
stress tensor. (For example, recall that we could have de-
fined our renormalized stress tensor to include an arbi-
trary multiple of the metric variation of the action having
Lagrangian density R . This additional conserved tensor
has a trace proportional to CIR.)

%e are interested in the conditions under which the
singular part of the field propagator alone is a solution to
the Maxwell equations. Clearly, a necessary condition is
that setting P" (x,x'), the regular part of the once-traced
field propagator, to zero be consistent with the Maxwell
equations. This implies the geometrical constraint on
space-time that

(4ui"——,
'

ui, 'g"+uig");» =o . (4.8)

This equation corresponds to Eq. (4.2) for the scalar
theory. %'ritten in full it requires that the symmetric
second-rank tensor,
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Nb 3
V cg, db+V g~ ~ Cgg~g + ] g~g b 1 gggb ], g gb

12 18

+,440 g'"(13&,~f& ' 'f 1—48RcdR '"+5M '+ 38CIR ), (4.9)

= —,„(5ClR+R')" . (4.10)

The point-separation photon trace anomaly in these
space-times is given by

a 1 c 1
TR a = ( U i c —2" i )=-

4m 192m
GR . (4.11)

It is rather remarkable that the right-hand side of Eq.
(4.10) is the gradient of a scalar, albeit not one proportion-
al to the trace anomaly —in a general space-time this will
not be true.

This disagreement is disturbing in that it suggests that
the renormalized photon stress tensor does not accurately
reflect the structure of the Feynman Green's function.
Not least is that the vanishing of the vector trace anomaly
does not imply and is not implied by the accuracy of the
WKB approximation. It may well be that the difficulty
we experienced in Ref. 1 in successfully approximating
the renormalized photon stress tensor is attributable to
this discrepancy. It is possible that a better approxima-
tion would be obtained by finding those space-times in
which the divergence of the tensor

4v, 'b- —,
'

v, ',g"+v,g"

be divergence-free.
There is an important difference between the scalar

constraint (4.2) and the vector constraint (4.8) in that, in
general, there is no reason why the vector constraint
should be related to the vanishing of its associated trace
anomaly. Even in the important, and relevant, ' special
case of ultrastatic space-times that are conformal to Ein-
stein space-times there is no connection. For these space-
times, using the formulas given in the Appendix of Ref.
1., it can be shown that

(4U ab &

U cgab+U gab)
(4 ab 3

U cgab+U gab) () (5.1)

In Ref. 1 we assumed that this condition, the condition
for the photon propagator to be well approximated by its
%KB approximation, was that

v)~ —2v) =0 . (5.2)

The discrepancy between Eqs. (4.1) and (4.2) may well ac-
count for the difficulty we experienced in Ref. 1 in ex-
tracting accurate approximations for renormalized photon
stress tensors from their conformal transformation law.

In this paper we have been careful to separate state-
ments about properties of two-point functions from state-
ments about renormalization. In the hght of what we
hope is the now transparent local structure of two-point
functions, there are some comments concerning renormal-
ization that we would like to make.

In quantum field theory, the difference between the ex-
pectation values of the stress tensor operator taken in two
distinct states

~
A) and

~
8) whose associated Feynman

Green's functions have the Hadamard form is an a priori
well-defined quantity. In addition, this difference can be
expressed as the difference of the tensors v [Wz] and
H [Ws], which are themselves well-defined quantities.
For conformally invariant scalar fields, these tensors
separately must satisfy the ixluations

I

necessary requirement that W(x,x') be symmetric im-
poses conditions on the coefficients of its Taylor-series ex-
pansion [Eqs. (2.30) and (3.30)]. For scalar fields„ the
condition that, to lowest order, W(x,x') is itself a solution
of the scalar wave equation implies that the scalar U, (x)
must vanish. For electromagnetism, the condition that, to
lowest order, the gauge-invariant part of W(x,x') is itself
a solution of the appropriate vector wave equation implies
that

vanishes rather than finding those space-times in which
its trace vanishes. In Ref. 1 where we did manage to ob-
tain a good approximation both of these conditions were
satisfied. It is certainly the case that the vanishing of the
divergence is a physical condition whereas the vanishing
of the trace is a condition required by a particular renor-
malization ansatz.

b = —2U&'b

For photon fields, the analogous equations are

(5.3)

(5.4)

(5.5)

