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Classical cosmologies from ten-dimensional supergravity
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%'e study possible cosmological solutions to N =1, D =10 supergravity with the Yang-Mills field
strength set to zero and show that the model accepts both power-law solutions and exponential solu-
tions in the large-time limit. The stability of these solutions is investigated. It is found that a
shrinking internal space is compatible with several field configurations. Using a stable power-law
solution we analyze the conditions to obtain enough inflation in the physical space from the shrink-
ing internal dimensions. %'e also show that for a flat topology a de Sitter phase is possible for late
times. %e used the consistency with the density perturbations to fix the inflationary parameter.

In the quest for the unification of the fundamental in-
teractions, superstring theories' are presently considered
as the best candidate. Indeed, while the alliance of local
supersymmetry with higher-dimensional theories offered
the possibility of obtaining the full N=S supergravity ac-
tion in four dimensions via dimensional reduction of
N=l supergravity in 11 dimensions, 2 the ultraviolet
divergences that were already present in four-dimensional
calculations of graviton and matter-loop corrections did
not get appreciably milder when going to higher-
dimensional supersymmetric theories. Thus, the proof
that superstrings are anomaly-free at 1 loop for SO(32) or
EsXEs, plus their finiteness to at least that order, has
triggered a great deal of action in the complete formula-
tion of the correct theory with acceptable phenomenologi-
cal predictions. '

A related question of great importance is the cosmolog-
ical implications of string theories. Beyond the Planck
scale, the drastic changes that are brought up by the in-
clusion of the massive modes as intermediaries of gravita-
tional interactions are surely going to have important
consequences in our understanding of the initial singulari-
ty, as some recent work on the subject has shown, 6 al-
though still in a superficial way. As we lower the energy,
the massive modes are frozen out of equilibrium and the
string is thought to collapse to a point„with the massless
modes being related to massless fields described by a local
field theory. The type of field theory obtained is related
to the way the string theory is formulated, i.e., it being an
open or closed string theory or by the number of super-
symmetry generators (if any} involved.

As has been stressed in the literature, the main concern
one has when looking for cosmological solutions of
higher-dimensional theories is to obtain an explanation for
the enormous difference between the physical and the
internal scale factors consistent with compactification.
One may add that it is also very important to obtain a
scenario which is consistent with the known limits on the
time variation of the fundamental couplings. This implies
that the internal space must have been constant or very
nearly so since nucleosynthesis.

In this paper, we propose to study possible classical
cosmological solutions arising from the bosonic sector of
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where capital latin indices run from 0 to 9, greek indices
run from 0 to 3, i,j,k run from 1 to 3, and m, n,p from 4
to 9.

To solve this system of equations we must make an an-
satz on the Kalb-Ramond and the scalar fields. The sim-
plest choice comes from assuming that the dilaton field is
a constant throughout space and time. If we do so then
Eq. (4) compels us to take a zero value for the Kalb-
Ramond three-index field. Clearly then the problem
reduces to solving Einstein's equations in vacuum.

A few ~ords should be said about this case as it has
been the object of intense study. This case is important
because at early times the curvature terms might have
dominated the dynamics, making the contribution from

N =1, D =10 supergravity theory9 (or equivalently the
Chapline-Manton action' with the Yang-Mills field
strength set to zero) which describes the massless bosonic
sector of the type-I superstrings and of the phenomeno-
logically more promising heterotic string. "

%e will show that this model admits power-law solu-
tions for the scale factors and also de Sitter-type solutions
at late times. The stability of these solutions will be
analyzed as well as some of their physical implications.

%e will start by writing the action as

f d io& ( g10)—I /2(g & ghfNa

—6& I'sr'+
We will adopt the conventions of Weinberg's book with

6 =c =A'=1. By varying the action with respect to the
dynamical fields we get the following field equations:
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matter and fields negligible. For the case of anisotropic
models this is certainly the situation, as the energy associ-
ated with the curvature anisotropy is going to dominate
over any other contribution.

