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Wave propagation through inhomogeneous, turbulent media is investigated for the case where the
signal and inhomogeneities move relativistically. Although in classical treatments the mean-square
angular deviations grow as the path length, this is found not to be true relativistically. Special atten-
tion is given to the problem of light propagating through a cosmological background of gravitational

waves.

1. INTRODUCTION

In classical treatments of wave propagation through in-
homogeneous, turbulent media, such as those of Chernov!
and Tatarskii,” the mean-square angular deviations of a
signal from its unperturbed path grow as the path length
L. This is just the well-known VN law for rms devia-
tions where N is the number of scatterings suffered by the
propagating wave. As we will show here, however, the
situation is more complicated in the relativistic case.

In Sec. II we present the expression for the angular de-
viation and introduce the autocorrelation function of the
inhomogeneities. Section III explicitly shows the calcula-
tion of the deviations, demonstrates the vanishing of the
“L effect” in the fully relativistic case, and investigates
the leading-order surviving terms. Section IV generalizes
the calculations to arbitrary signal and inhomogeneity ve-
locities, discusses the role of the coherence of the scatter-
ing, and, as an application of the ideas of this paper, cal-
culates the red-shift induced in light traversing a
gravitational-wave background.

II. ANGULAR DEVIATIONS—THEORY

The inhomogeneities of the medium give rise to varia-
tions € in the index of refraction:

n(x,t)=n[1+e(x,t)] . (1)

We will assume | €| <<1 and that the path length the sig-
nal traverses is much greater than the scale of the inho-
mogeneities: L >>A.

|

fOL fOLR (x,x')dx dx'= foL/2 dxc f_b;;c dxrR [xc’xr]+

L—x7/2

L r
= f() dx’ fx,/z

Since the correlation function has the property that
R[x.,x,]=R[|x, |] then Eq. (3) becomes

5 L
(6;*)=2L fo dx,(1—x,/L)R (x,) . (6)
Classically, the integral over the correlation function is

roughly independent of L due to the incoherence of the
scattering; i.e., the scattering in one place is independent

34

0 r
dx.R[x.,x, ]+ f—L dx, f—x,/2

Using Fermat’s principle or the geodesic equation we
find that the angular deviation for a signal originally
propagating along the x axis is

L
0= [, esdx, 2)

where € ;=0d€/9j and j =y or z; by symmetry 6,=0,. In
Sec. IV C we will discuss 6,. In Eq. (2) we have neglected
terms of order € and also end-point terms, which cannot
give rise to a dependence on path length. However, since
we show in Sec. III that the path-length dependence van-
ishes in some cases, end-point terms will be important nu-
merically (see Sec. IV D).
The mean-square angular deviation is

L oL
(9j2)=<f0 fo e,j(x)eyj(x’)dxdx’> . 3)

Now we recognize (€ ;(x)e;(x')) as the autocorrelation
function of the inhomogeneities that, for a medium homo-
geneous on large scales, is dependent only on the absolute
difference of the coordinates:

R, (xx")=(e;(x)e;(x)) =R, (|x—x'|). @

This is equivalent to choosing a stationary, zero mean
probability distribution for € ;.
It is useful to switch to relative coordinates

x,=x —x', x.=(x+x")/2.

By geometric analysis and interchange of integration vari-
ables we may rewrite an integral of the form of Eq. (3) as

L 2L —2x,
L [ o @5 R [xex,]
L+4x /2
dx.R[xcx,] . (5)

r

of or uncorrelated with the scattering elsewhere (see Sec.
IV B). Thus, the mean-square deviations are proportional
to the path length; this is referred to here as the “L ef-
fect.”

As we will prove in the next section, as the velocity v of
the inhomogeneities becomes relativistic, the constant
terms of the integral vanish, leaving only terms inversely
proportional to powers of L, and so the L effect vanishes.
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III. ANGULAR DEVIATIONS—CALCULATION e(x,1)=Rele Oe'k,ﬁ )

A. The L effect

=(ege" ¥ tese ™M) 12

Without loss of generality we take the variations € in
the index of refraction to be harmonic; we would always
construct the true € by an appropriate superposition. In
addition, the inhomogeneities are frequently due to waves,
e.g., a cosmological background of gravitational waves, so
it is convenient as well to write