V. SUMMARY AND CONCLUSION

In this paper we have tried to make plain the local
structure of scalar and vector Feynman Green's functions
which have the Hadamard form. We have not allowed
ourselves the use of sometimes nonexistent integral repre-
sentations such as the De%itt series but have worked with
the Hadamard series representation. The state dependence
of these two-point functions is contained in the bitensor
W(x,x') (we suppress any tensor indices) that forms the
regular part of their Hadamard representations. The

(5.6)

Renormalization theory seeks to give an absolute mea-
sure of energy-momentum to any given state

~
A) —Ta' [&]. Clearly any sensible definition of this

quantity inust be closely related to H"[Wz]. In addition,
if it is to be thought of as a stress tensor then it must be
conserved. The tensors Hb[W&] [Eqs. (5.4) and (5.6)] are
not always conserved —there is no reason why they should
be; at the same time it is easy to construct from them ten-
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sors that are conserved. In Secs. II and III [Eqs. (2.23)
and (3.24)] we gave the following definitions for the re-
normalized stress tensors.

For scalar fields

T]t'[~)=,«'[ ~d ]+»(g")= 1

8m

For electromagnetic fields

(5.7)

«'[ ~d ) —4&i"
8

(5.8)

In the spirit of Wald's axioms these definitions are
equivalent to others in the literature —they can differ at
most by a conserved, local geometrical tensor. %e hope
that they are an improvement in that they and their prop-
erties are easily accessible from known, regular, functions;
they clearly satisfy the necessary, and crucial, relation

Tt("[~l Ta "[&—]= «"[~d)—&'[~a]) .
8m

(5.9)

Now we come to the serious question: given that we
have a renormalized stress tensor, what do we do with it~
Insofar as it assists in the bookkeeping of the energy-
momentum content of different states of matter in given
space-times it may be a valuable asset—the more so if it is
an accessible quantity, and, as we have said, we hope that
this paper helps in this respect. However, we know of no
satisfactory justification for its being used, as it frequently
is, as the source of gravitational energy possessed by
matter in a given state in a given space-time which is to
appear in the semiclassical approximation of the quan-
tized Einstein-matter field equations. It is too optimistic
to imagine that by picking one renormalized stress tensor
from the many possible candidates that one has picked
that one with precisely the right amount of gravitational
energy. The ambiguity extends way beyond the renormal-
ization of terms which appear in the semiclassical effec-
tive action and are at most quadratic in the curvature.
For example, in Eqs. (5.7) and (5.8) we have defined our
renormalized stress tensor to have traces that are in agree-
ment with the usual values for the "trace anomalies. " It
should be noted that there exist equally vahd definitions
of renormalized stress tensors which, for conformally in-
variant field theories, have zero trace. They differ from
our definitions here by conserved, local, geometrical ten-
sors. The details of their construction may be found in
Ref. 6.

It is our opinion that the physical role and meaning of
renormalized stress tensors is to be realized in curved
space-times, exactly as in flat space-times, through equa-
tions such as (5.9). In this case they are unnecessary —the
tensors H [Wd] and r "[Ws) carry the physically relevant
information and moreover, once the states are specified,
these r tensors are essentially free from ambiguity. Fur-
ther discussion of these ideas may be found in Ref. 6. It
may be that one day this view will prevail; for the present
it seems that renormalized stress tensors capture the ima-
gination. That being so we hope that this paper will re-
move from them their largely historical connections with
the mathematical devices of g functions, space-times hav-

ing continuous dimension, etc., and instead highlight their
connection with v tensors which are obtained directly
from the physical Green's functions of the theory
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APPENDIX A

In this appendix we extend (and in one place correct)
the covariant Taylor-series expansions given by Christen-
sen' for the Hadamard coefficients of scalar and vector
theories.

For scalar theories

a 1 a b
& O

=UO —
2 UO;ao + p UOab~

+ 6 ( i v~b;e+—, U0 (.b, l)~'-~'~'+
1

V) =U) —
2 U(.gO' + ' '

where

U0
———,

'
[(g——,

' )R+mi],

UOab 180 ~Pqra~ b 180 ~apbq~ PQ

1 p 1 1 1+ WR.t Rb' »Q OR.b+( 6 4— ~ )R;.b

+—„(g——,
' )RR,b+ ,', m R,b, —

Ui —,~Q R~~R —
72Q R~R 24 (g —

$ )OR-
+ 8 (g——, ) R + —,m (g——,)R+ —,'m4.