The case where the underlying metric is that of a prod-
uct of two anisotropic spaces (for D=4) was studied in
Ref. 13, it was found that the field equations accepted a
Kasner-type power-law solution where the internal dimen-
sion contracted while the physical space expanded isotrop-
ically like a radiation-dominated Friedmann model. The
general form of the vacuum anisotropic solution for D & 4
has been studied in the context of the mixmaster models
in Ref. 12. In the general case the topology of space is
not that of a product space but instead that of a simply
connected manifold. The solution presented in Ref. 13 is
a particular case of these models.

In this paper we will only consider the case where the
topology of space-time is that of a product of manifolds
of the form M )&8 with a metric described by the ap-
propriate Robertson-%alker line element:

ds'= dr'+R—3(r)'g,,(x)dx'dx'+86(r)'g „(y)dy dy" .

(5)

The general solution for the case where both manifolds
are flat is given by a Kasner-type power-law solution
similar to that found in Ref. 13:
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This ansatz is consistent with having a torsion-free
internal manifold if we want to preserve SU(3) holonomy.

We note that the no-go theorem for 10 into 4 compacti-
fication' will not apply here since the four-dimensional
space-time is not maximally symmetric and the dilaton
plus the Kalb-Ramond field can, according to the ansatz,
vary in time.

Using (5) and the ansatz in (10) we can immediately in-
tegrate Eq. (3) to give

The second solution is much more interesting than the
first. We can understand the similarity of this solution
with a dust solution by noting that the scalar field scales
like the inverse of the volume, just like the energy density
of matter (dust). There are no power-law solutions for
nonfiat manifolds.

The next step in complication arises if we assume both
the p and the F3rNp fields are only functions of time, and
the F field takes values only in the physical three-space
(by no means is this the only feasible ansatz, for some dif-
ferent ones see Ref. 14), i.e.,

R3 ——R3pt, R6 ——R6ot
—1/3
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with f(t) an arbitrary function of time. We require the
Kalb-Ramond field defined in (10) to obey the Bianchi
identities:

So the internal space becomes smaller while the physical
space expands (as in a radiation-dominated model).

There is a trivial solution where both radii are static, so
describing a ten-dimensional Minkowski space-time of the
form M' =M XM

If we now allow the curvatures to be nonzero, then we
can find the following power-law solutions:

~[3rFJvpg) =0 .

This equation gives
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with fo a constant. Clearly from (12) and (13) we get the
form of f(t):

R3 ——R3ot, R6 ——R6ot f(r)=fo
R3
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with k3 ———4R3o, k6 ————,'R60 . This is not a very in-

teresting solution as it predicts an expansion for both the
internal and the physical radii,

If, on the other hand, we now take F3rzr ——0, we do not
require (()=go. Then Eq. (3) is identically satisfied and the
action describes Einstein gravity with a massless scalar
field. Equation (4) now gives

[(g 10)1/2gMy] ()

if we now assume the dilaton is a homogeneous field we
get

2k3 J 83 R3 R6 R3 =- -'e&I."
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We are now in a position to write down the field equa-
tions:
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and the field equations now accept the solution
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We shall see that this system of equations accepts
several exact solutions. Then we will use one of these as
an initial condition and integrate the system numerically.
Based on this we can show that the model has an infia-
tionary phase, by obtaining an exponential solution in the
late time regime, when the Kalb-Ramond field is negligi-
ble. It is also interesting to note that the system does not
accept a static solution unless we add a mass term or a
self-interacting term to the dilaton field present in the ac-
tion, which would break supersymmetry explicitly.

By direct substitution of a power-law ansatz into Eqs.
(10)—(13) it is possible to show that two consistent solu-
tions can be found:

R, =R3pt, R6 R6pt——', p pp —4ln——(t), (19}

with k3 —ks=0 and (()p=ln(SR3p6/49fp3) R3p and R6p
are arbitrary constants.

