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We consider the Chem-Simons five-form C5(CS) for the five-dimensional anti —de Sitter su-

peralgebra SU(2,2
~

1), whose exterior derivative is equal to dqscR R R" where R" are the full

group curvatures and dzsc are the invariant d symbols of SU(2,2
~

1). Under the simple local five-

dimensional supersymmetry transformations, C5(CS) is not invariant. Its relation to the invariant

action of simple five-dimensional supergravity in the group-manifold formulation is given.

Cs ——tr(F A —, FA + —,'0 A —) (3)

with F=dA+AA and A being the Yang-Mills gauge
connection.

Under a transformation A ~2 +53, the corresponding
variation of the integrated CS term is the integral of 5A
times a covariant expression, which is proportional to the
covariant anomaly in one dimension lower, namely, in
d =2n. In our example we have

5 f C = f tr(5A3FF)= f 3d.„F'F'5a', (4)

where the four-form FF is indeed proportional to the co-
variant anomaly in four dimensions. i

On the other hand, if one performs a gauge transforma-
tion A~A+5A, with 5A =dA+[A, A], where A is the
gauge parameter, the variation of the CS term is locally
closed and yields the consistent anomaly in d =2n dimen-
sions. Using again our explicit example, we have

5(gauge)C5 ——tr[dAd(A dA+ —,AHA)]

=d tr[ Ad(A dA + —,
' AHA)],

where d (A dA + —,
' AHA) is the consistent anomaly for a

Gravitational Chem-Simons (CS) terms play an impor-
tant role in supergravity, ' but at present, the existence of a
supersymmetric extension of them is still an open ques-
tion. It is known that CS terms in odd dimensions,
d =2n + 1, can be obtained from invariant polynomials P
in one dimension higher, d =2n +2, constructed from the
curvature two-forms F =F'A,„where A,, are the genera-
tors of some Lie group.

For example in d =6, one can start from

P =trFFF =d~F'F F',
where d, t is the completely symmetric three-index in-
variant tensor of the Lie algebra considered. It is well
known that d, t is nonzero only for SU(X) with N & 3.
Since dP =0, because of the Bianchi identities DF =0,
one has locally

P=dCg .

The five-form C5 is then the CS form, and is in this case
given by

system of chiral fermions coupled to Yang-Mills field in
four-dimensions.

Because of the closure of 5(gauge)C5, the integrated CS
term in odd dimensions is a gauge-invariant expression in
a trivial space-time with fields falling off sufficiently fast
at infinity, despite the explicit appearance of the bare con-
nections A. Exploiting this latter property, CS forms
have been used to build gauge-invariant supergravity ac-
tions in odd dimensions. In this paper we extend these
ideas to superalgebras, instead of ordinary algebras.

It was shown in Ref. 4 that the action of d =3 simple
conformal supergravity can be written as

I3 = Pygmy CO + 6 ggCGt) 6) N (6)

where R" and to" are the curvature two-forms and con-
nection one-forms of the superalgebra Osp(1~4), yztt its
Killing metric, and f„ttc y„DfDttz ——its structure con-
stants. This is the CS form Ii (CS) belonging to Osp(1~4),
because dI& ——f yqttR R".

This example suggests further extensions. For instance,
in 1 =6 we can start from the six-form

P=dattcRcR R" i

where dietic are the d-symbols and R" the curvatures of
the superalgebra SU(2,2~ 1). We are interested in SU(2,2~ 1)
because it is the superalgebra of simple anti —de Sitter su-
pergravity in five dimensions. ' Its maximal bosonic sub-
group is SU(2,2)(N U(1), where SU(2,2) is locally isomorph-
ic to the anti —de Sitter group SO(4,2) in five dimensions.
Since dP=0, because of the Bianchi identities, locally
I'=dC5 with

C5= dames Z co +e~acDC 8 D C 8

E D C 8 A
+f~ttcDEto to to to

where u are the one-form connections and ezzcD and
fzttcDE are suitable combinations of the d-symbols and
the structure constants of SU(2,2~1). The expression given
by (8) is the CS five-form belonging to the superalgebra
SU(2,2~1) and since its integral is gauge invariant, it can
be used as an action of a theory in five dimensions.

In this paper we will examine the possibility that (8) be
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invariant under the transformations of five-dimensional
simple supergravity, in which case it could be added to
the action of this theory. As we shall discuss, the
transformation rules of the fields of this supergravity
model (vielbein, gravitino, and photon) are the sum of
gauge transformations and curvature terms. We shall use
second-order formalism with a dependent spin connection.

