
PHYSICAL REVIEW 0 VOLUME 34, NUMBER 6 15 SEPTEMBER 1986

Bubble growth and droplet decay in the quark-hadron phase transition in the early Universe
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When the Universe was about 10 @sec old, it underwent a phase transition in which the quarks
and gluons condensed into hadrons. %'e assume that this phase transition was of first order and

study how the Universe evolved through the mixed phase in a scenario with small initial supercool-

ing and monotonically growing hadronic bubbles. Nucleation of bubbles, collisions of shock fronts

preceding the bubbles, arrestation of bubble growth by the reheating due to these collisions, subse-

quent slow growth of the bubbles to fill the entire Universe, condensation of baryon number, death
of the remaining quark matter droplets, and the resulting density perturbations are discussed. A
(1+1}-dimensional approximation is frequently used to make analytic calculations possible.

I. INTRODUCTION

It is quite probable that QCD matter can exist in two
phases: a color-nonconfining quark-gluon plasma phase
and a color-confining hadron phase. This conclusion is
well established for pure glue matter with numerical lat-
tice Monte Carlo calculations and even the order of the
phase transition is then known to be one. ' When quarks
are included, the computations are essentially more com-
plicated and the conclusions at present are only prelimi-
nary.

For physical apphcations of the quark-hadron phase
transition, such as the early Universe ' (big bang} or ul-
trarelativistic nucleus-nucleus collisions" (little bang)
the situation is more complicated since not only is the
equation of state needed but also knowledge of the kinet-
ics of the phase transition. This is a notoriously difficult
problem even in classical statistical physics. In the con-
text of the @CD phase transition one can only formulate
various scenarios, and cannot perform reliable calcula-
tions as in the context of cosmic synthesis of the light ele-
ments in the 1—100-sec-old Universe.

Depending on the amount of supercooling assumed one
can distinguish between different scenarios: (1) no super-
cooling and no phase separation (see Refs. 2 and 3 for big
bang and Refs. 17—21 for little bang); (2} small supercool-
ing and phase separation (see Refs. 9 and 12 for big bang
and Ref. 25 for little bang); (3) large supercooling (see
Refs. 7—9 for big bang, and Refs. 22 and 23 for little
bang). The more supercooling there is, the more spectacu-
lar the consequences can be expected to be. However,
even the small-supercooling scenarios may leave relics of
the cosmic transition as yet.

The purpose of this paper is to study the small-
supercooling —phase-separation scenario of Witten [big
bang (BB)]and Van Hove [little bang (LB)] in some detail
further. This scenario assumes that after an initial period
of small supercooling the matter separates into hadron

bubbles and quark droplets, the droplets having a larger
energy density than the bubbles (by a factor of 3 in BB,
about 10 in LB}. The entire system can then expand at
constant temperature and pressure by converting matter
from the quark to the hadron phase by surface deflagra-
tion. This continues until all the matter is converted into
the hadron phase and cooling resumes. In the cosmic
context the energy transfer may also take place via radia-
tion of neutrinos and leptons, which leads to enrichment
of net baryon number. '

In the following we shall first in Sec. II study a simple
model equation of state describing a first-order phase
transition, both for zero and nonzero net baryon number.
This will permit one to perform many of the later calcula-
tions analytically. Section III contains a discussion of the
simplest way of going through the phase transition: after
the Universe has cooled to the transition temperature T„
the temperature simply stays there and the Universe goes
on expanding by converting more and more quark matter
to hadron matter with no phase separation. The relative
amount of hadron matter h(t) and the radius R(t} are
determined by Einstein's equations. These will serve as a
frainework on which the discussions of scenarios with
more supercooling will be built.

Section III makes no assumptions about how the had-
ron matter is nucleated in the cosmic fiuid. This is done
in Sec. IV, containing a discussion of the initial thermal
nucleation of hadron bubbles after the cosmic fluid has
cooled slightly below the transition temperature T, . As
such, this theory would lead to an improbable result: the
Universe would be filled with hadron matter in a su-
perheated state much too rapidly. Instead, what perhaps
happens is that the growth of the hadron bubbles is arrest-
ed, since the Universe between the hadron bubbles may be
reheated to T, by collisions of the shock fronts preceding
the bubbles. This will be discussed in Sec. V. It appears
that it is difficult to hit precisely the value T, .

An important by-product of the discussion in Sec. IV is
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the appearance of a new scale in the problem: the aver-

age distance R; between the bubbles after the slow growth
starts. Many of the later results will depend on the ratio
XR; between 8; and the Hubble distance I/X. The larger
the initial supercooling, the larger R; and the final value
of the numerical results will be. A van der Waals-type
law of corresponding states leads to a reference value

8;= 1 rn so that XR; =10
Section VI discusses what can be said about the growth

just by using entropy conservation. Essentially, the re-
quired entropy flux from the quark-to-hadron regions is
seen to be T, XR;. Section VII will discuss the case when
this flux is dominantly caused by a hydrodynamic flux of
matter across the boundary. Going through the entire
transition one sees that energy density inhomogeneities
proportional to gR; will remain at positions between the
original bubbles.

A very important issue in this context is the behavior of
baryon number. This is quantitatively analyzed in Sec.
VII. We point out that the formation and survival of the
quark nuggets are connected in the sense that if they can
be formed, they should also easier survive.

In the following we shall use a (1+1)-dimensional ap-
proximation whenever physically reasonable. This per-
mits one to perform analytic calculations in many cases.
Corrections due to the three dimensionality of the prob-
lem are finally estimated in Sec. IX.

This paper is limited to the discussion of the small-
supercooling scenario with JR; &~1 (and in the limit
R;~0 to the entirely homogeneous scenario). The possi-
ble consequences are thus not very easy to observe. In
contrast, scenarios with large supercooling and XR; near 1

would lead to spectacular consequences, but this large
value of XR; is hard to motivate.

p (Tp)=aT + „Npp T B, — —(2.1)

II. EQUATION OF STATE

A necessary ingredient for any quantitative discussion
of the phase transition is an explicit form for the equation
of state. We shall use the simplest possible form of an
equation of state incorporating a first-order phase transi-
tion: a bag equation of state. This has often been used
for the zero-baryon-number case~' z5 and also extended
to the case of any baryon number. z As the baryon-
to-entropy ratio is very small in the cosmological case (un-
less the enrichment is extreme), we shall limit ourselves
to the case p ~&T. The physical foundation of an equa-
tion of state of this type is discussed in the references
above and will not be repeated here.

Giving the equation of state is equivalent to giving the
pressure (=—grand potential/V) as a function of T and

p. In the quark phase we have

to T, =200 MeV in the numerical examples to follow).
%'e use NF ——2, although XF——2.5 might be quantitativdy
better to simulate the effect of the strange-quark mass.
From pq we obtain

s~(T,p)= =4aT + 9NFp—T,dT

nq(T, p)= = , NFp—T
dPq

dp

e&(T,p)=3aT + 6N~p—T +B .

(2.3)

pi, (T,p, ) =a T +b (m, T)Tcosh(p/T),

where

(2.4)

&~=A
90 ~

3/2

b(m T)= e

(2.5)

Numerically, for m =0.94 GeV

b(m, T)/T =0.047 (T=0.2 GeV)

=0.020 (T =0.16 GeV) .

From p~ we further calculate

si, (T,p)=4a T + —+—— tanh~ cosh~,5 Pl g
2 T T T T'

ni, ( T,p) =b (m, T)sinh T' (2.6)

Ei, (T,p)=3a T +b(m, T) m+ cosh~ .4 3T
2 T

'

The critical curve T =T, (p) now is determined from
pq(&,p)=p~(T, p) (Figs. 1 and 2). As the phase transition
is of first order, all the quantities s, n, and e exhibit,
discontinuities across the critical curve. Figure 3 shows
the discontinuity in n. The jump in n is given by

nq. &r To 3

=5 (To ——0.2 GeV)np„9 bo

Note that here and in the following n denotes the net
baryon-number density with a subscript q or h specifying
the phase and p is the associated chemical potential.
Thus nq is the baryon-number density in the quark phase
and not the quark-number density and we do not have
separate chemical potentials for quarks and baryons.

