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Gravitational entropy: Beyond the black hole
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%'e attempt to establish the existence of gravitational entropy for a thin spherical shell of matter
as a function of radius by examining the modifications to the thermodynamics of a black hole at the
center of such a shell. %e show that the shell has the effect of depressing the temperature of the
hole, but that small exchanges of energy between the hole and its environment at the same tempera-
ture remain isentropic in the presence of the shell. The model is generalized to include de Sitter hor-
izons too, and we find that the shell can be positioned so that a "back flow" of radiation takes place
from the de Sitter horizon into the hole, thus enabling the hole-plus-shell system to be used as a de-
vice for "mining the Universe. " In all cases our results are consistent with simple arguments indi-
cating that there is no gravitational entropy associated with spherica1 shells which have not col-
lapsed into black holes.

I. INTRODUCTION

The existence of a gravitational "arrow of time" has
long been established. ' Specifically, a self-gravitating sys-
tem tends to grow more and morc irregular with time. A
uniform gas, for example, will become progressively more
clumpy, as centers of gravitational condensation accrete
material from their surroundings, so enhancing the densi-

ty contrast. The ultimate result of this growth of inhomo-
geneity is the production of black holes which coalesce to
form a single stationary black hole. Such a black hole is
the equilibrium end state of equilibrium collapse.

This time-asymmetric tendency, for a self-gravitating
system to pass from smooth to clumpy configurations
should find expression through an extension of the second
law of thermodynamics, in which case there must exist a
gravitational quantity that plays the role of entropy. In
the early 1970s, the close similarity between the laws of
the thermodynamics and those of black-hole dynamics
was used by Bekenstein to argue for the black-hole
event-horizon area as a measure of the entropy of the
hole. This identification was placed on a secure footing
by Hawking in his quantum treatment of black holes.
Hawking found the entropy of the hole to be

in units fi=c=G=k= 1, where W is the horizon area.
The black-hole temperature was found to be

for a Reissner-Nordstrom hole of mass M and charge Q.
It was then possible to assert a generalized second law of
thermodynamics for a closed system:

as...„—=as+ asb„& O,

where LS'bh is the change in the black-hole entropy and
hS the change in the entropy of the hole's environment
(i.e., the conventional, nongravitational entropy).

The fact that there exists a meaningful black-hole en-
tropy confirms the conjecture that the growth of clumpi-
ness in a self-gravitating system can be encompassed
within a generalized entropic description. The black-hole
case corresponds to the thermodynamic limit, at which a
temperature can be ascribed to the system and quasi-
equilibrium methods employed. However, as in the case
of conventional thermodynamic systems, it ought to be
possible to generalize the entropy concept away from
quasiequilibrium states. When a star implodes to form a
black hole, the conventional entropy of the stellar material
disappears down the hole, while the (much greater) gravi-
tational entropy associated with the hole's horizon ap-
pears to save the second law (1.3). This process is not in-
stantaneous. There must exist a collapse phase during
which the conventional entropy declines to zero, while the
gravitational entropy rises from a low value to the high-
equilibrium end-state value associated with the establish-
ment of an event horizon. This encourages the belief that
there exists a gravitational entropy for the star which rises
as the star shrinks, reaching its maximum value of —,'M
when the system settles down to a black-hole end state.

Penrose has conjectured that gravitational entropy is in
some way associated with the %eyl curvature. This is
based on the tendency for cosmological models to show
increases in the %eyl curvature with time, plus the fact
that observational evidence suggests the %eyl curvature of
the Universe was unaccountably low at the beginning.
Some developments of this idea have been given by Bon-
nor. In spite of these attempts to pin down the
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gravitational-entropy concept with specific mathematical
expressions, the black-hole limit (1.1) is the only generally
accepted case.

The simplest non-black-hole self-gravitating system is a
thin spherical shell of cold matter. When the radius r of
the shell tends to infinity, the gravitational entropy of the
shell is presumably zero. When r~2m, where m is the
mass of the shell, the system becomes a black hole, with
entropy ,' W—=4am If the foregoing reasoning is
correct, the gravitational entropy of the system should rise
from zero to 4nm as r decreases from a to 2m. One
might expect S to be a monotonic decreasing function of
r.