By perturbing the field equations around these two
solutions we discover after some algebra that the first one
is stable while the second is not. However, we should
mention that the growth of the instabilities is like a power
law: namely, very slow (for some discussion about this ef-
fect see Ref. 16}. This instability could be associated with
the fact that the model is fiat in both spaces. It is a well-
known fact that in four dimensions the fiat Friedmann-
Robertson-%alker solution is unstable under small pertur-
bations. This is interpreted by saying that any extra ener-

gy put in or taken out from the Universe will close or
open the model.

For the moment we will concentrate on the stable solu-
tion and its physical implications. First of all, it is a nice
solution at least from a qualitative point of view since the
three-physical space expands while the internal space con-
tracts. However, if this expansion rate is not decreased at
late times, the solution would be completely unacceptable
since it would mess up nucleosynthesis. Nevertheless, we
do expect the influence of other fields to become the lead-
ing terms in the energy-momentum tensor and slow down
the expansion. Radiation at late times will undoubtedly
change the expansion rate of both manifolds.

If we accept this fact we can now turn this rapid expan-
sion to our advantage and use it to produce inflation. En-
tropy production in the noncompact dimensions is ob-
tained by decreasing the mean volume due to the contrac-
tion of the compactified dimensions. '

For the solution we are interested the mean spatial
volume decreases like

y (R 3R 6)1/9 t —1/3 (21)

%e mould like to develop a rough calculation to show
that even a power-law solution may produce sufficient in-
flation. We shall assume that the total entropy is adiabat-
ically conserved and has the required value (how this total
entropy was generated may depend on the quantum era
prior to this classical approximation; in any case this is a
standard assumption for these models' ),

with k3 ———4R3p, k6 ——0, and Pp ——ln(SR3p /fp ), and

R3=R3pt /
~ R6=R6pt '/, (()—(()p———', ln(t), (20)
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where the i and f labels refer to two times, before and
after inflation. Following Abbott et a/. ,

' we take the fi-
nal value of R6f, to be of the order of the Planck length,
thus assuming some sort of quantum mechanism to stop
the collapse of the internal radius to a singularity. Also,
in order to avoid massive excitations of the internal
modes, we take Tf &(1/R6f)(1(Lp& 1). According to
the authors in Ref. 18, there are two ways of obtaining
enough inflation; the first is to have a large number of
internal dimensions (around 40) and the second is to have
a very large initial size for the internal manifold (for an
alternative approach see Ref. 19}. In our case, the number
of dimensions is fixed thus forcing us to adopt the second
point of view. Although assuming a highly asymmetric
set of initial conditions for the physical and internal radii
may sound rather unnatural, our ignorance of the proper
initial conditions allows us to do so, if the internal dimen-
sions decouple after a not so long period (again, safely be-
fore nucleosynthesis). Also, the fact that we obtain a t
behavior for the internal space, makes it more natural to
have a "cigarlike" configuration for the initial singularity.

Thus, taking R3;—1 we obtain

For a compactification temperature close to the Planck
energy, T; &1, we see that the ratios between the initial
and final values for the internal radius and time are

44/3——-10
R 6f

R3 —R3pe'/ ', R6 Rppe / '; p——=+tz(t +tp)

with tp an arbitrary integration constant and a a free pa-
rameter in the solution. These can be fixed once we im-
pose some boundary condition. VA.at is worth pointing
out is the fact that if R3 expands then R6 contracts and
vice versa. However„ for this solution to be consistent we
require e~F to be very small, thus effectively neglecting
the right-hand side of Eqs. (15)—(18). Recalling that for
de Sitter-type solutions we can set the curvature terms in
Einstein's equations to zero, we could then use the
power-law solution previously obtained as an initial condi-
tloI1 to thc IlllIIlcrlcal llltcgratloI1 of thc cquatlolls, to
check if indeed the decay of the e&F term is going to

