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%ave effects in the gravitational lensing of electromagnetic radiation by compact objects in astro-

physics are treated. In the regime ~here the influence of diffraction is severe, solutions of the wave

equation appropriate for lensing in astrophysics (which is of the form of the Schrodinger equation

for Coulomb scattering) are obtained. In the %'KB regime, previous formulations are refined and

extended to the case in which a part of the source is directly behind the lensing mass. %ave effects
tend to be largest for this geometry which requires that radiation at a caustic be treated. The auto-

correlation function of the electric field and the related frequency dependence of the radiation are

emphasized, in addition to the diffraction pattern, to measure the deviations from the solutions ob-

tained in the approximation of geometrical optics. In contrast, gravitational lensing is independent

of frequency in the usual treatment which is based upon geometrical optics. Numerical computa-
tions are performed to indicate how the wave effects depend upon the relevant parameters induding

especially the size of the source. %'ave effects are most significant at radio frequencies and for lens-

ing by stellar and planetary masses. The importance of wave effects is governed by the ratio of the

Schwarzschild radius of the lensing mass to the wavelength of the radiation.

I. INTRODUCTION

The cases (some 5—10 at present) in which gravitational
lensing has been identified in astronomy have all involved
a distant lens having the mass of a galaxy. It has been
recognized that potentially detectable effects of gravita-
tional lensing occur even for masses as small as that of a
single star. ' Lensing by galactic masses is recognized by
the two or more images, separated by arcseconds in angu-
lar location, that can be identified. In lensing by a stellar
mass, the predicted separation of the images is not large
enough to be resolved. The interest in these lenses has
thus centered on their ability to brighten the single observ-
able image of the source. Unfortunately, distinguishing
characteristics for this type of lensing that would make it
identifiable are not so readily available as in the case of
lensing by galaxies. For example, detecting variations in
the brightness caused by the relative motion of the source,
the lens, and Earth requires about 100 years for typical
parameters when the lens is at cosmological distances.
The time scale can be much shorter (roughly days) for
lensing masses within our own Galaxy. Here, however,
the probability for lensing along a particular line of sight
is quite small and the infrequent changes in brightness
(less than about a factor of 2) that might be expected for a
small fraction of sources is likely to be overshadowed by
unpredictable variations due to other causes.

The foregoing description of gravitational lensing has
been based on the approximation of geometrical optics.
For lensing by solar and planetary masses, wave effects
might be detectable and provide additional characteristic

properties necessary to identify gravitational lensing by
such objects. An evaluation of the mutual coherence that
occurs has been performed using a WKB approximation
for a restricted range of the possible geometries. We
have previously obtained the appropriate wave equation
which is of the form of the Schrodinger equation for
Coulomb scattering and have evaluated the solutions for
an infinitely distant source (incident plane waves) to ob-
tain the diffraction pattern. A key consideration for grav-
itational lensing by objects of stellar mass can be the finite
size of the source (incident waves with curvature) and is
not covered by our previous treatment.

The characteristic angular scale in gravitational lensing
by a point mass M is

=10 [(M/Mo)(10 kpc/L)]'~ arcsec,

where L is roughly the distance to the lensing mass un-

less the lens is much closer to the source than to the ob-
server [see Eq. (16) for an exact expression] and Mo is the
mass of the Sun. Lensing effects ordinarily are expire:ted
to be significant only when the source, lens, and observer
are aligned within approximately the angle 80. When the
angular size of the source is greater than about Ho, the rel-
ative influence of the lensing is reduced. Although this
may well be the case for lensing masses with M &Mo and
located outside the Galaxy (L ~10 kpc), the possible
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detection of quite small alterations in the properties of the
radiation is not an unreasonable expcx:tation. Wave ef-
fects in gravitational lensing by a point mass depend upon
the parameter

y =4@6M/c A=ZX10 (M/MO)/A. (cm} (2)

which measures the number of Fresnel zones that are con-
tributing to the lensing. It is essentially the square of the
ratio of 80 to the Fresnel angle (lt, /L)'~ for a wavelength
A, of the radiation. Except for a factor of 2m, it also is the
ratio of the Schwarzschild radius to the wavelength A, for
the radiation. %'hen y= 00 geometrical optics applies and
when y ~~1 the &KB approximation is expected to be ac-
curate. When y=l severe effects of diffraction should
occur and less approximate solutions of the wave equation
are necessary.