In the hadron phase we take the fluid to consist of an
ideal gas of massless pions and of nucleons with
Maxwell-Boltzmann statistics. Then

where

=11 (To ——0. 16 GeV), (2.7)

& =gq 90

g, =16+ %„+14.25=51.25,21
2

(2.2)

and B is the bag constant (=780 MeV/fm corresponding

To ——T, (0), bo b(m, To) . ——
Including terms of order p /T it is easy to derive ap-

proximations for the critical quantities. One has, for in-
stance,
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FIG. 1. Solving the critical curve T =T,(p) from the equili-
brium condition p~(T,p) =pq(T, p, ) for @=0and 100 MeV with

p~ and pg given by Eqs. (2.1) and (2.4). The parameters are

T, =200 MeV, gz
——51.25, g~ ——17.25, and 8 as given by Eq.

{2.10). Note that Tg ——T,(0)=200.64 MeV due to the contribu-
tion of nucleons.

NF /18 bp/2 To—
p,

2

T, (p) = Tp 1—
a —a~ —bp/To Tp

(2.8)

abo/2To' a bo—/To'—
p. l: T.(u) 1 =p.o+ To 9

a a bo/T—o'—
For later purposes we shall also need those values of T

and jtt for which the pressure of the quark phase is the
same as the pressure of the hadron phase at the transition
temperature for @=0, i.e., the solution of p&(Tp, )=p, p.

This is also shown in Fig. 2 as the curve T~(p). As p, (p)
increases with p, the curve T~ lies below T, .

In the early Universe p, /T =10 (without enrichment}
and to a very good approximation one can sei JM =0 in the
above. Then the contribution of the nucleon pressure in
Eq. (2.4) is just a few percent and even it can be neglected.
In this approximation we further have the following sim-
ple relations for the critical quantities:

2QO

IQQ

MeV
irn~

9Q

FIG. 3. The net baryon-number densities n~(T) and nq, (T)
along the critical curve. Parameters as in Fig. 1.

sg Wg gq

SH NH gh

e&
——@0+48,

38&0=
7' —1

where s& ——ss [T,(p, =0)], etc., and w =e+p is the enthal-

py. Also the relation between the bag constant and the
transition temperature is simple:

2

~ =(g, —gt, }
90

(2.10)

III. THE FAST NUCLEATION AND NO-PHASE
SEPARATION SCENARIO

We first go through the phase transition by assuming
that everything is as smooth as possible: no supercooling
and a uniform mixture of quark and hadron matter in the
mixed phase. This means that when the Universe has
cooled down to T =T, and tries to cool further, regions
of hadron matter start immediately forming. The latent
heat released prevents further cooling and the Universe
continues expanding maintaining T =T„p =p„and the
constancy of the total entropy content by converting more
and more of the matter from the dense quark phase to the
less-dense hadron phase. In this simple scenario one as-
sumes that there is no separation of these two phases.
The phase transition is terminated when all of the matter
is in the hadron phase.

The quantities to be traced through the phase transition
are e(t), T(t), and R(t}. These are determined by the
equation of state (2.3) and the two Einstein equations

i I

IQQ 2QQ SQQ 4QQ rQQ
MeV

R =&e/8,
XR

(3.1)

FIG. 2. The figure shows the p dependence of the critical
curve T =T,{p), the curve T =T~(p) along which the pressure
of the quark phase is the same as the pressure of the hadron
phase at p =0 (needed in the discussion of enrichment of baryon
number in quark droplets) and the pressure p =p,{p) along the
critical curve. Parameters as in Fig. 1.

3R
R

(3.2}

1 T.
8m GB/3 =

36 @sec 200 MeV

'2

(3.3}

where we have used the natural time scale of the problem
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The solution is given in three pieces, before, during, and
after the phase transition.

Before the phase transition, t ~ t;, the solution is simply
given by

h(t;) =10.5,

derivatives of h (t) at the beginning and end are nonzero:

2
T(t) V'(r —1)/3r
T, sinh at

(3 4)

=1.84 .

(3.11)

R(t) Tc

T(t)

This solution is valid until T has decreased to T„i.e., un-

til

The curve h (t) is plotted in Fig. 4.
Finally, after the phase transition for t & t/, we simply

have

gt; = —,ln
&4r —1+&r —1

3r
=0.23 .

R (t)
Rg

(3.12)

Numbers here and later are quoted for r=3. Note that
the effect of the vacuum energy density 8 to the timing is
very small: while the temperature T, =200 MeV is now

[Eq. (3.4)] reached at t=8.19 @sec, the same T without
any 8 would be reached at t=8.45 IMsec.

The following stage, during the phase transition, is par-
ticularly interesting. The temperature is now constant,
T =T„and also since the pressure is constant, p =p, the
conservation of S =sR is equivalent to the conservation
of W=wR . During the phase transition e(t) decreases
from erat to eH [and s(t) from s~ to sH, w(t) from w{2 to
wH]. It is convenient to replace e(t) by h (t), the volume
fraction of matter in the hadron phase, by writing

e(t) =cHh (t)+ay[1 —h (t)] . (3.6)

3R h

R r/(r —1)—h
(3.7)

The two equations (3.1) and (3.7) can now easily be in-

tegrated with the result

The second entropy conservation equation (3.2) can then
be written in the form

This entirely adiabatic and homogeneous scenario leads
to no obvious observable consequences. It is also quite
unlikely: usual nucleation theory does not lead to the
nonzero derivatives in Eq. (3.11). This simple scenario
thus mainly gives us a framework on which to study more
realistic and more interesting scenarios.

IV. NUCLEATION OF THE PHASE TRANSITION

In the preceding section, supercooling was entirely
neglected. Actually, as the phase transition, by assump-
tion, is of first order, the Universe has to cool somewhat
below T, before any regions of hadron matter can appear.
We shall here briefiy discuss the nucleation events in a
simple thermal nucleation model. '

Note, first that there are two very different time scales
in the problem: the QCD time scale of the order of
1/T, =1 fm and the Hubble time of the order of 1/X =36
@sec=10' /T, . We expect that the nucleation is a local
phenomenon and knows nothing about the Hubble scale.
The rate of bubble nucleation can then be written in the
form

h (t) = 1 — tan arctan&4r —1
1 2

4(r —1)

3X(t; —t)
+ 2v'r —1

(3.&)

I.Q—

R (t) i/3 . 3X(t —tl )= (4r) '~ sin
2 r —1

1+ al'cslii
4r

2/3

(3.9)

=Xt, +0.22=0.45 .