The study of the possibility that the CS form be super-
symmetric is quite interesting for three reasons: (i) Its
variation is simply the product of two curvatures and a
varied connection, and only the nongauge part of the
varied connection contributes, as we shall see; (ii) only the
spin connection and gravitino have nonvanishing such
variations, and these extra variations are themselves pro-
portional to curvatures; (iii) the curvatures are not all in-
dependent, but R(P) is linearly related to R(8), see
below. Thus„all one has to do is to consider the various
products of three curvatures in the variation of C& and
determine whether their coefficients vanish. The question
of invariance of C& reduces thus to a purely algebraic
problem.

A similar analysis has been performed in Ref. 7 but us-

ing the Noether method. These authors constructed an
action invariant under local five-dimensional Poincare su-

pergravity, at the two lowest orders in the gravitational
coupling constant. Using our geometrical approach, we
find that same structure, plus other terms that complete
the CS five-form of SU(2,2~1}. If it would have turned
out that this purely geometrical construction yielded a su-
persymmetric extension of the bosonic CS terms, it would
have been useful for the analogous ten-dimensional prob-
lem. '

We now turn to the CS form (8) and investigate its in-
variance properties under supersymmetry transforma-
tions. We will directly analyze its variation, namely,

5 f C = f 3d„R R 5a)" .

If Tz are the generators of the superalgebra SU(2,2~ 1), the
d symbols are defined as

I I „I b j =Zri, b with g,b
——(+,—,—,—,—) (12)

and X,b ——(i/4)[I „Ib J. The g are complex numbers
such that for any complex spinor }(,

4 0
~ T-=~ (13)

[In these formulas the bar is given by A, =A I o with Her-
mitian I 0, see (12).]

From the definition (10), we find that the only nonvan-
ishing d symbols are

dNIg g =str( Tee I Tee»Tee j ) = —
8

dg, ab =Str( Tg, I Ta, Tb j ) = 2 'f/ab

1

de»»abed Str{Tee j Tab»Tcd j ) i (9ac 9bd gad9bc}»

dabcde =Str(Ta [Tbc»ee j ) =&abcde

deap=s«(Ts [Ta Tp]}= '(kakp——Ope»—

d, p ——str(T, [T,Tp))= —,'(g l, gp—gpI,g —),
d b p=str(T b[T,Tp])= (g X—obgp gpX bga) ~

(14)

R'=d V' —a)' Vb ——it'I'P,
2

R ab drab ~ac b+ ( VaVb
& qXabit )

(16)

p=dy+ ' ~"X.,y+ 'V'r. y '8—q——
2 ' 2 ' 4

We associate to each generator Tz a connection one-
form co"=( V,co',8,$ } and a curvature two-form
R"=(R',R',R~,p ) where

R =dc' —
2 f scco Qi

f"sc are the structure constants of SU(2,2 1}, which in
our conventions are defined by [T„,Tpj= iTcfc„p.
Explicitly the curvatures are given by

dgpc =str(Tg j Ts, Tc]) . (10)
R =d8 i PP . —

The symbol [ ] is a shorthand notation for [T„,Ts ] if T„
and Tp are both fermionic and for I T„,Ts j if T„and/or
Ts are bosonic. The d„sc are an invariant tensor of
SU(2,2~1) and by construction are completely supersym-
metric, in the sense that dgsc ——( —1) dsgc
=( —1) dzcs, where A is the grading (A =0 for a bo-
sonic generator and A = 1 for a fermionic one).

In order to perform the explicit computations for the d
symbols, we choose for Tz the representation

T~=[T. T.»Ta T j

&ab
Tgb 0 0

0

where a =0, . . . , 4; a = 1, . . . , 4 and I, are the Dirac
matrices in five dimensions, satisfying

Except for the terms in parentheses, these curvatures are
covariant under the following rescalings:

ab ab Va ~ Va

8~e8, p~v eg,
Z'b Z' eZ'

R ~eR, p~v ep .

Using these connections and curvatures, we can con-
struct the CS term of SU(2,2~1). It is defined by

P=d„scR R R"= d)C( C)S

since dI' =0, as one can explicitly check with the defini-
tions (14) and (16}.

