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Hamiltonian quantization of SL(2,Q gauge theory
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A Hamiltonian formulation of the nongravitational part of the unified Yang-Mills and gravita-
tional theory is derived. It is shown that the presence of second-class constraints does not spoil con-

struction of a manifestly relativistic functional integral. A correct construction of a relativistic

functional integral is presented.

I. INTRODUCTION

The problem of constructing quantum gravity which is
at the same time renormalizable, unitary, and causal has
brought to the attention all alternative theories to general
relativity. Recently, a theory which is a simultaneous
generalization of both Einstein and Yang-Mills theories
has been proposed. ' The generalization is based on the
observation that both theories are expressed in terms of
two fundamental objects of differential geometry: connec-
tions and metrics. But, while in the Einsteinian case the
metric is the dynamical field, and the connection is re-
stricted to being a function of the metric by metricity and
torsion-free constraints, in Yang-Mills theory the connec-
tion is the dynamical variable and the metric is constant
(5,b). So, by allowing connections and metrics to become
dynamical variables in both theories, a unified action was
found in a rather simple form. When written in terms of
the component fields the unified action splits into a purely
gravitational part and an internal part.

The gravitational part consists of a term linear in the
curvature, one quadratic in the curvature, and a term
quadratic in the torsion and nonmetric components. The
nongravitational part turns out to be a gauge theory of the

SL(E,C) group proposed earlier by Cahill.
In this paper we discuss the Hamiltonian quantization

of the nongravitational sector of this theory and present a
correct construction of a relativistic functional integral.
The theory we deal with is similar to the massive Yang-
Mills theory, and the appearance of second-class con-
straints does not prevent the construction of a relativistic
functional integral.

of the functional integral.
The Lagrangian density of the theory is given by

M(Gq„G""+8'~„W"")+ B~Bt',

where

G„„=a„a„—a~„+[a„,~„t+[8„,B„j,
W„„=a„B„-a~„+[~„,8„~-[~„,8„~ .

First, one should find the canonical momenta
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As usual the canonical Hamiltonian is given by

By inspecting (I) one concludes that the Lagrangian densi-

ty does not depend on velocities Ao and Bo. Thus,

II. HAMILTONIAN FORMULATION
AND CONSTRUCTION

OF THE FUNCTIONAL INTEGRAL

We shall briefly review the Hamiltonian formulation of
the SL(2,C) theory before proceeding to the construction

Using Eqs. (3) one can explicitly find velocities A '; and

8,' and replacing them in (5) one obtains, for the canoni-
cal Hamiltoman,

+P'(d 8'+&"~P' &"&'8')+ (G—'G "+W'W") 'm'B~' 'm'—8-'8'—-.
4g 2
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Following the Dirac systematic method for the system

with constraints, we find that the only primary con-

straints are given by (4). To calculate the secondary con-

straints one needs to examine the consistency conditions

imposed on primary constraints:

C—:—no(x) = j mo, HT I =0,
dt

D'= —Po(x)= jPO,HrI =0,
t

where the total Hamiltonian is defined by

HT= J' P &+Qo&0+Q 0

The secondary constraints are then

C'=a, ~'. +e"~',A,'+e~P,'B,',
D'=a, P.' e"P,'A—,

' W"~',B—,'+~'B,'.
It should be noted that further consistency conditions do
not lead to any new constraints. They determine u o, but

leave uo as an arbitrary function of time. This further
means that mo is the first-class constraint and hence the
variable Ao can vary arbitrarily with time. In order to see

what kind of constraints we have obtained, one should

work out all Poisson brackets for the constraints (4) and

(9).

in a straightforward way' we will focus our attention in-

stead on the construction of the functional integral.
The first thought is to write the functional integral in

terms of physical variables:

(out
~

S
~

in )

= I dP dq exp i f d x[P*q —h (q,P )]

(12)

where P', q* are the canonical variables and their canoni-
cally conjugate momenta on the physical subspace.

Unfortunately this turns out to be a bad idea because
the physical Hamiltonian h '(q', P*) is a highly nonlinear
function of q' and P'. The usual way is to derive the
functional integral over the entire phase space which
means that using constraints (4) and (9) one rewrites in-
tegral (12) in terms of the original fields.

For a better understanding of this procedure let us first
write explicitly the set of physical variables (P',q'). We
solve all the constraints (4) and (9):

C.'=0, D. =0.

In a straightforward manner one obtains

j C,', nb I =0,
j C,',Pb I =0,
jD„nb I =0,
jD„Pb I =M 5,b,

where

Cg PbcB b+~

(10)

Besides the trivial solutions for n; and P, we can use the
constraints D, =0 to express the variables Bo in terms of
other variables, and to eliminate Bo from the Hamilto-
nian.