In addition to assessing the alterations in the properties
of radiation caused by objects of substellar mass, it is also
desirable to determine precisely how these effo:ts depend
on the angle 8 between the lensing mass and the source as
seen by the observer. In benchmark estimates of the prob-
ability for gravitational lensing along a particular line of
sight, appreciable effects ordinarily are assumed to occur
only for 8 & 80. This probability is quite low (=10 } for
lensing due to masses without our own Galaxy but can be
near unity for lensing masses at cosmological distances if
the mass density of the Universe is near the critical value
for closure. The analogous probability for lensing by sin-
gle stars when radiation passes through other galaxies or
clusters of galaxies can be much greater than for our own
Galaxy and in some cases may also be near unity. Studies
of gravitational lensing by compact objects M &Mo may
be useful in delineating the amount of dark matter in the
Universe in the form of such objects just as they have
been for masses M & MD (Ref. 1).

To assess the wave effects in gravitational lensing, we
consider the autocorrelation function I (T} involving the
time average of the electric fields E (expressed in complex
form) at times r and t+T:

I'( T) = (E(r)E'(r +T)+E'(r)E(r+ T) ) /2 .

This seems to be the quantity that instruments at radio
frequencies ordinarily are designed to measure directly
with greatest accuracy. It is also the quantity on which
previous studies '3 have focused. Related effects intro-
duced by a wave treatment are the diffraction pattern in
space [that is, I (0} as a function of spatial location] and a
wavelength dependence of the brightening of the source
by the lens [that is, I'(0) as a function of wavelength].
The time source for variations in these quantities due to
the relative motions can be significantly shortened because
there can be many (depending upon the value of y) dif-
fraction peaks within the angle Ho.

In Sec. II of this paper we extend our previous investi-
gation and obtain solutions of the wave equation for radi-
ation emitted by a point source that is gravitationally
lensed by a point mass. By integrating these solutions
over the surfaces of sources, we then assess the properties
of lensed radiation in the diffraction regime (y=l) for
sources of finite size. In Sec. III we extend the previous
WKB formulation by deducing a relevant phase factor, by

obtaining solutions appropriate for the important case in
which a portion of the source is located directly behind
the lensing mass, and by integrating these %KB solutions
over a nonuniform (Gaussian) as well as uniform bright-
ness distribution at the source. The results of numerical
computations are presented to indicate the resulting wave
effects for representative values of the parameters. Obser-
vational considerations are mentioned in Sec. IV.

II. SOLUTION OF THE "FULL" WAVE EQUATION

We showed previously that, in the context of gravita-
tional lensing in astrophysics, the propagation of elec-
tromagnetic radiation in the presence of the gravitational
field of a compact object can be described to an excellent
approximation by a scalar wave equation of the same
form as the time-independent Schrodinger equation for
Coulomb scattering. This is based upon the weak-field
limit for the gravitation and ignoring the finite size of the
lensing mass. For significant effects of gravitational lens-

ing, the characteristic angular size of the region around
the lensing mass from which the incident wave is scat-
tered is the 80 of Eq. (1). Although this angle is exceed-
ingly small, for distances characteristic of the Galaxy or
greater it still corresponds to an impact parameter, or
L80 (4GML/c )—'—» in the notation of Eq. (1), that is
very much greater than the radii of compact astronomical
objects with masses M &Mo (i.e., ordinary stars, while
dwarf stars, planets}. In terms of the familiar partial-
wave decomposition of the Schrodinger equation, the ra-
dial part of the solution associated with the partial wave l
will have a negligible amplitude at distances closer to the
lensing mass than bi-[l(1+1)]' A /2m. By far, most of
the partial waves involved in the lensing (i.e., those with
bi &L80) have bi much greater than the physical radius
of the compact lensing mass. Further, gravitational lens-
ing of astrophysical interest is significant only for 80« 1

which is the forward-scattering regime and is thus dom-
inated by partial waves having the larger l values. Ignor-
ing the finite size of the mass and treating it as a "point
mass" is then expected to be an excellent approximation.
If A. /L80 were not small or if large scattering angles were
of interest, this approximation would fail. If the lensing
mass is a black hole, the weak-field approximation is still
satisfied for essentially all of the partial waves that contri-
bute significantly because L80 is much greater than the
Schwarzschild radius, which measures the region in which
the weak-field approximation fails. The foregoing reason-
ing remains valid. A scalar wave equation results be-
cause effects involving the polarization of the radiation
are negligible in the weak-field approximation.

We obtained solutions only for a source at infinite dis-
tances; that is, for incident plane waves. We now obtain
solutions for a point source at finite distances. These
solutions are then integrated over the source distribution
to assess the inAuence of the finite size of the source.

A. Similarity solution for the wave equation

As shown previously the relevant wave equation allows
the usual separation of the space r and time t so that a
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component of the electric field with angular frequency pi

can be cxpIessed as
is of the order of radius r, the second-order derivative is
much smaller than the first-order term. That is,

E(t, r) =t/i(r)e (4)

For a point source of radiation at the origin and a point
mass M at the location rp, the equation for P{r) is ob-
tained by a straightforward extension of previous work:

bf+k [1+4GM/(c
~

r —rp
~
)]P= 4n—5(r), (5)

Second, the angle P is considered to be small so that

sing-P .