Under an arbitrary variation ~ ~~ +6~, the curva-
tures transform into covariant derivatives of the varied
connections

5R =D(5' )=d5~ f ac~ 5~—
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Therefore from (18), it follows that

5P=3dggcR R 5R =d [5C (CS)] (20)
5(gauge)~" =de" f—"~c~ce', (25)

and using (19) and the Bianchi identities, after an integra-
tion by parts, we find

5 f Cs(CS)= f 3d„acRcR~5~" . (21)

5 V'= '(—r r—'q yr'—~),
2

We are interested in the invariance of C5(CS) under the
transformation laws of five-dimensional simple supergrav-
ity. In the second-order formalism, they are, in the con-
ventions of Ref. 6,

gg =~ah g ~abcdfF (26)

where E" are the gauge parameters; (2) an extra part
5(extra)co". More precisely, looking at (22), we note that
the vielbein and photon transformation laws (22a) and
(22b) are pure gauge supersymmetry transformations,
while the gravitino law (22c) contains, besides a pure
gauge term, an extra part, proportional to the curvature

Ep Q 0

Since the choice of the spin connection as a function of
the other independent fields is essentially arbitrary, we
can define a new spin connection ~,b as

5B=i (@ fe)—,
0

5$= d+ co' X,—b e+ —I,V'e — BE—

(22b)
In this way, we can absorb some of the F-dependent terms
of (22c} into the pure gauge part, and simplify the extra
piece. Using (26) we have

—,
' I'I', I, V ——e,~ggF' X V~ e . 5$= d+ cu' X—,b b+ —I'V, e— Be+—,

' I"eF,—bV

Note that these transformation laws preserve the scaling
properties in (17), except for the two terms within the
second set of large parentheses, if we define that e has
scale 1

In (22c) the one-form co
' =c3' ( V, g) is the usual super-

covariani spin connection whose components are given by

co~b ——[—V, "(B(„V„}b}] (a+ —b)
0

1+V 'Vb (d~pV }')V.p+ &pI'(. 4b}+—P.I;A—
2

(23)

while F„„is the supercovariant photon curl, defined by

=Fp 8x~ Q8x

= (d„B, i P„P„)dx"—R dx" . (24)

(In this and in the following formulas, the square brackets
on indices mean antisymmetrization with strength one. )

The transformations (22) consist of two parts: (1} a
I

=5(gauge)it +5(extra)g,

R '+ „e' ~Fb, Vg —
Vg =0 . (28)

We can now use this equation to determine the variation
of co'b induced by (22a), (22b), and (27). In fact (28) can
be viewed as a constraint on curvatures that must be
preserved by supersymmetry. This implies

5R'+ ,' P"' 5F„V,V~+-,' e""~F„5V„V~=—0. (29)

Since 5R'=5(gauge)R'+5(extra)R', using the definition
(16), we find

where now 5(extra)1(=-,' I"eF,b V . This term cannot be
included in the gauge part because of its different I-
matrix structure. The choice of (26) as spin connection is
also suggested by the group manifold approach, where
this same expression of ro,b is found by solving the torsion
equation of five-dimensional simple supergravity,
ly,

0

5(gauge)R '= (FI'p —P I'&)—,
2 (30a)

5(extra)R'= —[5(extra)aP jVb — [5(extra)QI—'/+ pe'5(extra)g]
2

= —[5(extra)a)' ]Vb ——F "V„(eI (30b)

Inserting the expressions (30) into (29) and using the exp1icit form of the transformation laws, we get the equation
4 4

(FI'p p I'e) F "V—„(eI I—"—p QI'—I e) [5—(extra)co' j V—b+ ebb, (FI qf—QI qe) VI—
0

'g""~(~ r'qb y—, r—'e)F";, V, VI+—'e"'J(ep„p„~)—V„V~=o . —

(31)
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We can now solve it for 5(extra)co„'" and find
r

r

1 cd ck— c5(eXtra)~ ab = (e ~[apb]p+ e~pPab epabcdep eabcdeF e ~ 4)J,
2

r

g l+ —e,b,dF de I' p' ——el'I „(tj(,Fb), — F—,(,eI"Ib)p„—F,—„e&'&(,yb) +H c. (32)

=5(gauge}a)' +5(extra)co'

and using

(33)

5(gauge)co~= =(eX' ((t)—it)X' e) .
2

We observe that the e. F eI"'f te'rms in Eq. (32)
come from the explicit variation of the vielbein in

,' ea—b,d—fF'dVf, from the extra variation of the curvature

F and from the torsion of the connection co&'b. We have

checked that this same result is obtained by applying the
chain rule to (26), i.e.,

5'~ 5 ab 5 ab
ab 5V+ 5y+ 5F

5V 5(((

rnations in (25) always cancels, because of the Bjanchi
identities. Therefore the proof of the invariance of
Cs(CS) is reduced to the extra terms

5Cs(CS)= f 3ddi)cR R 5(extra)a)", (34)

where the only nonzero contributions are for A = (ab) and
A =a, since only the spin connection and the gravitino
have an extra part in their transformation laws.

We stress that both these extra variations are propor-
tional to curvatures. As a consequence we have a purely
algebraic problem to be solved.