How can this conjecture be tested? The most direct
way would seem to be this: If the shell is placed around a
black hole, then the total gravitational entropy will be that
of the black hole plus that of the shell (possibly with a
correction for their mutual interaction). If the radius of
the shell is now allowed to change, then any gravitational
entropy associated with the shell wouM presumably
change. As the shell can be both expanded and contract-
ed, such a change would have to correspond to a decrease
in total gravitational entropy in one direction (presumably
expansion), because the horizon area remains unchanged
by this maneuver in the spherically symmetric case. If,
then, one were to apply the generalized second law of
thermodynamics (1.3}, failing to take into account the
gravitational entropy of the shell, a violation of the law
would be discovered. We therefore decided to carry out
an investigation of the generahzed second law for ex-
changes of energy between a black hole and a surrounding
heat bath, in the presence of a shell, to see if such a viola-
tion were to occur. Any "missing entropy" could then be
attributed to the shell.

If the black hole is in equilibrium with a heat bath at
constant temperature, infinitesimal heat exchanges be-
tween the hole and the heat bath take place isentropically
If the hole is now surrounded by a shell there is an addi-
tional degree of freedom —the shell radius. Violations of
the generalized second law might be expected to occur if
this radius changes. However, in the presence of the hole,
the radius of the shell as such is not the only relevant pa-
rameter for representing the shell entropy. It is preferable
to consider instead the distance between the shell and the
horizon, because the shell gravitational entropy would go
over to the known black-hole expression AM' when the
shell crosses the horizon of the combined system (with
mass M'), rather than when it crosses its own
Schwarzschild radius.

As a result, it is simpler to regard the shell as remaining
at fixed radius r, while the hole itself changes as a result
of energy exchanges with the heat bath. These changes of
radius will alter the distance between the she11 and the
horizon and, presumably, any gravitational entropy of the
shell will also change.

ri(—d8 +sin 8dg ), r &R (2.1a)

2M' ' 2M'
ds2 1 + Q «i 1

2M + Q
r r2 r r2

r(d—8 +sin28dg }, r &R, (2.lb)

where 8 is the shell radius and

42=(gi 2M'g+Q'2)(g2 —2M+ +Q2) (2.2)

Because M'&M, we have A & 1 if Q'=Q.
We wish to consider the effect of this shell upon the

thermal radiation emitted by the black hole. We assume
that there is no direct interaction between the matter in
the shell and the particles created by the black hole, so the
only effect of the shell is through its gravitational field.
This effect is to depress the temperature of the black hole
by a factor of A. This may be understood as simply the
result of an additional red-shift. Because a particle pro-
duced at point x with a wave-packet frequency c00 in a
static metric reaches infinity with a frequency of co=coo
[g«(x)]', assuming g«

——1 at infinity as is true for the
metric (2.1b), we can see that a particle created inside the
shell reaches infinity with a frequency of A times the fre-
quency it would have had at infinity in the absence of the
shell. A Reissner-Nordstrom black hole of mass M and
charge Q has a temperature To ——To(M, Q} and, in the ab-
sence of the shell, an observer at infinity detects an ex-
pected number of neutral particles in a normalized wave-
packed mode (assumed to be sharply peaked around fre-
quency co) of the graybody thermal form

I
k)f Tp

e +1
(2.3)

where I is the transmission probability for that mode. In
the presence of the shell, a mode which has the same fre-
quency as before inside the shell now has frequency
co'=Aco as seen at infinity, and the gravitational field of
the shell changes the transmission probability from I to
I ', so

(2.4)

side the shell and one of mass M' and charge Q' outside
the shell. The metric may be expressed as

r

2M Q d g 2M Q
r r2 r r2

II. SHELLS AROUND BLACK HOLES

Lei us consider a charged black hole surrounded by a
charged massive shell. The spacetime then consists of a
Reissner-Nordstrom metric of mass M and charge Q in-

which is a graybody thermal spectrum of temperature

T=ATO . (2.&)

From the definition (2.2) of A it will be noted that the
external temperature of the hole can be expressed to an ar-
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A 1

8aM 8aM'

This gives

(2.6)

bitrarily small value by letting 8~2M'. Thus the hole's

radiance can effectively be shut off by positioning a shell

very close to the horizon. Of course, in this position the
shell would be subject to enormous stresses if it were to
remain static, and we do not suggest that this positioning
can be done with real matter. However, it is of interest to
note that it is often supposed that the particles emanating
from a black hole are created in the region just outside the
horizon, in which case it might seem as though the pres-
ence of the shell would make little difference when it is
inside this "creation zone. " Clearly this simple picture is
inadequate.