=Reepcos(k-r—wt) —Imegsin(k-r—wt) . (7)

Writing k-r—wt =kr cos@— kvt and specializing to sig-
nals propagating with the speed of light (¢=1), e.g., light
from distant galaxies, gives k-r—wt =kr(cos@—v). So
Eq. (3) becomes

2
ki

(6=

(cosf—v) ~%sin®O[ Re’e , (cos’a —2 cosa + 1)+ Im?e  sin’a —2 Ree , Ime  sina(cosa — 1 )]> , (8)

where a=kL(cos@—v) and s is the spin of the field responsible for the inhomogeneities (i.e., s=0 denotes a scalar, s=1
denotes a vector, and s=2 denotes a tensor; in our special case of a gravitational-wave background the perturbations to
the index of refraction are tensor: €= h,,). The factors sin°0 and €, arise from the Euler transformation of a wave
propagating in an arbitrary direction to components along the coordinate axes. The notation reflects the “ +  polariza-
tion used in discussing gravitational waves. (We assume a stochastic background so both polarizations enter equally.)

Since Ree, and Ime  differ only by a random-phase factor, we may write

(Re’e, ) =(Im%_), (Ree, Ime,)=0.

9)

Now ky, =k sinf cos¢ and k, =k sinfsing, so averaging over ¢ yields

(6;%) =(Re%e, ) (sin®+*6(cosf—v) (1 —cosa))

1
=1(Re%, ) f—+1 dx(1—x2)!*+5(x —v)~%(1—cosa)

kL (1—v)/2

-2
=+kL (Re%, ) f_ A0y

2
KL(140)7277 2 (1—v9)
=3kL(Re%e )1,

where x =cosf and y = ya=~+kL (x —v).

The problem is thus reduced to determining the depen-
dence of the integral I on the path length L. We can
write I as the sum I = 32__,a,I, where a, is a con-
stant independent of kL and

I ka(l—v)/Z d sin’y
= asnn® y?

n+2
Y

1
3 (11a)

L(1—v)/2

k
=(kL)™"=2 [~ dy y"sin’y . (11b)

kL(14v)/2
We examine I, for n >0. The maximum value the in-
tegrand in (11b) can assume is of order (kL)" so the max-
imum of I, is of order (kL)~'; thus those terms in I cor-
responding to n >0 cannot cause an L effect in (6,%).
That is, these terms do not vary as any positive power of
L.

We are left with only the n =—1 and —2 terms. Ex-
panding the term in large parentheses in Eq. (10) gives,
for the relevant terms J, =kLI,,

- KL(1—0)/2 -
J_;=kL(1—p*)!*s AL (e @YY TSNy (12a)
; a1 e 02 s
1=—41+sw(l1—v*) f_kL“+v)/2dyy sin“y .
(12b)

Since the integrands have no singularities we see that as

_ A
kL~

4 1+s
2
kL2’

(10)

I

v—1 the L effect in J_, vanishes and for s>0 the J_,
term likewise vanishes.

Thus we have proven for s> 0 (in particular, this is the
case for a gravitational-wave background, s=2), and will
prove for s=0 in the next section, that the mean-square
angular deviations are not directly proportional to the
path length (or any positive power of it) as the inhomo-
geneities become highly relativistic. Figure 1 demon-
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FIG. 1. The log;, of the mean-square angular deviations
(6*)/{Re%, ) is plotted vs the log;, of the reduced velocity
U =v/V for the case s=2. The curves are labeled by the re-
duced path length kL.
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strates this clearly in a plot of the deviations versus the
velocity for several different path lengths. (As introduced
in Sec. IV A, V is the signal velocity, currently taken to
equal 1.)

The lack of an L effect for the gravitational-wave case
was first noted by Zipoy® and discussed by Bertotti and
Catenacci;* the general case where v£0 or s5£2 and v=1
does not seem to have been previously investigated.

B. Leading-order terms

Now that we have shown that no L effect survives for
s>0 as v—1, we examine the s=0 case and the leading-
order terms that survive for s>0. For s=0 we are left
with J_; and must see how it depends on L.