(12a)

(12b)

where G is the constant for gravitation and k is the wave
number for the radiation:

As is generally recognized in gravitational lensing, effects
due to including polarization appear only in higher order
because of the very small angular deflections and the
weak-field approximation.

The solution near the light source must be the free
spherical wave

Even for masses as large as that of an entire Galaxy, the
characteristic angular defiections are only several
arcseconds. By introducing the transformation

H =F(r P)e' '""

Eq. (10) with approximations (12a) and (12b) can be writ-
ten

. aF 1 1 a a 4k'GMrp
2ik +—

2
— p F + z

F=O.

1f~f+ = exp—(ikr) as r~0,
r

where the function g+ satisfies

6/++k P+ —— 4@5(—r) .

It is thus natural to seek a solution of the form

We now define

x =—(8/Hp)

y =ZGMk/c

(14)

(15a)

(15b)

Q=H(r)g+ . (9)

Inserting Eq. (9) into Eq. (5) gives the differential equa-
tion for H:

dH . dH 1 1 8 . 8—
2

+2ik + z . sing H

+4k'GMH/(c'
i
r —rp i )=0, (10)

where 4 is the angle in spherical coordinates shown in
Fig. 1. Of course,

/H
/

-+I

4GM rp
o

c (r —rp)

where 8 is the angle between the lens and the source as
shown in Fig. 1. In the approximation of small angles

rpP= {r rp)8 . —

We now try a solution for F that is a function of x alone.
VA'th

as r~o.
We now make the following two approxiinations that

are applicable for gravitational lensing in astrophysics.
First, the second-order derivative with respect to r is
neglected. Because the scale length for the variation in H

Bx/Br = xrp/[(r —rp)r]—,

Eq. (14) becomes

(19)

x + (1 iyx)+y —F=0.8 I" BI'

Bx
(20)

Equation (20) is a standard form of the differential equa-
tion which has the confiuent hypergeometric function
F,(a, b, Z) as its solution:

r

F =exp —y I (1 iy)F, (iy, l,iyx) . — (21)

FIG. 1. Geometry for the source S, lensing mass M, and ob-
server 0. The angles 8 and P, and the distances r, ro, and 8 are
10dlcated.

Here, the normalization is taken as HH'~1 at r~oo.
The overall solution to the wave equation (5) is then

1P= —exp ikr +iy lnr +—y I'(1 iy)F, (iy, l,iyx) .—
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If we compare this with our previous results for incident
plane waves, the differences are that the original wave is
expressed by a spherical wave (as expected for the finite
distance source) and that the angle parameter Ho is multi-
plied by the factor (rolr) to obtain that given in Eq. (16).
Apart from a phase factor, the dimensionless spatial vari-
able x describes the influence of gravitational lensing just
as in the I.iebes-Refsdal solution for the approximation of
geometrical optics. The transformation found above in

going from incident plane waves to incident spherical
waves is the same as that which has been recognized in
the context of wave propagation in random media.

The brightness of the source is amplified by the factor

which are not large in comparison with unity. At radio
frequencies, instruments ordinarily have bandwidths such
that (b,co/co) ~~1. We thus utilize an, approximation ap-
propriate for dimensionless bandwidths Ay &~ 1. Only the
first two terms in the Taylor series for (It*/) are retained:

I (r) =Bo(r)cos(yor)+BI(r)sin(yor) (28)

(e e)=(e*e)o+(y —yo) (e*e)o
Bg

where the subscript denotes an evaluation at the center yo
of the band. Inserting Eq. (27) into the expression for
I (r) yields

A"/(4+0+)=, ~ ~c~c'
(1—e '") (23)

Bo(r)= —,
' R Ho g (r)fL (x,a)(g'f)odx da (29a)

As shown previously, this amplification is the same as
that of the Liebes-Refsdal solution if the geometrical op-
tics limit is taken by allowing the frequency parameter y
to be much larger than one and by averaging over the os-
cillations.

In summary, the effect of the gravitational attraction of
a point mass is to introduce a confluent hypergeometric
function into the description of the electric field. This is
the case regardless of whether the incident wave is a plane
wave or has curvature. As the source becomes infinitely
distant so that ro/r~l, the confluent hypergeometrie
function of the solution here approaches that obtained for
a source at infinity.