It is interesting to note that, for a shell of radius
R gR„where R, is a critical radius, the temperature of
the black hole+ shell is less than that of the black hole
which would subsequently form if the shell were allowed
to free fall into the hole from its fixed position. If
m &&M we may determine R, for the uncharged case as
follows: Set

Here e and Uo are constants and a is the black-hole sur-
face gravity. This relation leads to a thermal flux of par-
ticles at a temperature To a——/2.m. .When a shell is
present, the relation between u and U now becomes

u = —(Aa) 'lna(uo —u)+uo (2.14)

and hence the temperature is just T =AT. Here ~ is the
surface gravity of a black hole of mass M and charge Q.
In Sec. III, it will be shown that the surface gravity for
the spacetime containing a shell is a'= Ax, so T=v'/2n. .

III. SHELLS IN BLACK-HOLE —de SITTER
SPACETIMES

We now discuss the matching of the spacetime metric
on opposite sides of the shell. Take the metric to be a
Reissner-Nordstrom de Sitter metric of mass M, charge
Q, and positive cosmological constant A within the shell
and one of mass M', charge Q' and the same cosmologi-
cal constant A outside of the shell:

2

ds =A 1 —™+—,'Ar dt-
r

so

8, —2M'

R, —2M

R, =2(M' +M'M+M )/(M'+M) . (2.7)

2M Q
1 — + ——,Ar

r r 2
dr' r'dn'—,

r &R, (3.1a)

If m ~~M then M'=M, so R=3M. Thus if a shell is
held fixed between the horizon and R =3M, and then al-
lowed to fill into the hole, the temperature and magnitude
of the outgoing flux will rise as a result of the infall.

A more detailed derivation of Eq. (2.5) is the following.
Define the coordinates r* and r'" by

dr' 2M Q
1 —--- +, rgR (2.&)

dr r r2

2M' Q'

r r2
——,Ar Aft

2M' Q'1— + ——,
' Ar

r r 2

where as before R is the shell radius and

~'=(R' 2M'R+—Q' ,
' AR'—)-—'

y(R' —2MR+Q' ——,
' AR') .

r 2gg2

r & R, (3.1b)

dr"
1

2M' Q'

6fr r r
ryR . (2.9)

Then null coordinates outside of the shell are

u =t —r'* and U =t+r'*,
and those inside the shell are

(2.10)

U=At —r* and V=At+r* . (2.11)

u =A 'U+uo „ (2.12)

where uo is a constant. Hawking showed that null rays
with U =const on W which pass through a collapsing
body just before the horizon forms reach Jr+ as rays with
U= const, where

An outgoing null ray is labeled by the coordinate U in-
side the shell and u outside the shell, and the values of
these coordinates are related by

The electromagnetic junction conditions at the shell re-
quire it to have charge q=Q' —Q. The gravitational
junction conditions at the shell are more complicated and
require that (1) the metric of the three-dimensional hyper-
surface defined by the shell world history be continuous
and that (2) the extrinsic curvature of this hypersurface
have a discontinuity proportional to the stress energy in
the surface. Condition (1) is satisfied by the above form
of the metric; the constant A is chosen so that the two
forms of the metric in Eq. (3.1) agree on the hypersurface
r =R. The precise form of condition (2) is

b, [E', 5'JE]= gn S'—, , . —

where SJ is the surface stress-energy term, E„„is the ex-
trinsic curvature, and 5 denotes the differences between
the quantity in brackets on the upper (r ~R) and the
lower (r ~R) sides of the hypersurface. The extrinsic cur-
vature is defined by

U = —a ina(uo —u) .—1 (2.13) Ep~ ———n p. ~ (3.4)
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where n" is the unit-normal vector to the hypersurface
and is given by

The (outer) black-hole horizon occurs at r =r&, at the
second largest root of

n"=8,'( —g ) r 2M—r+Q ,'—A—r =0. (3.12)

Using the metric of Eq. (3.1a) we find that

2

R R
(3.6)

on the lower side of the shell and has the same form with
M and Q replaced by M' and Q' on the upper side.

Let u&=P, '(g«) ' be the four-velocity of an observer
at rest at r =R. Then

If Q&0, the next root is the radius of the inner black-hole
horizon, with which we will not be concerned. The small-

est root is always negative (for A & 0, which we are assum-

ing} and hence has no physical significance.
If A —+0, then r2~ 00 and

rior+ ——M+(M —Q )'

NlS g =S~~Q Q
4mR

(3.7) The shell must be located between the black hole and the
cosmological horizon, so

where rn is the mass of the shell measured by this ob-
server (i.e., the proper volume integral of the local energy
density). The junction condition Eq. (3.3) for p=v=t
then yields

m=(R —2MR+Q ——,
' AR )'i

r~ ~R &r2 . (3.13)