The scale factor R (t) increases to the value

RI =R(tI) =r'i R;,

(3.10)

as follows from entropy conservation. Note also that the

This phase transition stage ends when h (t) has increased
to 1. This happens at tlIIle

Xt/=Xt;+ , {/r —1(arct—anv 4r —1 arctani/3—)

0 I I I I I

0.2 0.3

tPT

FIG. 4. The volume fraction h (t) of the hadron phase in the
uo-supercoohng scenario and the fraction f{t) of space affected

by the nucleated hadron bubbles in the thermal nucleation and
supercooling scenario. The function f(t) is plotted schematical-

ly; to scale it would be a step function at t =tpT (PT=phase
transition). In the small-supercooling —phase-separation sce-
nario it is assumed that t~„„,q g~ tpT —t; g~ t;.
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lDO

p(t)=poT, exp
(1 T4)2

(4.1)

where po and mo are dimensionless constants, expected to
be of the order of 1 and T=T/T, . Note that, for @=0,

with the equation of state [(2.1)—(2.4)]. Because of the ex-
ponential factor, the rate and all its derivatives vanish at
T = T, . For, say, 2% supercooling to T =0 98T.„the ex-

—ruo165
ponential factor is e ' . This looks like a small num-

ber, but the pre-exponential term T, , which gives correct
dimensions to p(t), is actually large in the Hubble scale:
I 4 174y4

After the bubble has been nucleated it grows explosively
like a deflagration bubble. ' The structure of these bub-

bles is shown in Fig. 5. For small few-percent supercool-
ings, which we shall study here, the phase transition itself
propagates rather slowly with a velocity
ut„„,«c, = I/W3. This front is preceded by a supersonic
shock front moving with velocity v,h~c, in the quark
matter and heating and compressing it.

With increasing time more and more bubbles are nu-

cleated and the bubbles nucleated grow. The fraction of
the Universe affected by the shock fronts preceding the
growing bubbles is given by

Q
o"'

q
/ Iql

q, '
Tqi

I qi + ~h ~ Pq

Th Tqi Tq

(a)

E'q
j

(b}
FIG. 5. The structure of a deflagration bubble in (a) 1+ 1

and (b) 1 + 3 dimensions.

tion [see (3.4)]

f(t)= I dt'P(t') [U„,(t' —t~)]'. dT
C

1/2
4r —1

Xdt
r —1

(4.3)

The growth period will be seen to be so brief that the ex-
pansion of the Universe can be neglected. Using the equa-

we can take scaled T instead of time as variable and cal-
culate the integral by a saddle-point approximation:

4m Tc r —1
4

4r —1
Ush T exp — T —T

16(1—T ')

=exp L — +121n(1—T)
16(1—T)

(4.4)

L =In[(T, /X) you, „].

Since the rate vanishes very rapidly near T =T„ the in-
tegrand in (4.4) is very asymmetric and the maximum is
very close to the lower limit at

(4.4) one sees that f ( t) is 1 when T has decreased to

T=TpT ——[1—(ur /106L)'~ ]T,=[1—(wo)' l45]T,

or at the time [Eq. (4.3)]

(4.6)

T'= T+ (1—T)' .
LUO

(4.5) r —1
tpT ——t; +

4r —1

1/2
No

161

1 f2

The behavior of the function f(t) is shown schemati-
cally in Fig. 4 together with the fractional amount of had-
ron matter demanded by the no-supercooling scenario.
One sees that the two functions behave very differently.
The function )'i (t) starts growing with a finite derivative.
The function f ( t) is to begin with essentially zero until it
at the time t =tpT suddenly increases to 1. From Eq.

= [0.23+0.01(wo)'~ ]/X . (4.7)

The growth time can be inferred from Eq. (4.5): the bub-
bles which at t =tpT fill the space were dominantly nu-
cleated at a slightly higher temperature
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No
nUcl PT

' 1/2

( ~ )1/2

PT +
4800

0.5

f80
«owih

r —1

4r —1

so that the growth time is
1/2 1/2 ~0

11000 7 -0.5

(4.8)

~r =rsrowth"st =(~0)1/2 (4.9)

and the size of the hadron bubbles relative to their separa-
tion is r;/8; =ur„„,/U» «1. Note that 8; is essentially
the Hubble distance 10780 m divided by the —,

'
power of

the log of the ratio of the fourth powers of the two time
scales 1/T, and 1/X in the problem. 8; is an average dis-
tance and there will be lots of small distances as well as a
few large distances. The numerical value of R; is clearly
rather badly determined: we shall use as a reference value
1 m.

The initial part of the supercooling scenario thus goes as
follows: the Universe comes to T=T, at t =t; and ini-
tially goes on supercooling in the quark phase. At the
time t = ipT —t«,„,h hadron bubbles start being nucleated.
More and more bubbles are nucleated and the bubbles
grow so that after a period of ts„„,„ the shock fronts start
colliding. Because Ur„,„,«U» actually only a small frac-
tion of the matter in the Universe has been converted to
the hadron phase. Figuring out what happens next re-
quires new dynamical assumptions about the collisions of
bubbles. These will be discussed in the following section:
a possible conclusion is that the collisions reheat the
quark matter to T =T, and thus halt the growth of the
regions with hadron matter.

An important conclusion of the above is that a new
scale appears in the problem. Since the shocked regions
grow at the velocity 1/v 3 the average distance between
the hadron bubbles is

-I 0
-I 0 -0.5 0 0,5t'/t I.0

FIG. 6. The two rarefaction-wave solutions Uf1(r/t) and a
few of the constant solutions of self-similar (1+ 1)-dimensional
flow.

+(1+c,~ ) I2c,Ua=, e=e(0)
1+c,r/t ' r+r (5.2)

where c, = 1/v 3 is the speed of sound and
(1+c, )/2c, =2/W3 (see Figs. 6 and 7).

tions and then construct specific solutions. ' Most of
this section is general and valid for any magnitude of su-
percooling.

Initially there is a configuration of plane shock and de-
flagration fronts, which separate regions of constant den-
sity and flow velocity. Since no length scale comes in, the
flow patterns created in collisions of such fronts have a
self-similar structure. This means that the density e and
flow velocity Un depend on time and position only
through the ratio r/t, where r is the distance from the
collision plane and t is the time elapsed since collision.
The only allowed flow patterns are then a flow with

vf1
——const, e= const,

and two rarefaction-wave solutions

V. BUBBLE COLLISIONS

After the hadron bubbles have nucleated they grow and
the shock fronts preceding the bubbles begin to collide.
The Universe enters a turbulent stage, the initial phases of
which we shall study in this section. In the small-
supercooling case we shall present a scenario, in which
this turbulence dies out, the Universe outside the hadron
bubbles is reheated to T, and the explosive bubble growth
is halted. Accepting this scenario one can directly contin-
ue to Sec. VI, where further expansion-dominated bubble
growth Is studied.

In this section we will analyze the first collisions be-
tween two shock fronts and between a shock and a de-
flagration front (deflagration+ deflagration collisions are
rare) in a (1+ 1)-dimensional framework. Since the time
scale R;/c, is much less than the Hubble time, we ignore
the expansion of the Universe. %e will first review some
general features of the allowed hydrodynamical conflgura-

FIGr. 7. Flow world lines in a rarefaction-wave solution.
This spacetime diagram corresponds to the lower curve in Fig.
6. A corresponding diagram for the upper curve would be a
mirror image of this.



BUBBLE GROWTH AND DROPLET DECAY IN THE QUARK-. . . 1725

Regions of different flow pattern can join at phase
boundaries and shock fronts. A rarefaction wave can also
change to constant flow at a weak discontinuity front,
where only the derivatives of density and flow velocity are
discontinuous.

We will now list conditions that must be satisfied at the
fronts. We now view the front at its rest frame (Fig. 8).
v;„and v,„, are the incoming and outgoing flow velocities
in this frame. Later we need these results in a frame
where the fluid is at rest on one side of the front. One of
these velocities becomes then the front velocity and we get
the flow velocity on the other side by boosting the other
velocity by this one.