B. Evaluation of the properties of the radiation
for objects of finite size

For an incoherent source of finite size, the solutions
found for a point source can be integrated over the bright-
ness distribution L(S) at the surface S of the source to
obtain the autocorrelation function defined in Eq. (3) at a
location beyond the lensing mass:

I ( T) = fL (S)cos(toT)f'$1S dpi . (24)

Here, the integral is over the surface of the source and the
bandwidth b,co within which the detector has uniform
response. For simplicity, any dependence on frequency in
L (S}will be ignored. Because f depends only on one spa-
tial dimension (through x) and the parameter y, it is con-
venient to express Eq. (24) in the form

R 80
1 (r) = fL(x,a}g*(x,y}f(x,y)cos(yr)dx dady,4'

(25)

BI(r)= —,'R Ho (by/2)gi(r)

where

X fL(x,a) dxda,I}(*)
3' 0

(29b)

and

g (r) =sin(rby/2)/(rby/2) (30a)

E=fL(x,y) dx da/f L(x,y)(g'P)gx da .I}( '
)

I}y

(31)

gz(r) = [cos(rby/2) —sin(rby/2)/(rby/2)]/(re/2) .

(30b)

A term similar to that involving Bo in Eq. (28) would
be present in the absence of the lensing mass and would
have the same dependence on v. Lensing does, however,
alter the magnitude of this term and introduces an addi-
tional spatial variation. In fact, for r=0 this term de-
scribes the brightness of the source and thus represents a
diffraction pattern. The influence of lensing on the r
dependence of I'(r) comes from the term involving BI.
While the functloll g ls sylllIIletrlc 111 r, gi is alltls'yII1-
metric and has a maximum in its absolute magnitude at
(yb, r/2)=2. 3. These functions are displayed in Fig. 2.

The ratio BI/Bo is thus a measure of the alteration of
I (r) versus r caused by gravitational lensing for a partic-
ular observing location. It is then convenient to define

(26)

the distance to the source is R (which is approximately r)
and the angle a is the azimuthal angle perpendicular to 0
in Fig. 1 that describes locations on the source.

In this section, the emphasis is on parameters for which
the effects of diffraction are large —that is, values of y

The function K does not depend on the parameters of the
telescope such as bandwidth. Figure 3 shows E as a func-
tion of the variable t, =(8, /Ho), where 8, is the angle 8 in
Fig. 1 at the center of the source. Calculations are per-
formed for several values of the parameter (68/Ho): b, t, —
where 260 is the angular diameter of the source, which is
treated as a circular disk with a uniform brightness distri-
bution. At fixed (8, /8o}, the function E approaches m. as
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FIG. 2. The functions g and g2 as a function of their argu-
ment (hy~/2).

y~O. The additional dependence on wavelength thxough
hy in Eq. (29b) then causes B2 to approach zero in the
limit of long wavelengths. In Fig. 4, the related diffrac-
tion pattern for the observed brightness is shown.

Perhaps the most qualitatively significant feature is in
Fig. 3 where it can be seen that the amplitude of X has
not decreased appreciably at angles t, that are consider-
ably greater than unity. This leads to an order-of-
magnitude or more increase over the usual estimate for
the probability for a mass to be close enough to a particu-
lar line of sight to have an appreciable effect. With re-

gard to the magnitude of the influence of lensing as mea-
sured by B2/Bo =(Kby/2), bandwidths in the neighbor-
hood of 1% are feasible. Values for E near unity from
Fig. 3 would then lead to B2/Bo-,~. We will return to
the issue of the requirement on source size.

FIG. 4. The brightness of the source divided by the bright-
ness without lensing as a function of the angular location of the
center t, and angular diameter 2ht of the source (a uniform cir-
cular disk).

cult. Of course, at large y the accuracy of geometrical op-
tics improves and a %KB approximation can be expected
to be an adequate treatment for interference phenomena.
The basic approximation is in expressing the intensity at
1ocation x due to a point source on the axis according to
Eq. (32). This form is commonly used in optics when two
beams intersects and, except for improvements noted
below, is essentia1ly the same as used by Schneider and
Schmid-Burk.

A. Formulation

By considering the radiation that passes on opposite
sides of the lensing mass as separate rays in geometrical
optics, it is natural in the WKB limit to make the approx-
imation in Eq. (24) that

R P'(x) f(x)=Ii (x)+I2 (x)

+2[I&(x)I2(x))'/ cos[Pg(x,y)+5] .