(3.14)

The surface gravity ~ for both horizons may be found
fram the relation

(R' 2M—'R+—Q' ,
' AR')'—"—,

or, equivalently,

(3.8}
where li' is the Killing vector which is timelike in the re-
gion between the horizon and which is normalized so that
it would have l„l"=1,where g« ——l. Explicitly,

M' =M+ rn 1 — + ——,AR
2M Q
R

' 1/2

For a metric of the form

(3.15)

m Q' —Q
2R 2R

(3.9)

dM'

dM
(3.10)

This relation will be needed in the discussion in Sec. V.
The remaining, spatial companents of the junction condi-
tion, Eq. (3.3), can be interpreted as determining the
stresses which are required to hold up the shell.

The Reissner —Nordstrom —de Sitter spacetime contains
two horizons of interest to the present discussion. The
cosmological horizon occurs at r =r2, where r2 is the
largest root of the equation:

An alternative methad to obtain (3.8) is to use the stan-
dard 6', = 8m T', equa—tion to integrate

dm =4mr T' ( —g )' dr

= —,
'

( —g„)'~'d [r(1+g"")]

across the thin shell at r =R. This condition relates the
mass parameters M' and M of the exterior and interior
metric to the locally measured mass m of the matter in
the shell. In an asymmetrically flat black-hole spacetime
(A=O) we could envision building the shell by slowly
lowering matter from infinity; in this case M' —M rather
than m is the mass measured at infinity of the net matter
and energy required to build the shell. The difference,
M' —M —m, is the gravitational and electrostatic poten-
tial energy of the shell. If M and M' vary with m, R, Q,
Q', and A held fixed, then we find

ds =g«dt gdr —rdQ— (3.16)

where g«and g~ are functions of r only, Eqs. (3.14) and
(3.15) yield

a, =A (Mr, —Q ,
' Ar, )r, ———2 i 4 —3

and that of the cosmological horizon is

zi ——( —,
'

Arp +Q' —M'rp)ri

(3.18)

(3.19)

In both cases we have chosen the sign of the square root
which makes ~ & 0.

In the absence of the shell, A =1, and a, and ~i are
equal to the expression given by Gibbons and Hawking.
If we identify a/2n. as the temperature of a horizon, then
the black-hole temperature is

T) ——x)/2m= ATO, (3.20)

where To is the temperature of the black-hole horizon
without the shell, and the cosmological horizon tempera-
ture is

(3.21}

Again we see that the effect of the shell is to suppress the
black-hole temperature by a factor of A. Without the
shell, the black-hole temperature is ahvays greater than
the temperature of the Universe:

(3.17)

Using the form of the metric in Eq. (3.1) we find that the
surface gravity of the black-hole horizon is

r 2M'r+Q' —,Ar =0. — — (3.11} To )T2 if M =M', Q =Q' . (3.22)
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However, with the shell the factor A can be made arbi-
trarily small and we can have

r
g]]T ~ =

2 ggrTC&+C1
Pl

(4.7)

T1&T2 . (3.23)

In this case we can have the black hole in thermal equili-
brium with the Universe, or we can arrange that the
Universe is hotter than the black hole. In the latter case,
the black hole gains mass as a result of an inward flux of
thermal radiation. Thus the hole-plus-shell system can in
principle be used as a device for "mining the Universe. " —1/2 ~ —1=a 8

Gr
(4.8)

where c1 is another constant.
The constants c and c1 are fixed by the requirement

that Tz„be finite on the horizon in well-behaved coordi-
nate systems, that is, that physically allowable observers
should not see infinite stresses at the horizon. Define the
r' coordinate by

IV. A TVEO-DIMENSIONAL MODEL

In this section a two-dimensional spacetime model
which illuminates the thermal properties of black-hole —de
Sitter space will be investigated. In black-hole spacetime
in two dimensions, Christensen and Fulling' have shown
that the Hawking effect for a massless, conformally in-
variant field may be derived from (i) the trace anomaly,
(ii) the conservation law for the energy-momentum tensor
T„„,and (iii) the finiteness of T„„on the black-hole ho-
rizon. Here we wish to adapt their arguments to the case
of a two-dimensional Reissner —Nordstrom —de Sitter
space containing a shell. I.et the metric be

and null coordinates u =t —r* and U =t+r*. Then

ds =a(r)B(r)(dt dr' )—

=a(r)8(r)du du . (4.9)

Because 8(r, )=8(ri)=0, the (t, r), (t,r"), and (u, u) coor-
dinates are not well behaved on the horizon. However, we
can define Kruskal-type coordinates which are well
behaved on each horizon. Near the horizon, B(r) has the
asymptotic forms

Bi(r ri), r~r—i,
8(r)- '

Bi(ri r), r ~—ri, (4.10)

ds 2=a(r)B (r)dt 8'(r)dr— (4.1)
where 81 and 82 are positive constants.