Energy and momentum conservation relate the veloci-
ties v;n and v,u, by

and

(5.11)Vin Vout

In a phase transition there is a change of total entropy.
The condition of non-negative entropy production is

for a deflagration ( v,„,& v;„) case. Since a detonation re-
quires that the H phase has a much higher density than
the Q phase, e,«& e;„+2B(otherwise v;„v,„,& 1) it is un-

likely that detonation fronts occur. A deflagration re-
quires e;„&e,„t+48, a more likely circulnstance. Yet
another possibility is a contact surface, where both phases
are under the same pressure, i.e.,

(5.10)

Pin Pout Vout ~in+Pout
Vin Vout

&in —&out Vin &out+Pin
(5.3)

2
Vin Vout Cs

If the shock front is in the Q region

(5.4)

Vin &in+ 3&out —4&

and if it is in the H region

(5.5)

Vout

Vin

3&in+ &out

&in+ 3&out
(5.6)

For a phase transition front (incoming flow in Q phase,
outgoing in H phase)

Vout

Vin

3&in+ &out

&in+ 3&out —4&
(5.7)

1 &ou»
—&in+4&

VinVout = &Cs
&out

—&in

for a detonation ( v;„&v,„,) case, and

1 &in —&out —4&
VinVout = (Cs

&in —&out

(5.8)

(5.9)

(Ref. 30). Using p = —,
' e in H phase and p = —,

' (e—48) in

Q phase we get for a shock front

From Eqs. (5.4)—(5.9) it follows that v,« ——c, is possible
for the phase transition fronts but not for a shock front,
and that v;n =c, is not possible. This is important because
of a special feature of the rarefaction waves [Eq. (5.2)].
Let there be a self-similar fiow pattern where a region of
rarefaction flow ends at a (shock or phase transition)
front. At time t the front will be located at r =vf„«t.
From Eq. (5.2) we see that the flow velocity in the rare-
faction wave is vti =(vf„«+c, )/(1+c, vr„«) here. Boost-
ing with vf„,„, to the front frame we obtain

Vin (out} Cs

for an incoming (outgoing) rarefaction wave.
The conclusion is that rarefaction waves in the H phase

may border to deflagration or detonation fronts, but rare-
faction waves in the Q phase must have a weak discon-
tinuity on both sides. Since the rarefaction wave carries
with it information on the distance from its origin, the
flow pattern resulting from a collision with a rarefaction
wave is not self-similar anymore. We shall not pursue
these more complicated patterns here.

Aided with the preceding guidelines we now proceed to
construct some possible configurations. We begin with an
idealized irutial situation of equidistance narrow H re-
gions ("bubbles" ) all nucleated at the same moment to
The first event is a collision of two shock fronts. With
the notation of Fig. 9 we have the conditions

FIG. 8. A front viewed in its rest frame. For a shock front,
both the incoming and outgoing flow are in the same phase,
while for a phase transition front the incoming flow is in the Q
phase and the outgoing in the H phase.

FIG. 9. A spacetime diagram of the first stage of our
I'1 + 1)-dimensional scenarios. The deflagration bubbles grow
with velocity Ud, q until their surfaces collide with the reflected
shock fronts. The shocks heat the Q phase from eo to e2 (from
TpT ~ T, to a temperature above or below T, ).
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Ug =3

—3

(et —ez)(e& —e3 —48)
(3ei+ e3)(ei+3e3 —48)

(e, —eo)

(3et+ eo —48)(e&+ 3eo —48)

(e2 —e&)

(3@2+@i—48)(et+3@,—48) '

l 3e&+so—4B
Ush& =

3 e)+3'—48 '

l 3e&+e2 —4B
Ush2 =

3 eI+3e2 —4B

1 (3ei+eq)(et —ei —48)
Udcf =

3 (e& —ez)(3e3+@& 4—8)
(5.13)

(5.14)

(5.15)

(5.16)

4r —1 hT 4r —1 AT
v 3(r —1) T, V 3r T,

The temperatures of the four regions are then

(5.23)

5,0

example, let us approach this point along the AS=0 curve
[equality sign in Eq. (5.18)]. In the limit of small super-
cooling hT =T, —TpT «T, we then have

To solve the eight quantities from these six equations we
need to specify two of the quantities. Since the propaga-
tion velocity of the defiagration front depends on the un-

known microphysics within the front, we are not able to
uniquely determine the quantities from the initial condi-
tion

5.0

4f' —l TPT
&O=gq 30 r —1 Tc

4

(5.17)

but are left with one unknown parameter, which we can
take to be, e.g., e3 or vd, f. Its allowed range is, however,
restricted by the entropy condition

10—

0.5
I

I.G
i

I 5 qz!EI
'2

363+6)—4B

363+6')
(5.18)

The possible region in the (ei, et) plane is restricted by
ei p e&+48 and Eq. (5.18). We use Eq. (5.14) to map this
region onto the (ei, eo) and (eq, e2) planes (Fig. 10). We see
that the density of the H bubble is restricted by

6'3 & 6'O —4B (5.19)

from below and by the entropy condition from above.
The H phase can be hotter or colder than the unshocked

Q region (with temperature TpT ~ T, ), but it is always
colder than the shocked Q region and below T, .

From the last equality of Eq. (5.14) follows

E2 —B 6) —B
6') —B E'O —B

Substituting this into Eqs. (5.15) and (5.16) gives

2
Ush 1 Ush2 3 ~$ (5.21)

Since a shock always propagates faster than sound into a
medium at rest, we have

UshZ &&s &Ushl . (5.22)

Thus the first shock heats the Q region froin eo &e&+48
(below T, ) to e» ei+48 (above or below T, ) and the re-
flected shock further heats it to ez (above or below T, ).

Figure 10 is general and applies for arbitrarily large su-
percoolings. The small-supercooling scenario needs only
the region very close to the point e~,eH. As a concrete

I l

05 IQ i5

FIG. 10. (a) and (b) show the allowed energy density com-
binations for the process of Fig. 9. For a given initial Q density
eo there is a range of possible 0 densities e3 and corresponding
deflagration velocities vd, f represented by region I. Regions II
and III give the corresponding Q densities ei {shocked once) and
e2 (shocked tv&ice).
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Tp ——T, —hT,

T) ——T, + AT=T, ,
(4r —1) hT
6r(r —1) T,

T2 ——T, +ET,
(5.24)

(4r —1) b T
6r r —1

and the shock velocities are

4r —1 hT
Ush1 =&s &+

3T T~

4r —1 hT
Ush2 =s

c

(5.25)

yVr

XCs

In our symmetric idealization all of the matter is
momentarily at rest at time ti when the refimted shock
front collides with the phase boundary. The space is now
divided into narrow H and wide Q regions. Since the
shocks heated the Q phase to «2 & @3+48, the defiagration
front can no longer propagate in the same way as before
t&. Depending on the values e2, e3 there are several possi-
bilities as to what happens in this collision.

One possibility [process (a} of Fig. 11] is that a some-
what different deflagration configuration arises, resem-
bling the surface defiagration in Ref. 22. Here the refiect-
ed shock front penetrates into the H phase. The fiow
velocity U~2 is related to the densities by

cCs

QVr

2 )

(b)

(c)

3(e2 e4)(eq e4—48)— —
Ua =

(3@2+e4}(@2+3«4 —48)

3(e4-e3)'
(3«4+ e3)(«4+ 3E3)

3(es —E4)

(3&5+«4)(e5+3e4)
'

and from this we can solve

(5.26)

FIG. 11. Spacetime diagrams for three different processes
that can follow after the matter has been momentarily brought
to rest at t =t},. (a) The reflected shock fronts penetrate the H
region, heating it up. The deflagration front is slowed down,
but proceeds further into the Q phase. {b) The direction of the
phase transition is reversed and a compression front begins to
eat up the H region. The produced Q matter follows the
compression front leaving a rarefaction wave behind. (c) The
phase transition may halt. The phase boundary then becomes a
contact surface parallel to H and Q flow world lines. This re-
quires that H and Q be brought to the same pressure, H pres-
sure raised by a shock and Q pressure reduced by a rarefaction
wave. Particle paths are denoted by lines with arrows.