III. WKB SOLUTION OF THE WAVE EQUATION

When the parameter y &~1, evaluation of I (r) based on
the full solutions of Sec. IIB becomes numerically diffi-

I i i i
j

l i i i
j

I i i i

Here, Ii and Iz are the amplification factors for the two
images, Ps is the phase delay due to the difference in the
two paths defined by geometrical optics, and 5 is the
phase correction, The amplitude factors are the Liebes-
Refsdal solutions

I i(x) = —,
' (2+(+( ')

I,(x)= —,'( —2+(+g '),
where

$=(1+4/x)'i (33c)

30
'

I

i i i j i l i i j i f i i ) i i i i

2

The phase delay Pz can be calculated from the time de-
lay"

Ig =—6)+g

8 r(r —ro)=k f (8i+82) d8 (34a)
0 fo

FIG. 3. The quantity E for y= 1 as a function of the angular
location of the source as specified by t, . The source is treated as
a uniform circular disk with an angular diameter 2ht.

2 1/2
',

(
2 4 )$/p 21

x +2+(x +4x)
2

(34b)
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(34c) The phase difference between the waves is

where the deflection angles 81 and 82 are by geometrical
optics

P~ ——yx +2y ln(yx) +5', (41)

e, =e,[-,'x'"+(1+x/4)'"]

e,=e,[——,
' x '"+(1+x/4)'"] .

(35a)

(35b)

= —I ( iy—)/I (iy) .

For large y

5 —— +2y —2y lny
2

(42)

Let us compare the approximate form in Eq. (32) with the
full form given in Eq. (22).

When x ((1, the confluent hypergeometric function is
approximated accurately by the Bessel function:

F,(iy, l, iyx)=JO(2yv x ) . (36}

The asymptotic form of the Bessel function is
1/2

then

~d- ——+2y+yx+2y lnx .
2

(44)

Comparing this with Eq. (34b) in the limit that x »1
also yields

Jo(2yv x )— 1 x-'"cos 2yvx —— (37)
(45)

I

when 2yv x »1. Hence,

fary�»1,

R f'f=F'F~ '~z 1+cos 4yvx ——
2

(38)

We thus have reason to believe that Eq. (32) with
&= —m/2 is quite a good approximation for calculating
the i~tensity distribution in most of the relevant range of
X.

A comparison of this expression with that in Eq. (32) (us-

ing I&-Iz-x ' and Ps-4yv x which are valid when
x ((1)yields

(39)

However, when x is near zero, the approximation (38}is
no longer valid. It is still convenient to separate the inten-
sity into the average (I~+Iz) and the oscillating term
which is proportional to (I,Iz)' . The oscillating parts
can be written

When yx »1, the confluent hypergeometric function
can be expressed as the sum of two waves. 5

F'F —(I&+Iz)=2/I, Iz[2rryMx Jo (2yv x ) —1],

E~(ly, l~lyx)~

exp iy ln(yx—) ——y2

I (1—iy)

where we have used I~~z-x ' . We define

f(u)=~uJo (u) —1 (47)

exp iy ln(yx) ——y+iyx
2

I (1+iy)x
(40} and find that for convenience f(u) can be approximated

accurately by

f(u)= '

cos 2Q — +cos Q—
2 26 2

cos 2u —— for u&1.3.
2

—1 for u(1 3,
(48)

This approximation is used instead of Eq. (32) for the relevant regime (2yvx (1.3) in the numerical calculations
presented in Sec. III8. The function f ( u) becomes negative at u (0.35. This influences the evaluation of the integral
around 2y~x (0.35. The need to modify the expression (32) near x=0 reflects the general result that the effmts of dif-
fraction are severe near a caustic even when more approximate treatments are valid at other locations.

B. EvaIuation of the properties of the radiation for objects of finite size

In the WKB limit, it is convenient to express the autocorrelation function obtained from the evaluation of Eq. (3) in
the form

I (r) = [80(r)+8 & (7 )]cos(yor) +Bz(r )sin(yor),
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(51)

which is analogous to that of Eq. (28). For much of the range of x that is of interest, the approximation of Eq. (32) is
valid and the explicit expressions for the functions in Eq. (49) in this regime are

Bp(r)= —,'8p g(r) fI.(x,a)[I,(x)+I2(x)]dx da, (50)

8, (r) = , 8p—f[Ii{x)I2{x)]'~I.(x,a)cos(ypr„+5)[g(r„—~)+g {r„+r)]dxda,

Bz(r)= , 8—p f [Ii(x)I2(x)]'~ L (x,a)sin(ypr„+5}[g(r„r)—g(—r„+~)]dx da .

The functions I and g have the same meaning as in Sec.
II, and r„ is the time delay as specified by Eq. (34c) for a
point on the source and the point of observation which are
related by the variable x. Thus the effect of bandwidth,
which is specified by the dimensionless quantity hy, is
again contained in the function g. In the regime where
Eqs. (46) and (48) specify the radiation, I (r) can be ex-
pressed in the same form as in Eq. (49). Although Bp,
Bi, and 82 are of slightly different form in this case, they
retain essentially the same dependence on g (r) and
g(r„+~) as in Eqs. (50)—(52). These expressions for Bp,
8~, and 82 are given in the Appendix.