We are then left with

f 5C5(CS)= f [d(ab)CDR R 5(extra)co b

+d CDR Rc5(extra)ga] (35)

The variation of C5(CS) due to the pure gauge transfor- and substituting the dzsc coefficients (14) we obtain

f 5C5(CS)= f (2d( b)ga( d)RcR +2d(ab)c(d, )R 'R'+d(ab)aI)p p )5(extra)co

+2(daa)yp~R +daapp~R'+da(, b)pp~R' )5(extra)g

= f 2t(R aR,b+e,b,dcR'Rd'+p X,bp)5(extra)co' +R' [p X, b5( extr a)$ +5( extr a)g X, bp]}

+ IR'[p 1,5(extra)i)()+5(extra)QI, P]+ —,
' R [P5(extra)$+5(extra)gp] j,

where according to (32) and (27), 5(extra)(u'b contains p and F curvatures, while 5(extra)g is proportional only to F.
Moreover, we recall that in second-order formalism we have R'-F [see Eq. (28)]

From (17) we can see that the terms in the first set of parentheses of (36) have all scale e, while the others have all
scale e2. [Note that 5(extra}co and 5(extra)()( have the same scale as co and g.] This gives rise to two disconnected sectors
that should separately b invanant. The te~s with scale e are the same as those consider~ ln Ref. 7: it ls remarkable
how this geometrical procedure allows to determine them in a much easier way.

In order to check the invariance of C5(CS), we start by considering the p Xabp5(extra)cu term in (36) since it is the
only te~ that contains at l~t two fe~lonic cu~aturm. It generate a PPP te~ that, m demonstrat~ in Ref 7 is pro-
po~ional to the gravitino field equation, and some ppF te~s. The foyer can thus b cancel~ by adding a pp te~ to
the gravitino transformation law. The latter read, in component notation,

,P.~X"P,s( "~~—F'eI"4.+ , e,~dF ef'. O'-F,eI'I;0b F,-.eI'&bO„F.—„ef"I.yb}+H—.. ~ ".
They arc essentially reducible to two indcpcndcnt strUctures,

(p I I pel gF+H. c. ) and (pl I pe I I PF+H. c.},
that turn out to be different from zero. Since they cannot be canceled by any other term in 5C, (CS), their particular
structure is enough to prevent Cz(CS) from being invariant under complete supersymmetry transformations.

Also the terms with scale e in (36), namely,

I R'[P I',5(extra}$+5(extra}QI', p]+ —', R ~[p5(extra)$+5(extra)fp] I (39)
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do not cancel among themselves; using (28) and (27) they
give rise to two independent structures

=R'8 8+ - we have

&= ——, ( , R—Re,B ,—R—'R,B) (43)
(FFeI I p+H. c. ) and (FFEl p+H. c ).

that are different from zero
The Poincare version of five-dimensional supergravity,

based on the contracted superalgebra SU(2, 2
~

1) that con-
tains ISO(4, 1)g U(1) as maximal bosonic subgroup,
presents exactly the same features and also in this case
C&(CS) is not invariant. The only thing that changes in
the contraction is that the terms which violate the scaling
properties in the curvatures and transformation laws are
dropped, but 5(extra) in terms of the curvature is un-

chailged.
Both in the anti —de Sitter and Poincare case, the action

of five-dimensional supergravity contains terms quadratic
in the curvatures that at first sight can be thought of as
belonging to a CS form. Referring to the group manifold
formulation they read

+ RR'B-+qR'R B+I

where Ii is a parameter of the theory that is fixed to be
ri =+1, by the requirement of the existence of nontrivial
solutions for the equations of motion. The corresponding
terms coming from our CS form are

C =de, e,e,R R B+2db, eR R'V +de„bR R'B . (42)

Since with an integration by parts 88' V

and so it is clear that even if in principle C seems to be a
part of the action of five-dimensional supergravity, super-
symmetry requires a ratio between the coefficients dif-
ferent from that of a CS term.

Although the Chem-Simons term is not invariant under
the transformation rules of five-dimensional simple super-
gravity, it is a familiar procedure in supergravity to modi-
fy the action and transformation rules such that invari-
ance is obtained. Let us consider the terms with scale e in
(36). As we already mentioned, the terms proportional to
ppp vanish on-shell and can be canceled by modifying the
gravitino transformation law. The other terms are of the
form

FR p, FF"R "lt, ppFQ, (44)

after using (28), but they do not vanish on-shell. Thus,
one cannot modify the transformation rules to obtain in-
variance.

We have to conclude that, in spite of their clear and
nice geometrical meaning, CS forms do not seem to be su-
persymmetric by themselves, at least in five dimensions.
It may be that for superalgebras more than one d symbol
exists; in that case, one would have to study those new CS
terms.
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