«38+ te3 8 +[(e2—8)—«3][eq(e2 —48}e3—(e2 —8)e3 ]I'
E'g =

e2 —e3 —8
2

64

(5.27)

The deflagration front gives again an entropy condition

«4 (3@4+ez 48)—
&r

&2 —8 (3«2+ e4)'
(5.29)

The allowed region in the («4,E2) plane is the same as re-
gion II of Fig. 10 in the (e3,e2) plane. Mapping this re-

I

gion on to the (e&,«q) plane, we see that this process is al-
lowed only in the case of a rather moderate heating of the
Q phase corresponding to the slowest defiagrations.

If the Q phase has become too hot to allow deflagra-
tion, we might expect that the direction of the phase tran-
sition be reversed. Figure 11(b) shows this kind of
compressive transition of H matter into Q matter.
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1+Up
e4 —8 =(e2—8)

1 —Ug
(5.30}

Ur+Cs
Ua=

1+U„c,
(5.31)

Figure 12 shows the region allowed by the entropy condi-
tion

e& (3es+ eq —48)

(3e4+e3)'
(5.32}

There is a third kind of process possible, not restricted
by an entropy condition. This is a configuration, where
the Q and H phases have equal pressure and flow parallel
to a contact surface between them. A rarefaction wave is
needed here to lower the Q pressure. As the Q matter is
blown outwards from the rarefaction wave, the contact
surface is pushed towards the H phase, creating a shock
there [see Fig. 11(c)]. In most cases the further evolution

Since the H phase is at lower density, a shrinking H
phase cannot maintain the density of the Q phase. There-
fore a rarefaction wave forms here. The quantities on
both sides of the rarefaction wave are related by

—2/V 3

, H at CH
I

h
SgH

becomes intractable after a few collision periods. The
direction of entropy growth, however, points towards the
state of maximum entropy, where the matter has settled
down to coexisting Q and H phases, reheated to the criti-
cal temperature (Fig. 13). Supercooled Q matter at
TPT & T, has an entropy density

4m

9O
PT (5.33)

while the average entropy density for the coexisting
phases 1s

s~~ [hgs +——(1—h)gs ] T,

I

1 Sq

FIG. 13. The entropy of supercooled Q matter (bottom line)
is lovver than that of the maximum-entropy state (top line)
where the same energy is distributed to H and Q regions at the
critical temperature. h and q are the required volume fractions
of the two phases.

where h is the H volume fraction. If we assume that this
state is reached fast enough to let us ignore expansion, h

can be solved from energy conservation:

3 l' 1—
4 r —1

TPT

Tg
(5.35)

and the entropy production is then

s(2H —ss=( —', 6 —25 + —,'5 )gs T, (5.36)

10 where 5=(T, —TpT)/T (see Fig. 14).

s
SQ

0 4—
1

0.5

FIG. 12. The first two processes [(a) and (b)] of the configu-
rations in Fig. 11 are restricted by an entropy condition for the
phase transition front. Thus, they are not possible for all values

(e2, e3) that may be produced in the first stage (region III of Fig.
10), but only for certain parts [(a) and (b)] of this region. Pro-
cess (a) is allowed only if the deflagration front of the first stage
chose to proceed slowly leaving the H rnatter close to the
minixnum allowed density. Process (b) is allowed close to the
AS=0 curve.

0.2 0.4 0.6
TpTiT

0,8

FIG. 14. The entropy densities of the two states of Fig. 13 as
a function of the temperature of the supercooled Q matter.
[(4—r)t3r]'~ T, is the lowest temperature (corresponding to to-
tal conversion to 0 phase) from which the phase transition can
reheat matter to the critical temperature.
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Actually the expansion will maintain a small tempera-
ture difference

b, T/T, -(XR) (5.37)

between coexisting phases of size -R. The question is
whether the temperatures are brought within this distance
of T, in a time less than the phase transition time
-0.22/X. If they are, then the latter part of the phase
transition era will proceed peacefully as described in Secs.
VI—IX.

There is one scenario which is easy to follow. Assume
the initial deflagration velocity is very small. In the
(e'q, eq ) plane we are then very close to the equal pressure
line eq =as+48. Because of the small velocities this is a
case with very low entropy production, even though we
are farthest (for a given eq } from the line M=O. The de-
flagration process then remains allowed even after repeat-
ed reheating by shocks. The bubble growth would then
proceed as shown in Fig. 15. As weak shocks pass
through the Q and H regions, these are gradually reheated
towards T, (see Fig. 16). When either region is finally
heated above T„ this will give way to some other process;
to make an estimate, assume, however, this takes almost
all of the phase transition time. In that case hT =T, —T
is reduced by a factor -XR;. Since from Sec. II we have
that R; and hT] —= T, —Tp~ are related by
b T~/T, -R;/20 m-10 XR;, we are still a factor of 10
away from the criterion (5.37).

Since we intentionally chose a case with a very low en-
tropy production rate, this is more like a worst-case
scenario, and we cannot conclude that T, would not be at-
tainable with accuracy (5.37} in general. Note that the
factor 10 above was independent of R;, although the f-
ina hT was proportional to R;, This is because our cri-
terion was also -8, and we assumed R -R;. In the case
that the initial bubbles are fairly small (-centimeter or

t2

5.0—

, vde) = 0.05
def = 0 0~

0.5
I

l 5 q /E3

FIG. 16. The process of Fig. 15 in the {eq,e~) plane. The
shocks first raise twice the density of the Q phase, then twice
the H phase, and so on. For comparison we show also a process
with a 5 times faster deflagration. T, is reached now much fas-
ter but less accurately

less) they will during the phase transition coalesce to
larger ( —1—10 cm} bubbles, q which will make the cri-
terion (5.37) easier.

The methods of this section can also be applied to the
problem of a dying Q droplet. Assume a situation like the
one we have at t =t, of Figs. 9 and 11, but instead of the
Q regions being wide and the H regions narrow, let us
study the opposite situation. The slow-deflagration
scenario [process (a)] would then proceed as shown in Fig.
17. When not disturbed by reflected shock waves, the de-
flagration fronts would finally meet, eliminating the Q
phase. Because of the outward flow, a rarefaction wave
forms as the source supplying this flow has vanished.
The final rarefied density e& is very close to the initial
unshocked density e3 [they are equal to second order in
(e&—e3)/e3]. The rarefaction wave will finally catch up
with the shock wave and reflect from it, slowing down

FIG. 15. In the slow-deflagration scenario shocks gradually
reheat both the Q and H phases, until at time t2, one of them is
heated above T, . This figure is for 8;=1 m, T~ ——0.96T„and
Ud, q ——0.01, which gives t2 —to ——40 nsec.

))'
II "Q drOPlet (e2)

FIG. 17. A dying 1D Q droplet.
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and weakening the shock front. Quantitative analysis can
be performed as above.

It is clear that a detailed analysis of the initial shock-
wave collision stage is extremely complex, especially in
three dimensions and for deep supercoolings„and above
we have just studied a few important initial processes. It
has not been possible to prove that the temperature mill
rise back to T, and halt for the moment further expan-
sion. However, this is still quite plausible and we shall
proceed to study further expansion-dominated bubble ex-
pansion in the following section.

VI. THE SNAB.I.-SUPERCOOI. ING-
PHASE-SEPARATION SCENARIO

After the events described in the two preceding sec-
tions, the Universe is in a state containing mainly leptons,
neutrinos, and quark-gluon matter at the temperature
T=T, . In addition, there are small bubbles of hadron
matter of average size r; and at an average distance R;
(r;/R; =Ud~/c, &&1). The whole duration of this initial
period, as computed above in Eq. (4.7), is much less than
the total duration 0.22/g of the phase transition period, if
the initial supercooling is small (the parameter wo is
small). We shall now assume that this is the case.