Here Bp(r) is determined from the integrated amplifi-
cation factors alone and contains no effects of the coher-
ence caused by gravitational lensing. The observed bright-
ness I {0) is, from Eq. (49), [Bp(0)+Bi(0)j. The intensity
resulting in the approximation of geometrical optics is
simply Bp(0) whereas the Bi(0) term represents the in-
terference that produces the undulations of the diffraction
pattern.

In general, the terms Bi and Bz represent the effects of
interference. The time delay caused by the lensing can be
assessed observationally {at least in principle) by finding
the position of the peak of ([Bi(i)] +[82(r)] ). For
Bp(r) the maximum is at ~=0. In contrast, the max-
imum occurs at r =r„ for the contribution to
([8&(~}]+[82(r)] ) from the emission in the neighbor-
hood of a point on the source specified by the variable x.
This maximum is determined by the function g (r„r)in-
Eqs. (51) and (52). Although the contributions from a
number of points with a range of values for r, are
summed in the integrals of Eqs. (51) and (52) for a finite
source, the largest contribution comes from the part of the
source closest to the line between the lens and the observer
(that for which x is smallest). Here, (IiI2)'~ reaches its
peak value rapidly and the contributions from the other
regions on the source tend to be less important because of
the oscillations in cos(yp~, +5) and sin(ypr„+5). When
a part of the source is on the lens-observer line (that is, at
x=O), the maximum in ([Bi(r)] +[82(r)] ) is then near
~=0 because ~„=0 for the dominant contribution. Other
considerations aside, a determination of the time delay is
facilitated by a maximum in ([8,(w)] +[Bi(r)] ) that is
sharp. This is determined by the bandwidth, which for a
sharp maximum must satisfy

For the validity of the WKB approximation on which
this section is based, it is necessary that yo && I. However,
as yp increases, the magnitude of 8, and 82 is reduced
because of the integration involving cos(ypr„+5) and
sin(ypr„+5). Observational instruments for radio fre-
quencies ordinarily function at bandwidths by/yp «1.
Together with the foregoing consideration that smaller
values of yp are preferred for the magnitudes of Bi and
Bz, it then follows that hy & 1 is probably of most practi-
cal interest. %hen the bandwidth is small enough —that
is, when hy «1/r„—Eqs. (50)—(52) indicate that

Bp(r),8 i (r) ))82(r) (54)

0.2

y
= IO

Ay= I

0. I

BI{z )

EIo(0

0 0.6
I

0.8 I.Q

and in the extreme Bi(~) is approximately proportional to
g (r) so that

I {r)=I (0)g (r)cos(yp~) .

The results of numerical calculations are now presented
in several figures to indicate more quantitatively the na-
ture of I (r) and its dependence on the various parame-
ters. In Fig. 5 we illustrate that Bi(r) tends to vary in an
oscillatory manner with the relative angular location of
the source, the lensing mass, and the observer. Note that
a particular value for the r at which to evaluate Bi(r)
must be chosen for Fig. 5. We have chosen a value at
whjch Bi(r) would a priori be expected to peak. Exam-
ples of the contributions to the autocorrelation function

by the terms due to wave effects are presented in Figs. 6(a)
and 6(b) for the qualitatively different geometries which
are determined by whether or not a part of the source is

ho)T, =hyw, & 1,

where T, (or v; in our dimensionless units} is the time de-
lay associated with the position on the source closest to
the line defined by the lensing mass and the observer.

FIG. 5. The ratio BI(w*)/80(0) as a function of the angular
location t, of the center and angular diameter 2ht of the source
(uniform circular disk) for y=10 and hy= I. The values chosen
for ~ are ~ =0 when ht&~, and ~ =~„ for x=t, when
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directly behind the lensing mass (i.e., at 8=0). For com-
parison, the variation of 80(r) is shown explicitly by g (r)
in Fig. 2. In most cases, the peaks of the wave effects in
Figs. 6(a) and 6(b) do not occur exactly at the time delays
for the point on the source nearest 8=0 or for the central
point. Examples to illustrate the variation of the bright-
ness with frequency are obtained for Figs. 7(a) and 7(b) by
computing I (0) in the monochromatic (i.e., by ~0) limit.
Two characteristic periodicities, evident most clearly in
Fig. 7(a), are present in the variations of I (0) with y. The
more rapid variation in this figure is associated with the
time difference between the two rays whereas the slower
variation is associated with the size of the source.