To solve the constraints C, =0 we may proceed in the
usual way of decomposing the remaining fields into trans-
verse and longitudinal parts. We find the solution of C,
for ~~ giving C (7p

The next ste~ is to fix a gauge for every first-class con-
straint. For m, =0 it is convenient to use Ao ——0, while
for C„as in the Yang-Mills case, we shall choose
X'=8;A"=0 (A,' =0).

Now we are able to write the set of physical variables
(P', q') as

Since the C' generate the SU(2) gauge transformations
one should expect C' to be a first-class constraint. This is
true only after one constructs Dirac brackets, when all

second-class constraints become strong equalities. Thus
we have found (10) that C,' and m, are the first-class con-
straints while D, and I', are the second-class ones.

To formulate the quantum theory one has to express
the Hamiltonian in terms of physical variables by solving

all of the constraints. Next, we fix a gauge (X'=0) for
every fimt-class constraint. And finally we replace the
Poisson brackets with Dirac brackets. As this can be done

(P',q') =(n', ,P' P' A,B,B ) . (13)

As we have already mentioned one has a system of mass-
less and massive spin-one particles. So the degrees of
freedom which we obtained could have been expected
from the beginning.

» order to write integral (12) in terms of the original
fields one must reintroduce unphysical degrees A ~, ~',~,
and Bo back into (12):

)= J dP dq dA; d,'gB'$(A,')$(.
&@Bo—B0)exp & J & x [P q +n,' A ;'A(P' q* A.'~ ~'~ B')]— (14)
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By changing variables in the 5 functionals n ~C„
A ~g', and Bq~c' one obtains

BX
dA 5(A ) =dA 5(X')«t

BA;

By simple inspection of our constraints and the gauge
conditions one finds that det

I
aX iaA,"I

colltrlbutes a
constant to the functional integral:

=det
I
[x',cb]

I

dn', 5(m,' m'—, )=de', 5(C, )det
87Th

BD,
d805(80 —8 0) =d805(D, )det

BB

(1g)
alld

det
&

——detM
Da

eBob

The integral (14) becomes

(out
I
S

I
in) = f dA dn', dB„'dP,'5(X')det

I
[X',Cb] I

)&5(C.)5(D. )exp l f d'x[~'. A;+P.'B,' m(A—,',8„',~'. ,P,')]

We now exponentiate 5(C, ) as dA oe
' ' and finally ob-

tain

(out
I
S

I
in)

= f exp i f d x(rr,'A,'+P,'8'; —4, )

y dA „'dB„'der,'dP,'5(x')det
I j o',x"

I I
5(D, ) .

(19)

Sta~ing from this expression, the authors of Ref 1 could

not get a manifestly relatlvistlc functional integral so

they claim that the presence of' the s«nd-class con-

straints in the measure through the 5 function prevent us

from constructing a, manifestly relativistic functional in-

tegral. To cure this problem they propo se a m~ification
of the de flnition of the functional integral: namely, modi-

fication in the usual limiting procedure

But in fact this is not true. The presence of second-
class constraints does not spoil manifest relativistic invari-
ance of the functional integral. Their presence only
means that we cannot use directly (blindly) the Faddeev-
Popov method. " We shall show how to obtain a manifest-
ly relativistic functional integral starting from (19). The
integral (19) can obviously be rewritten as

(out
I
S

I
in)

= f exp i f d x(m', A;+P'8; —~,+&'D )

&(dA„'dB„'dm', dP,'5(X')det
I j O' X I I

d&' (20)

Using (6) and (9) and changing variables 80~80 —&'

into (20) one obtains

(outIg Iln}= f exp l f d'x ~.'(&oA —&;Al —&"AP'+&"8«')+Pl(~&' —~ 8o'—+"A&'++'A 8'

xdA„dB„d~'.dP.'d~ 5(X')d.t
I
jO', X"j I

.

Now we can ~ily peeo~ Gaussi» integration over i', P.' and ~'

(2G, .& G..G i+2', . g, P"")+—,'M'8„8 dA„'dB„'5(X')«t
I
jO'» l I

g
(22)

So, we obtain in the exporlelltlal n«hing b« the Lagrang'a
T

(out
I
g

I
in}= f exp i f d x ~(x) dA„d8„5(X )det

I jO» I I

(23)

that the propos~ thm~, when expressed in tge Hamiltonian form, is relativistica11y invariant and

deflmtlon of the functional integral is not needed fhe gravitational part will be discussed else-

%'Bere.
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Note added in proof .Some time after this paper was accepted for pubhcation a work with similar results came to my
attention.
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