If the initial supercooling is large, the shock-front col-
lision stage described in Sec. V will last over the entire
phase transition period. This very turbulent scenario
will not be discussed further in this paper, although it
may lead to potentially very interesting phenomena like
black-hole formation or gravitational radiation.

To describe the further sequence of events we shall also
first use a (1 + 1)-dimensional approximation, i.e., assume
that the bubbles are rather slabs. This greatly simplifies
the discussion of the essential points, transport of entropy,
and baryon number. %'ith the intuition gained by this
simplification, it is easier to discuss the physical (1+ 3)-
dimensional case (Sec. IX).

In this scenario the later history of the phase transition
is as shown in Fig. 18. From r; on the Universe goes on
expanding and the increase in volume is filled by convert-
ing matter from the denser quark phase to the less-dense

hadron phase. The hadron bubbles grow until all the
Universe is filled by hadron matter at t =tf. The most
essential difference between this scenario and the scenario
in Sec. III is thus that the phases are entirely separated.
Note also that with the linear scale of Fig. 18 all the com-
plex events of Secs. IV—V take place within the line t = t;.
It is thus very singular. Some remnant of the turbulence
of this initial period may persist to psec time scale to dis-
turb the expansion dominated behavior shown here.

A very similar model for the phase transition in
nucleus-nucleus collisions has been proposed by Van
Hove. Models for nucleus-nucleus collisions corre-
sponding to the scenario in Sec. III have been discussed in
Refs. 17—23. In these cases the system is actually much
more complicated since it is both inhomogeneous and
nonisotropic.

Consider then more quantitatively how the conservation
of entropy constrains bubble growth. Baryon number will
be neglected here and discussed in Sec. VIII. Since
T =T, the entropy densities of the Q and H regions in
Fig. 18 are sg and s~. Since p =p, and w =e+p, +T,s
we can as well use the enthalpy density m. The total
enthalpies in a region of radius R (t) are then

Wi, —wHh (t)R (r), W~ =w&[1 —h (t)]R (t)3, (6.1)

where h (t) is the volume fraction of hadron matter. The
conservation of total entropy implies that
W= 8'~+ mq

——0 or that
T

3R 3R
Wi, ——wHR h+h = —W =wgR h —(1 h)—

R

(6.2)

Since w~/wH r this is just Eq.——(3.7). In the (1 + 1)D ap-
proximation, entropy conservation then means that there
must be a flux of enthalpy across the wall from the Q to
the H regions determined by

2I'~R =8'I, .

This gives the required enthalpy flux

F~(t) =w& R (t),2r —1
(6.3)

the entropy flux is simply F, =F~/T, . F (r) can thus be
computed from R (t) in Eq. (3.9).

Given R(t) and h(t) we can also compute the velocity
vF and path of the bubble walls in Fig. 18. In the
(1 + 1)D approximation we simply have

dth(t)=2 f, , U~(t'), (6.4)

froxn which

(6.5)

FIG. 18. The sequence of events in the smail-
supercooling —phase-separation scenario. Initial bubble nu-
cleations and shock front collisions take place within the singu-
lar line t =t;.

We shall from now on normalize the curvature parame-
ter R (r) so that R ( r; ) =R;, the average distance between
the hadron bubbles at the start of the growth period. The
growth of a single bubble is then shown in Fig. 19 and the
variation of the wall velocity U~ in Fig. 20. As concerns
the magnitudes, they are essentially determined by XR;,
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baryon-number density one similarly obtains

(7.4)

and the baryon-number flux across the front is

Jy =28 nqUq =2R npUII

where n~ is the tiny initial cosmological baryon-number
density (n, /s(2 ——10 ) and vi, and u~ are given in (7.3).

Consider then the initial and final values of the dif-
ferent velocities. From the above equations we directly
obtain

' 1/2
3r 4r —1

uF(t;)=vt, (t;)= XR;,
2(r —1) r —1

' 3/2
1 3

uF(tI) =uq(t/) =—
2 r —1

gR; .
(7 5)

If we now Lorentz transform from the rest frame of the
front to the frame in which uF has the appropriate value,
the first of Eqs. (7.5) implies that uh is transformed to
zero and the second that u~ is transformed to zero. Ini-
tially matter inside the H bubble is at rest, while at the
end matter in the Q droplets is at rest. The situation is
thus as shown in Fig. 21. The pattern is clearly singular
at the end and at the beginning. The required flow pat-
tern at the beginmng has to be created by the complex
bubble nucleation and shock-front collision events dis-

(b)

FIG. 21. The flow patterns |a) near the birth of a hadron
bubble and tb) near the death of a quark droplet. The patterns
are singular at the beginning and the end.

3 3
uti =(r —1)uF ———

2 r —1

(clearly nonrelativistic) leaving behind a region at lower
density

1+cs
6'p =6'I, exp

es
arCtanhU~

=eH 1 — XR;
6

r —1

This region expands at the speed of sound c, =1/V 3. Be-
tween the regions of high (eH ) and low (e„) density there
is a rarefaction wave, the front of which has the velocity

1/2

XR; .
es+ Un

Ur=
1+esUa

3
Cs+ r —1

Farther away the fiow will be slower (since the H fluid
is at rest halfway between droplets). It is just this velocity
gradient that keeps ei, constant in the presence of expan-
sion. As the rarefaction wave proceeds into these regions,
it gets narrower and the density drop across it becomes
smaller, until it disappears half-way (Fig. 23). The time
taken by the rarefaction wave to travel this distance is

1 r'/3R,
~r

es

cussed in Secs. IV and V. At the end the outward ejection
of hadron matter from the quark droplet will lead to inho-
mogeneities in the matter distribution of the Universe,
which we estimate next.

After the quark droplet has decayed the flow pattern
will still persist for some time further away. Since this
pattern was keeping the density of the H region constant,
parts of the Universe will stay at density e„=eH until a
rarefaction wave from the droplet death arrives. Since
this flow is carrying matter away from where the droplet
was, a region of lower density forms there.

Looking closely at the droplet decay site (Fig. 22) the
expansion of the Universe can be ignored for a short time.
We then have the dying droplet case of Sec. V. Possible
effects from the baryon number are ignored here (see Sec.
VIII). Hadronic matter is flowing away with the velocity

1/2

XR;

) 0)efa(:tion
~wave

JE

)I

FIG. 22. The death of a quark droplet produces a rarefaction
wave which leaves behind a region of lower density.

FIG. 23. The rarefaction waves disappear as they enter re-

gions of slower flow. Finally we are left with alternating high-
and low-density regions.
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AT
C

During this time the red-shift has reduced the tempera-
ture at the droplet decay site by an additional

1/2
e 3r'"

XR;
3

' 2v'r —1

corresponding to a density loss

6
e v'r —1

Thus we are left with alternating high- and low-density
regions with a density difference

]/3 12
e &r —1

T.11X10
200M V 1

VIII. BARYON NUMBER

As with entropy, the essential constraint here is the
conservation of total baryon number. If Nq and NI, are
the baryon numbers in the Q and H regions, we thus have

N, (t) = Ni, (t), — (8.1)

(the numerical value is for i =3}.The inhomogeneity pro-
duced is proportional to the nucleation scale R;, i.e., to
the supercooling (T, Tpr)/T—,. Supercooling by a few
percent will only lead to an inhomogeneity of 10 3. This
would persist until the nucleosynthesis era, but with this
magnitude its effect on nucleosynthesis is none. Acoustic
damping would smooth it out before recombination, so it
will not affect the microwave background. If the actual
supercooling were larger, PR; = 1, the density fluctuations
would correspondingly be larger.

I i

/"q Ph
FIG. 24. The net baryon-number density along the critical

curve (Fig. 2) as a function of p in the quark phase (n~) and in
the hadron phase I,'nq, ).

where To is the transition temperature at p &0 (now we
include the contribution of the nucleons to the equation of
state for the hadron phase). The chemical potential there-
fore increases by a factor of 2—4 when crossing the de-
flagration front.