Finally, Figs. 8 and 9 are presented to indicate the gross
variation of the wave effects with the angular location and
with the size of the source over a wide range of values for
the relevant parameters. Because it is most convenient to
calculate Bi at a particular value of r, some scatter is in-
troduced into these figures by the tendency for Bi to os-
cillate. The general expectation that Bi/80 decreases
rapidly beyond 8=8O can, nevertheless, be seen to be sup-
ported by Fig. 8. The scatter is less important in Fig. 9 be
because the source is centered at 8=0 and 8, (0) is
evaluated. In Fig. 9, calculations are also presented for
sources represented by circular disks in which the bright-
ness decreases as a Gaussian function of the angle from
the center of the disk (b,8 in this case is the half-width at
1/e of the peak brightness). When b,t&1, a variation
with approximately (b,t) is indicated in Fig. 9 for the
relative importance of wave effects. This reduction is
essentially the dilution due to radiation coming from an-
gles beyond 80 and which is largely unaffected by the lens-
ing mass. A variation with 1/y is also suggested in Fig. 9
for wave effects —at least for large sources

IV. DISCUSSION

In considering whether wave effects in gravitational
lensing might be detectable or can be utilized to place use-
ful limits on dark matter in the Universe, it is clear that
the angular size of the available background sources of
sufficient brightness probably is the key issue. Although
a detailed discussion of instrumental capabilities and pos-
sible configurations or of the astronomical data is well
beyond the intent of this study, some orientation may be
appropriate. Based on very long base line interferometry
(VLBI), studies of interplanetary and interstellar scintilla-
tion, and limits for synchrotron-Compton emission, "
there is no evidence as yet for extragalactic continuum ra-
dio sources with angular sizes smaller than about 10
arcsec. %ithin our Galaxy, pulsars and radio stars have
smaller angular dimensions than do the extragalactic
sources. They are, however, weak. In addition to contin-
uum sources, intense spectral line radiation is emitted by
astrophysical OH (A, =18 cm) and HzO (A, =1.3 cm)
masers associated with molecular clouds in our own
Galaxy. These masing regions are composed of a large
number of small components. For 820 masers, hundreds
of components having linear dimensions of roughly 10'
cm (=10 arcsec at 10 kpc) are indicated. ' Strong OH
(Ref. 13) and H20 (Ref. 14) masers have recently been
detected in other galaxies, and also might provide useful

background sources in surveys for gravitational lensing if
they are composed of similarly small components.

From Eq. (1) and the results of our calculations, the
presence of masses down to M=10 Mo at representative
distances within our own Galaxy can be examined without
significant reduction in sensitivity (i.e., in Bi/Bo) due to
source size by utilizing the extragalactic, continuum
sources with angular sizes of about 10 arcsec. Because
only about 10 of the randomly chosen directions might
be expected to have a lensing mass associated with our
Galaxy that is within an angle 8O of the line of sight, it
would be necessary to study a large number of indepen-
dent directions. Because of the rotation of the Galaxy and
other motions, Earth and a lensing mass of about 10
Mo move relative to each other by an angle 80 in typically
one day. The quantity 8~ then varies on a time scale of
roughly (1/y) days, or about 1 min for radiation at wave-
lengths of 10 cm. Considering lensing masses outside of
our Galaxy tends to increase the probability for a lens to
be within an angle 80 of a source. Unless sources signifi-
cantly smaller than 10 " arcsec are found, however, the
magnitude of the wave effects (as measured by Bi ) in ex-
tragalactic lensing by a single mass will be reduced be-
cause of the size of the source as indicated in Fig. 9. For
lensing masses near the plane of our own or other galax-
ies, the effects of electron scintillation may not be negligi-
ble. %e will consider electron scintillation in a separate
study. When the probability for lensing of a point source
is near unity, the effect of multiple lenses must also be
considered.

In summary, the methods developed here to extend the
WKB treatment to the situation in which a part of the
source is on the line between the lens and the observer
make it possible to extend considerably the range of
relevant situations in which the importance of wave ef-
fects can be assessed. In fact, this is the geometry for
which the effects tend to be greatest. No strong peak that
can be associated with a single time delay is found in the
autocorrelation function for any of the parameters con-
sidered. When the observer, source, and lens are at least
partly aligned, the wave effects in the autocorrelation
function are, however, considerably closer to the form of
the unaltered function than in the case where there is no
alignment. Wave effects are shown to introduce an oscil-
latory frequency dependence into the amplified brightness
of the source whereas the amplification is independent of
frequency in the approximation of geometrical optics.
For sources larger than 80, wave effects can be seen to de-
crease approximately as (80/angular size of source).
When the influence of diffraction is large (y (1), the in-
fluence of the lens on certain properties of the radiation
does not decrease appreciably until 0~~80 is reached.
The probability for lensing effects along a randomly
chosen line of sight is then greatly increased. Very small
sources are necessary, however, for the effect to be signifi-
cant.
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~
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~

as a function of angular
location t, for the center of the source (uniform circular disk)
for bandwidth by=1, and for various values of y and source
size ht (~ has the same meaning as in Fig. 5). Symbols: filled
triangles, y= 1000 and At=0. 1; open triangles, y= 1000 and
At=0.01; filled squares, y=100 and ht= I; open squares,
y=100 and h, t=0.1; filled circles, y=10 and Et=1; open cir-
cles; y= 10 and ht = 10. Dashed lines are only to guide the eye.