For electromagnetism

1 C
0 b =Do b+ ( —TUoab;e+ U0[ab]e)~ + T(U0(at led U0[ab](e;dl )(7 (r—

1 y 3 1+ 6 ( 2 U0(abl(ed;el + 4 UOab;(edel+UO[ab]ede)O O ~ +
I (ab=U(ab+( —

2 U(ab;e+U([ab]e) + '

1 1
Uo b= 2~mb —12~gab ~

C 1 C
UOfab] g ~ [b;u] ~
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cd 1 ;(cd) 1 cd 1 pqc d c pqrd
Uo(abi = 6Rab' + )~ RabR + )g R(a Rb)~ +gab( —

)so Rpqr R

— ' R' ' R~~ 'R—' R'P —'R—R" —'R—" —'OR" )180 p 90 p 72 40 120

cde 3 n (c de) 1 ~ (c gp de) 1 gp pq(c gp d;e) 1 g p(c g de)q
UO[ab] ——

20 Pi ta -b] —
12 P% [a.bpL —

20 Pw [a P~b]
' —

30 ELab .qyLp

+ 60 abp + 20 abp 20 ab p

1 pqr p 1 1

U1ab= —
48 Ra~„zb~ ~ 8 R.pRbp —24R&.b —

24 &~ab

+gab( 720 RpqesR 720 RpqR + 3ss R + ]20 ClR )

c 1 pqr c 1 c pqc"~tab] 240 ~la ~b]pq + 24 ~t].a ~b]p q+»0 ~f +b]q*p

c pq 1 pc 1 p+»0~ pqfa~ 'b]+ 24~ lamb]p+ 24~ tabb];p
1 1 p ;c 1 c 1—

360 R gp~a. b]
—

24 R [aRb]p + 72 RR I'a.b]+ 120 8
1 pqrc rqpc c

5~ A.b~.„R~ —5~ R.b~,,R~—5~ A.bp, qRPq

1 c pq 1 cp;q 1 pc+ 1080 ab p;q~ + 120 ~abpq~ 120 ~ab ~;p

The corresponding DeWitt coefficients a„(x,x') (suppressing any bitensor indices) may be obtained from these expan-
sions by using the identity

0 I c 2 a —c+3

n r+1!—
In deriving the above formulas we have used the following Taylor-series expansions:

I+ ]2 Rab& + 34 Rab;ccr O O +( ass RabRcd+ 360 RapbqRc d + so ab;cd )~ ~ 6r cr
1 p q 1 a b c d

1 1 p q 1 a b c d e( zss RabRcd;e + 360 RapbqRc d;e + 360 Rab;cde )+ ~ ~ + + +
1/2 pq p 1 1CIA = 6R~( ~R~~R b+ ~Rapb R ,0RapRb +—~—~RRab—,30R.ab

1 a b pqr 1 pq+ ~ [:]R.b)~ ~ —( i~ Rpq.aR~ b e+ iso RapbqR~' WR.pRbP'—
1 1 p 1 a b c+ i~ RRab;e+ F30 Rab;p c —3~ R;ab )6r 6T 67 + ' ' '

~

gb gab';c YRabcd6r + 6 Rabcd;e+ + 34 (Rabed;ef +RabpdR eef )+ + +b' 1 d 1 d e p def
+( tso Rabed;efg+ 6o RabpdR ecf;g+ 360 Rabpd;eR fcg)& & & cr + ' ' 'p 7 p d e f

2 d
gb gab'e 3 Rd[a'b]cJ +( 6 Rd[a b]e + 6 RabpdR

1 pq d e 7
aP7d b e +( 3o Rd[a b]ef + 6o RapqdRb 'e;f

+ 20~apqd;e&b f—45~abpd;q~ e f—~Wab~. eZ fpq p q p

4o RabpdRef g) RabpdR e f )0' 0' 0'f+ ' ' '

APPENDIX 8

Here we note a number of useful geometrical identities which have been used in the text and in Appendix A:
edc cdeA' d, Rb ——

2 R d, kb
cde cdef

Cacde Cb 4 gab Ccdef C

bcd;a ~bd;c +bc;d 3

abed abedR Reb,d a ——4(R R,bd), , .

& a-bc= 2~.ab+&ac~b —~acbd~' .
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2c~cd~g +4Cacdb
cd ;cd

+g' ( , &,g,f—&'"'f R,gR—'"+—,'R + —,
'

C3g l .
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