Thus, to obtain sufficient inflation, the internal radius
has initially to be 15 orders of magnitude bigger than the
physical radius, with the situation being reversed after the
above period of time. If t; -tpl, we get that the inflation-
ary epoch ends at the grand-unified-theory scale, an in-

teresting result.
We can now look for exponential solutions of the field

equations. So, with an exponential ansatz for the evolu-
tion of the scale factors we find a consistent solution of
the form
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trigger inflation. In Figs. 1 and 2 we show that this is
indeed the case. We can also show that if we introduce a
new variable P=P —61nR&, we can rewrite Eq. (18) as

0

3 +6 $=7e& .
R3 R6

(26)

Now we can obtain the solution of Eq. (26) in the limit
where the friction term is negligible:

f= —21n[( —,')'i (r —r )] .

As can be seen from Eq. (27) P will become more nega-
tive as it evolves in time. This fact, when translated into
the original variables imply that the InR& term dominates
over the P term, showing that the term e~I" on the
right-hand side of the field equations becomes negligible,
confirming the above result.

The above calculations seem to indicate that the infla-
tionary behavior for the physical space-time is a result of
the interplay between the dilaton and the shrinking inter-
nal radius. We should mention at this point that the
model does not terminate the inflationary phase in a spon-
taneous way due to the fact that the potential for P has no
stable minimum.

It must be said that quantum effects coming from one-
loop corrections on the matter fields, or the Casimir
forces, will probably play an important role at these ener-

gies, and were neglected for simplicity. In fact, depending
on the ansatz for the Kalb-Ramond field, it can be shown
that these effects stabilize the potential for the internal ra-
dius (taken to be an effective scalar field), thus generating
an effective cosmological constant that will drive an infla-
tionary period which ends when the internal radius be-
comes constant.

For our model to have a successful inflation we require
the density perturbations to be within the acceptable
value ' when they leave the de Sitter-type phase and cross

FIG. 1. The time evolution for the tvvo scale factors and the
dilaton field is shown. Time is in units of the Planck time.

TIME

FIG. 2, %e show the time behavior of the term e~I' for the
flat {k3 ——k6 ——0) geometry case. In the limit w'hen this term is

negligible, the exponential solution takes over.

the horizon (we will denote the horizon time by an H sub-
script):

(28)

This condition fixes the value of a.
%e shall now summarize our results. Taking the bo-

sonic part of the superstring action in the low-energy limit
we looked for cosmological solutions, in particular
power-law and exponential solutions. Before studying the
full action with the Kalb-Ramond and dilaton fields as
functions of time, we analyzed briefly the simpler cases
where either the dilaton field is a constant (which implies
that Fsrzp ——0) or the Kalb-Ramond field is taken to be
zero (which implies that P- V '). For the full action we
found that the power-law solution corresponds to a model
with an open three-space (negative curvature) and a fiat
internal space while the exponential solution is consistent
with having a flat three-dimensional space and a fiat
internal space. We also discussed the possibility of having
a power-law-type inflation provided that we beheve the
total entropy is adiabatically conserved and that suitable
initial conditions can be imposed on this model, in order
to obtain enough entropy production in the physical
space-time.

The fiat model also contains a power-law behavior as a
particular solution. However, this proved to be unstable.
This was later used as a valid initial condition for numeri-
cal integration. From the information gathered in this
way we discovered that the behavior for late tixnes was ex-
ponential in time. This was confirmed in an analytical
way by finding explicitly this solution. The solution con-
tained one free parameter associated in a natural way with
a cosmological constant. The value for this parameter
was then restricted by demanding the density contrast to
be consistent with observations.

Finally, it is interesting to note that the action con-
sidered here seems to be unique in giving a shrinking
internal space for a variety of field configurations. To the



34 CLASSICAL COSMOLOGIES FROM TEN-DIMENSIONAL. . .

best of our knowledge, this does not seem to be the case in
other supergravity models at least in power-law form (see,
for example, Refs. 7 and 14). This nice qualitative cosmo-
logical behavior coming from superstring models is very
CIlCOUI'a. gIIlg.
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