FIG. 9. The ratio
~

B~(0)/BD(0)
~

as a function of source size
ht when the source is centered directly behind the lensing mass
(t, =0). Symbols, for a uniform circular disk source: filled tri-
angles, y= 1000 snd hy= 10; open triangles, y= 1000 and
Ay=1; filled squares„y=100 snd by=10; open squares, y=100
and Ay=1; filled circles, y=10 snd by=2; open circles, y=10
and by=1; crosses, y=3 and by=0. 3. Additional symbols, for
a circular source with a Gaussian decrease in brightness from
the center: open diamonds, y= 100 snd Ay=1; filled diamonds,
y=10 and Ay=1. Dashed lines are only to guide the eye,

APPENDIX

When part of the source is at x =0 so that it is necessary to use Eq. (48), the following substitutions must be made for
Bo, B&, and Bz in Eq. (49):

Bo(r)~Bo(r) —,'8o'g(r) f —[I)(x)I2(x)]' L (x,a)dx da, (A I)
X

Bq(r)~Bq(r)+ —,8o f I [I&(x)I2(x)]'/ L (x,a)cos(yor„'+5)[g(r„' r)+g(r„'+—r)] I dx da, (A2)

aIld

B2(r)~B2(r)+ —,
'

8o f t [I&(x)I2(x)]' L (x,a)sin(yor„'+5)[g(r„' r) g(r„'+r)]—Idx d—a . (A3)

In these substitutions, the Bo(r), etc., on the right-hand side of the arrow refer to those given by Eqs. (50)—(52) and, ap-
proximately

(A4)

(A5)

iSee, for example, K. Chang and S. Refsdal, Nature (London)
282, 561 (1979); C. R. Canizares, ibid. 291, 620 (1981);J. R.
Gott, Astrophys. J. 243, 140 (1981);P. Young, ibid. 244, 756
(1981);J. P. Ostriker and M. Vietri, Nature (London) 318, 446
(1985).

2A. V. Mandzhos, Pis'ma Astron. Zh. 7, 387 (1981) [Sov. Ast-
ron. Lett. 7, 213 11981)].

3P. Schneider snd J. Schmid-aurk, Astron. Astrophys. 148, 369
(1985).

S. Deguchi and W. D. Watson, Astrophys. J. (to be published).



SHUJI DEGUCHI AND %ILLIAM D. %ATSON

sSee, e.g., L. D. Landau and E. M. Lifshitz, Quantum
Mechanics —Non-Relatioistic Theory, 3rd ed. (Pergamon, Ox-
ford, 1975).

6Compare R. A. Matzner, J. Math. Phys. 9, 163 (1986).
~A. Ishimaru, RaUe Propagation and Scattering in Random

Media (Academic, New York, 1978, Vol. 2), p. 440. Note that
this application of the transformation is to a slightly different
geometry and, hence, has a different appearance.

8See, e g , M. .. Born and E. Wolfe, Principles of Optics, 5th ed.
(Pergamon, Oxford, 1975).

9S, Liebes, Phys. Rev. 8 133, 835 (1964); S. Refsdal, Mon. Not.
R. Astron. Soc. 128, 295 (1964).

oV. Borgeest, Astron. Astrhphys. 128, 162 (1983); R. Kayser

and S. Refsdal, ibid. 128, 156 (1983).
~See, e.g. , K. I. Kellerman, and I. I. K. Pauliny-Toth, Annu.

Rev. Astron. Astrophys. 19, 373 (1981).
'2R. C. %alker, D. N. Matsakis, and J. A. Garcia-Barreto,

Astrophys. J. 255, 128 (1982).
'3See, e.g., %'. A. Baan, P. A. D. %ood, and A. D. Haschick,

Astrophys. J. 260, L49 (1982).
4See, e.g., F. F. Gardner and J. B. %'hiteoak, Mon. Not. R.

Astron. Soc. 201, 12P (1984); M. J. Claussen, G. M. Helig-
man, and K. Y. Lo, Nature (London) 310, 298 (1984); C.
Henkel, R. Gusten, D. Downes, C. Thum, T. L. %'ilson, and
P. Bierman, Astron. Astrophys. 141, L1 (1984).