As a second alternative, assume that the transport
mechanism is such that it transports only entropy but no
baryon number. This is the case if the radiative enthalpy
flux

gv+g'e+gy Tc Th
Nyy

ghadron+8 v+ge +g y

(8.4)

dominates. Then no baryon number is transmitted
through the surface and all the baryon number originally
within the Q region remains there, i.e., Nq

——0. Solving
this equation from (8.2) one obtains

'r —1

3R R
Nq(t) =nq(1 —h)8 nq—

(8.2)

nq(t)

nq(tr)

1 — h (t)

1 —h (t)
(8.5)

rbo
l

To
(8.3}

Nt, (t)=nt, hg +nt, 3g g
r —1

We thus have one equation for the two quantities and fur-
ther assumptions are needed to solve the problem.

As a first example, consider the hydrodynamic transfer
of matter. According to Eq. (7.4) then nq/nz rand Eq—s.
(8.1) and (8.2) are seen to imply that further both nq and

nI, are constant. Expansion does not dilute the densities.
Instead, the increase in volume is obtained by converting
matter from the dense Q phase to the dilute H phase.
Baryon-number densi. ty behaves like s.

If s and n are related to T and p, some difference ap-
pears, however. The entropy density s jumps from s~ to
sH and the temperature from Tq ——T, to T~ so that the
difference Tt, —T, is tiny [Eq. (7.3)]. The situation with
n and p is shown in Fig. 24. According to Eq. (2.7)
nq/n~ ——r implies that

The resulting nq(t) thus grows rapidly with t The ap-.
parent singularity of (8.S}near the end of the phase transi-
tion is unphysical. The maximum value nq can have is s~
and this would happen at

' 1/(~ —1)

1 —h(t)=—1 nq =10
r sg

Then all the baryon number within the initial quark drop-
let volume R; would be condensed to a quark nugget of
approximately nuclear matter density. %e have here
given a kinematic description of what cou1d be happening;
it is a much more demanding problem to give a dynamic
reason for why this should happen.

One could also try to compute nz(t), which must de-
crease, since all the baryon number stays within Q. This
quantity, however, depends on what happens within the
initial singularity and is incalculable within the present
approach. The difficulty is analytically seen in that an in-

tegral over dh /h appears in the integration of Ni, ——0.
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%e have here studied how a quark nugget could be pro-
duced if the properties of the Q-0 interface are such as to
suppress transmission of baryon number. Cosmologically
as important a question is also whether these nuggets can
be preserved in the hot environment after the quark-
hadron transition. " ' The dynamical properties of the
interface play a significant role here, too, and it would
seem to us that if the nuggets can be formed they can also
be kept.

IX. SEQUENCE OF EVENTS
IN A THREE-DIMENSIONAL CONFIGURATION

other. This is followed by a rearrangement when the Q
region becomes disconnected and forms shrinking droplets
surrounded by a connected H region (Fig. 25).

In this configuration there is one bubble per volume
R (r) /W2. The radius pi, (t) of the bubbles is related to
their volume fraction [Eq. (3.8)) by

2 pI (&)
h(r)=

3 R(t)
(9.1)

The bubbles fill half the space [Ii (r) =0.5] when

pi, (i)/R (r)=0 44 a.nd

In earlier sections we resorted to an unrealistic but easi-

ly calculable plane-symmetric phase separation configura-
tion. In reality the bubbles and droplets are spherical and
this complicates the sequence of events.

The small-supercooling —phase-separation scenario be-

gins with a brief period of bubble nucleation, deflagration,
and shock-front collisions. The structure of a spherical
deflagration bubblet~ is different from a plane-symmetric
bubble (slab). The shock front itself is fairly weak, but it
is followed by a wave with increasing density. Thus the
simple shock collisions and reflections of Sec. V are re-
placed by weak collisions followed by a longer period of
increasing flows rushing against each other. The detailed
study of these events would be a nontrivial task, especially
because of the complicated geometry. However, this
should not be relevant to the end result. After sloshing
around for awhile, the Q region has reheated back to the
critical temperature and settled down. The further evolu-
tion is governed by the expansion.

For simplicity we assume an idealized situation, in
which all the H bubbles have the same size and are distri-
buted, e.g., in a hexagonal or cubic close-packing config-
uratio, with equal initial distances R; between centers of
nearest neighbors. These bubbles are surrounded by a
connected Q region and wiB grow until they meet each

2&r —1
X( r t; ) =— (arctan&4r —1 —arctanv'2r +1)

=0.06 .

After this the surface energy would be smaller with a
droplet configuration. However, the bubble configuration
persists until the bubbles touch [pi, (t)/R (t) =0.5] at
h (t) =i/2n/6=0. 74 and

2V'r —1
X(t —t;)= arctan&4r —1

f —1—arctan &4r —1 —2v 2'
3

=0.12 .

Now both Q and I regions are connected. As the Q
region shrinks further it becomes disconnected and forms
droplets. These will then assume a spherical shape. The
surface energy would further be reduced if the droplets
coalesced to form fewer and larger droplets. This is, how-
ever, not likely to happen if our scale is already —1 m,
since the forces responsible are not strong enough. q For
the same reason, it takes some time for the droplets to be-
come spherical. After that has happened the droplet ra-
dius pq and volume fraction are related by

pq(t)
q(t) =1—h(t)=

3 R(t)
(9.2)

Inverting Eqs. (9.1) and (9.2) gives

1t3

(9.3)

FIG. 25. The phase-separation boundary in the three-
dimensional case. The bubble configuration (a) of the early
stage of the phase transition changes to a droplet configuration
(b) in the late stage.

d8'~ d8'&
F~4m.p =

dt dt
(9.4)

(see Fig. 26).
Assume the enthalpy flux I'~ =w~vi, ——iv~vq is purely

hydrodynamical. In the present geometry it must satisfy
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FIG. 26. The evolution of the bubble and droplet sizes ac-
cording to Eq. (9.3}. At t =t; there is s brief period of bubble
nucleation and shock collisions not visible in this scale. The
bubbles then grow until they touch each other at pq

——
~ R. The

phase boundary then rearranges to form shrinking quark drop-
lets. For behavior close to t see Fig. 28.

where W =w ( —, )np is the enthalpy of one bubble and/or
droplet. Since w stays constant, taking a derivative yields

1
vg =p, vq= —pr

for the bubble, and

(9.5)

vq= —p vs= rp (9.6)

3
4v 2~

1/3
hR +3hR

3h 2/3

(9.7)

pq=
1/3

3 qR +3qR
4~2~ 3q'"

where h, q =1—h and R are frain Eqs. (3.8) and (3.9).
From (9.7) it would follow that the bubble growth velo-

city pi, ~infinity as t~t; and similarly pq ~—infinity as

for the droplet. Note that the inside velocity with respect
to the surface equals the rate of change of the surface ra-
dius. Since density is kept constant, the flow world lines
stay at fixed distance fram the center point. This is in
contrast with the plane-symmetric case where, because of
transverse expansion, a fiow towards the center plane is
needed. Taking a derivative of Eq. (9.3) yields

FIG. 27. The flux I' =wHvt, ——wgv~ (represented in the figure
by vi, ) between the Q and H regions required to keep them both
at the critical temperature, and the required temperature differ-
ence hT to cause this flux.

P =
r(r —1)

1/2
hT

C

(9.8)

Using hT from Eq. (3.12) the droplet radius is then given
by

t~t~ Clearly. some modification is needed close to these
end points. For the bubbles this is of no concern, since we
treated the initial times already (Secs. IV and V) and no-
ted that the expansion-dominated stage begins only some-
what later. We will next address the droplet decay.