We have used up our tricks and must resort to actual
integration to evaluate J_;. We could, of course, have
derived the results of part (a) by explicit integration; doing
this does indeed verify the conclusions made. Now

[ dyy~lsin® = Iy —$ci(2y)
where

ci(x)=— fxw Egts—tdt

is the cosine integral.
Thus, for s=0 the leading order term from J_; gives
(6;)=(Re%e v
X { —In[kL (1—v)]+ci[kL (1—v)]
+In[kL (1+4v)]—ci[kL (1+v)]} (13a)
or
lim (6, =(Re’,, )[C +In(2kL) —ci(2KL)] ,  (13b)

where C=0.577215... is Euler’s constant. Overall (not
just from J_,) as kL gets large

lim lim (6;?) ~(Re’ )In(kL) (s =0),
kL —> o0 v—1

(13¢)

so although there is no L effect, the mean angular devia-
tions do grow logarithmically for s=0.
Straightforward but tedious calculations give

lim (6;%) =3(Re’e,) (s=1), (14a)
m(eﬁ):%(ReleQ (s =2), (14b)
and in general
lim (6,2) = (Rete, a3 (—1r——|' | (s50,
vl < n+s | B
(14¢)

for the leading-order terms (the other terms vanish as kL
gets large). The s=2 case agrees with separate calcula-
tions® on scattering by a gravitational-wave background.

IV. DISCUSSION

A. Generalization of velocities

If we take the signal to propagate at velocity V rather
than the speed of light then the harmonic factor
k-r—wt =kr(cos@—v /V) rather than kr(cos@—v). Thus
we need but substitute U =v/V for v everywhere in our
previous calculation, and be a bit careful about the limits
of the integrals.

For U <1 the problem is identical to that just calculat-
ed and so those results hold. For U>1 the limits on the
integral in Eq. (10) are both negative and so the region of
integration does not include zero. Once again examining
I, we see that the maximum value the integrand can at-
tain is of order (kL)~"~%(kL)"=(kL)~? since y is always
of order kL. Thus (sz) is of order (KL)° or less, i..,
there is no L effect for U> 1 from any of the terms (for
all n). In fact, for v >> ¥ the mean-square angular devia-
tions die off as (v/¥)~2, as can be seen in Fig. 1.

Note that the vanishing of the L effect is not a relativ-
istic effect per se. It does not depend on v or ¥V—1, but
rather v—V, so it is a matter of relative velocities rather
than relativistic ones. We discuss this further in the next
section.

B. Coherence

The results of Secs. IIIA and IV A can be explained
physically by examining the correlation between the signal
and the medium motion, i.e., the coherence of what the
signal experiences while propagating through the inhomo-
geneities. The characteristics discussed in the following
paragraphs are exhibited in Fig. 2 where we plot the
correlation function versus separation for various veloci-
ties.

For U << the signal effectively sees a frozen field of
variations in the index of refraction and it random walks
through them. The correlation function is appreciably
different from zero only for small separations, and there it
is always positive, so one sees from Eq. (6) or the usual
theory of random walks that the mean-square angular de-
viations grow as the path length.

CORRELATION FUNCTION
(@)

SEPARATION

FIG. 2. The correlation function of the inhomogeneities,
st(y)/Rej(O), is plotted vs reduced separation, y =kx, for

s=2. The curves are labeled by the reduced velocity U.
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For U =1 the signal almost “rides” the inhomogeneity
waves and so alternating coherence and anticoherence
occurs in the scattering; thus there is no secular increase
in the deviations. An analogy exists in interference phe-
nomena, where the superposition of phasors in alternately
constructive and destructive interference with the first re-
sults in an intensity that does not grow with the number
of superpositions.

When U >>1, so many variations affect the signal in a
given path interval that their effects are blurred out to
give an averaged homogeneous medium and so again there
is no increase in the angular deviations with path length.

C. Calculation of induced red-shift

As a demonstration of and a check on the methods used
here, we calculate the mean and mean-square red-shift in-
duced in a light ray propagating through a gravitational-
wave background, neglecting cosmological expansion and
curvature effects.

For weak gravitational waves €= %hn, where
hyy=8uv—"nuy is the deviation of the metric from the
Minkowski metric. From either Fermat’s principle or the
geodesic equation for the photon four-momentum we find
the red-shift

) L
Z='F=9,=— fO e,,dx

L
=—3 [, hexsdx (15)

where
hy =sin’0[Re h  cos(k-r—wt) —Imh  sin(k-T—wt)]

and E is the photon energy.