The flux is caused by a small temperature difference
b, T=T, —Ti, between the Q and H regions [Eq. (7.2)].
The flux velocity and the corresponding temperature
difference are shown in Fig. 27. This difference implies
wi, & wH. In calculating the required fiux we approximat-
ed wi, ——iv~. As t~tf, hT grows large and this approxi-
mation is no longer valid. On the other hand, in reality
the H region cannot cool faster than the expansion rate.
What happens is that, since the H region is no longer
maintained at wH, the required flux is actually lower than
what we calculated. Thus the droplet shrinks slower and
more time elapses, causing a cumulative time error in our
approximation. The time t =tf is actually passed in a sit-
uation where small droplets still remain. As the droplets
get small, the flux from them becomes insignificant and
the cooling of the H regian becomes doininated by the ex-
pansion.

Finally we can make anather approximation, where we
first ignore the droplets in calculating the expansion fac-
tor R (t) and the temperature of the H region. According
to Eq. (7.2} the droplet will shrink at a rate
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1 12
p~(t) =ps(t&) — f 1 — 1+

»(» —1} '(» —1

' 1/2

X(t —tI )

—1/2 1/2

=p (&()— Ix (x' —1)'~' —ln[x +(x' —I)'~'] j',
8 3»X 1

(9.9)

where
'~ 1/2

12X=2 1+ — X(t tz—)
r —1

Using
1/2

& T(&)= X(t r&) T, —,3
(9.1Q)

we get a simpler formula

p, (&)=p, (ti )— 1 12

»(» —1)»—1

1/4

3X I [X(& t~)]—'~' [X(—t, t&)]—'~'j . (9.11)

Here t1 ~ t~ is some initial time when our new approxima-
tion becomes valid.

%e call our earlier approximation "volume dominated"
(VD; required fiux determined from change of volumes of
the regions) and the new approximation "red-shift dom-
inated" (RD; flux determined by temperature difference
caused by red-shift). We switch from VD to RD keeping
AT constant. The time t & t~ is replaced by a time t1 p tI,
solved from (9.10) so as to give the same b, T. This jump
ht is a first approximation to the cumulative time error
mentioned earlier.

Both approximations make an error in the average
enthalpy density. In VD we use

~a =H =&4(»
9Q

instead of

where

—(qR+ —,
'
qR) =

' 1/3
» v'3+4(» —1)q

1+(» —1)q (» —1)'"
1/3

„,v 3XR, .
1 )3/2

486r
q(t, )= ", (XR, )'".

2(» —1)
(9.16)

(l Pq

Thus 5w((( grows and 5ui(2( shrinks as q~O. We mini-
mize the error by making the switch when 5w(ii ——5u((2(
which yields

(T, hT)—
h =gh4~

and make an error

NH 25m(i(-4b, T =4»(» —1}U
Tg

(9.12)

too much. In RD we ignore the higher enthalpy of the
droplet and make an error

I
I

l0 ns

-. 6Cm

4cm

)-PCm

t~

I
/

/

/

Th Tc

0.05

5M(2 ( q ( 18@—tOH ) (9.13) 0.05

. 2/3
5~(() 3~2 (qR + ,qR)—

=»(» —1)
NH 4/3 (9.15)

too little. We can think of this loss of enthalpy density
5m~1]+5m(2] as being due to the expansion during At. %'e
can express both errors in terms of q:

5N(2)
=q(» —1)

—0.0 I

FIG. 28. The last stages of a C'30} quark droplet. This figure
is for R;=1 m. The figure shows the switch between our two
approximations. The curves left of t~ show droplet size and
velocity U~ in the VD approximation (see the text). UI, is propor-
tional to the square of the temperature difference hT between
the two phases. As AT and Uq grow, this approximation be-
comes worse giving too fast shrinkage. Thus, the last moments
are treated in the RD approximation, which is good when the
droplet is suffiriently small.
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region of
tower

density

FIG. 29. The flow patterns near the death of the 4,
'30) quark

droplet.

In Fig. 28 we show the final stage of the quark droplet
as described above. Using the reference values r=3,
+=1/10780 m, and R;=I m, we have q(t&)=0.00056,
which corresponds to a droplet radius p(t i ) =6.5 cm.

In VD this radius is reached at t = tf 10.6 n—sec. More
important, the droplet is then shrinking at the rate
—p=0.0068=2.0 mm/nsec, corresponding to a tempera-
ture difference b,T/T, =0.00027. In RD this b, T is
reached at t = t; =tf + 8.0 nsec.

As we now let the expansion determine the cooling of
the H region and thus the shrinking rate of the droplet, it
takes an additional 21.2 nsec for a droplet of radius 6.5
cm at r = tf + 8.0 nsec to die. The final velocities are

u~ =0.013=4 mm/nsec,

uq =0.039=12 mm/nsec .

Since the fluid is flowing outwards with a velocity
ul, —uv, the flow will leave behind a rarefied region after
the droplet has decayed (Fig. 29). %'e have not done a
quantitative study of the following evolution, which
would involve spherical rarefaction waves. Note, howev-

er, that the final velocities are about 100 times larger than
in the planar case. This implies much sharper inhomo-
geneities.

X. CONCLUSION

Obtaining a detailed picture of the sequence of events
during the quark-hadron phase transition era of the early
Universe at t-10 psec would be very important cosmo-
logically. In particular, one would hope to be able to
compute the resulting inhomogeneities and concentrations
of baryon number. Unfortunately, QCD is so complicat-
ed a theory that we have only little first-principles infor-
mation on the equation of state and none at all on the ki-
netics of the transitions. Thus one has to resort to a study
of models and scenarios.

We have studied the small-supercooling —phase-
separation scenario in detail. In this scenario, there is

first a short period of initial supercooling and bubble nu-

cleation. The bubbles grow and the shock waves preced-
ing them collide. After a while the turbulence dies out
and the Universe settles in a state in which there are small
hadron bubbles immersed in quark matter at T =T, . The
essential parameter characterizing this stage is a new scale
appearing in the problem: the average distance R; be-
tween the bubbles. The consequences of this scenario are
as a rule proportional to XR;, the ratio between R; and
the Hubble distance I/X. We estimate that, on the aver-

age, XR; -10 . However, even larger values cannot be
excluded.

After the short initial period the expansion of the
Universe continues at fixed temperature and pressure by
converting more and more matter from the denser Q to
the less dense I phase until all the matter is in the form
of hadrons. The sequence of events can be discussed in
detail and various quantities describing it can be expressed
as functions of XR;.

The crucial question, of course, is what effects remain
after the transition is over. A fairly reliable prediction is
that there will be a density inhomogeneity

concentrated at the positions of the initial hadron bubbles.
On the average, this is of the order of 10, but again, if
large supercoolings can be sustained, R; approaches the
Hubble scale 1/g and correspondingly larger inhomo-
geneities will be produced.

A particularly important but very speculative question
is that of enrichment of baryon number in the Q droplets.
Even in the framework of hydrodynamic matter transfer,
this is a dynamical question depending on the properties
of the quark-hadron interface. We analyzed the enrich-
ment in the two limits of complete transparency and in-

transparency relative to transfer of net baryon number. It
seems possible that if the properties of the surface are
such that quark nuggets are formed, they will also survive
the hot period after the phase transition.

Before we can make definite predictions of the conse-
quences of the cosmological quark-hadron phase transi-
tion, both considerable theoretical and experimental ad-
vances are needed. Although the little bang formed in ul-

trarelativistic nuclear collisions is so totally different from
the Universe at T-200 MeV as far as size, isotropy,
homogeneity, and net baryon number are concerned, the
forthcoming nuclear collision experiments should shed
much new light on these questions.
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