Our cosmological background is assumed stochastic;
the gravitational waves are propagating in all directions
with all polarizations and phases so

(Reh, )=(Imh _)=0.
Thus
(z)=0, (16)

as expected, since the light gets red-shifted climbing out
of a potential well by the same amount that it was blue-
shifted going in.

Now

L L

<22)=i—< fo w1 (1, 1)dx fo hxx,,(r’,t’)dx’> . (17a)

Calculating the integrals and averages reveals
(z2)=3(Re*h.) . (17b)

It is convenient to express this in terms of the energy den-
sity of the gravitational waves (G =c=1):

1
To= 327 % (hijo) (18)

where i,j run over Xx, y, and z and ,0 is the same as , .
A tedious calculation involving the properties of 4,
gives

Too=7vReh, ) , (19)
where v=w /27 is the frequency of the wave. Thus
(22)=—4—v_2T00 , (20)
3r

which agrees exactly with the expression of Burke,® ob-
tained using a Killing-vector—group-theory approach,
thus providing an independent test of our method.

D. End-point terms

As mentioned in Sec. II, the expression for the angular
deviations, Eq. (2), is not wholly correct. Now that we
have seen that the terms proportional to path length van-
ish as U— 1, we must insert the end-point terms in Eq. (2)
to obtain the full result. The red-shift expression, Eq.
(15), is not affected.

For general spin fields, we can write the index of refrac-
tion as
dx”! dx*

n(x,t)=n

1+ma1...as ar ar

s0, to first order in the deviations,

_ dx’
n=n 1+m1...“+sm,...1j7

b

where 1---1 contains s—1 ones and j=2,3
[(#,x,y,2)=(0,1,2,3)]. By Eq. (1) this defines €.
The full expression for the angular deviations is

L
L
61=— dE +f ejdx
; o €
48
dt
0
L
=—smy...; |6+ [ mi o dx 1)

Note that scalar (s=0) fields have no end-point contribu-
tions.

In the mean-square angular deviations the cross terms
vanish, giving

(6;)=2s*(m,;... ;/0))
L L
+<f0 ml...“,jdx fO ml...“_jdx'> . (22)

The second (path) term is what we have calculated in the
preceding sections. Evaluating the first (end-point) term’s
autocorrelation function, one finds it equal to one-half of
Eq. (14c). Thus,

(ejz)to;m: <6j2)path+<9j2)end point
=(6;") pan+5%0;* ) path V=1 hL — o) - (23)

For U > 1 we see the end-point term provides the dom-
inant contribution to the angular deviations (for s5£0).
Note that in Fig. 1 the end-point contribution is not in-
cluded, to aid in discerning the limiting behaviors of
<02>path'
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V. CONCLUSIONS

We have investigated the propagation of a signal
through an inhomogeneous, turbulent medium and found
that the classical behavior, where the mean-square angular
deviations grow linearly with path length L, does not al-
ways hold. It is obeyed only when the velocity of the in-
homogeneities v is much less than the signal velocity V.
When the variations in the index of refraction move at
speeds comparable to or greater than the signal (v/V > 1),
there is no L effect.

As v—V the proportionality of the angular deviations
to the path length vanishes as [1—v2/V?2]'+5, where s is
the spin of the field responsible for the inhomogeneities.
In particular, for the problem of light propagating
through a cosmological background of gravitational
waves we found

lim (6%) ~ (Re%e., ) —2’7—(1—u2)3kL

+0((1—v?)n(kL))+8 (24)
and
(z2)=3(Re?*h,) (25a)
=4y, (25b)
3

for the mean-square angular deviation (6%)=(6,%)
+ (6,%) and the mean-square red-shift. For v >>V the
mean-square deviations die off as (v/V) 2

Note that the quantities calculated in this paper were
monochromatic, i.e., assuming inhomogeneities of a single
frequency w. If the inhomogeneities at different frequen-
cies are statistically independent then we simply replace 6*
by 6%®) and (Re%e, (®)) by 2072S,(w), where S,(o) is
the power spectral density, to find

(0= [ dw t*w) .

A similar argument holds for a range of velocities v.

Finally, the use of correlation functions and the concept
of the coherence of the scattering provide valuable in-
sights into the behavior of the deviations in various re-
gimes.
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