Thus
%hen the space contains a thin shell at r =R, we would
have (4.11)

8(r) =
1 —2M

1 — + ——,Ar, r ~R,2M Q
r
QI2

+ —3Ar, rgR,
r r 2

(4.2)

Let
—uAB& /2

Q1 = —2A 81 e

vAB l /2

uB2/2
u2 ——282 e

(4.12)

2

( )
A, r&R,
I, r&R

(4.4)

(4.5)

where T=T"„. The first of these relations tells us that
the flux of energy at infinity, a' T, ', is constant. In par-
ticular, for a shell

'c, r ~R,p-
c, r~R, (4.6)

However, our argument will only require that o. and 8 ap-
proach the above limiting forms near the horizon. Hence
we may take these to be smooth functions associated with
a more general radial distribution of matter. Let T""be
the expectation value of the energy-momentum tensor for
a massless scalar field. We require T"" to be conserved
(T"".„=0) and to be time independent. This leads to the
relations

—uB2/2
U2

———282 e

Because

AB) I'

duidui ——e ' du du-(r ri)du du, r~ri—
(4.13)

duqdu2 ——e du du-(r2 r)du du, r~rz—
we see that the (u, ,u, ) coordinates are well behaved on the
black-hole horizon (r =ri) and that the (u2, uz) coordi-
nates are well behaved on the cosmological horizon
(r =r2). On the black-hole horizon u~oo and on the
cosmological horizon U~ oo. The energy-momentum ten-
sor in the (u „V,) coordinates must be finite at r =r, and
that in the (ui, u2) coordinates must be finite at r =r2.
Because of the relation

(4.14)

we must have that T„„=Oat r =r1 and T =0 at r =r2.
In terms of the (t, r) coordinates, T„„is

where c is a constant. If we integrate Eq. (4.5), we find , (T„2a' BT,„+a8 T„„)—.— (4.15)
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From Eqs. (4.6) and (4.7} and the relation T', = T T—'„,
we find that T„„=Oat r =r, implies that

Ci=C . (4.16)

For a massless scalar field, T is determined entirely by
the conformal anomaly in two dimensions

2 [2a 8"+3aa'8'+(2aa" a' )8—], (4.18)
48+a

Similarly, the requirement that T„„=Oat r =r2 leads to
the result that

f2c= 4 g«, Tdr .

ergy and entropy of the heat bath are taken to be those in
flat spacetime. There are some small corrections to these
quantities produced by the spacetime curvature which are
being ignored in the present analysis.

Assume that the total entropy of the system is the sum
of that of the black hole, one-quarter of the horizon area,
and of that of the heat bath, so

S=mr+ + 3aVT„

(5.3)

is the horizon radius. If a small amount of energy is ex-
changed between the black hole and the heat bath, the to-
tal energy remains constant so

g'«, r T=—

we find

where R is the scalar curvature. Noting that

—,'aB' + a' 8' +a'88'
24m dr 2Q

(4.19)

dM'= —4a VT„dT, .

The entropy change is

dr+
dS = 2mr

(5.4)

(5.5)

c= [A [8'(ri)] —[8'(rz)]21 .
192m

(4.20) where the charge Q is held constant. The temperature of
the black hole is

However, from Eq. (4.6), c is just the outgoing energy fiux
across the cosmological horizon. With xi and a2 given by
Eqs. (3.18) and (3.19), or equivalently by

T =AT(),

where

(5.6)

8'(ri }
I

~2= i 18''(rz)
I

we have for the outgoing fiux

(4.21)
Mr+ —Q

2

To-
2&r+ 3

(5.7)

c= (~i —~q ) .2

48m
(4.22)

This result is in agreement with the discussion of Sec. III;
the black hole surrounded by a shell is at a temperature of
Ti ——vi/2ir and the Universe is at a temperature of
T2 ——vz/2m.

V. THE GENERALIZED SECOND LA%

F. =M'+a VT, (5.1)

Here we assume that the black hole and the heat bath are
enclosed within a cavity whose dimensions are very large
compared to the size of the black hole, but very small
compared to the size where the self-gravity of the radia-
tion becomes significant. Thus the expression for the en-

In this section the second law of thermodynamics and
the expression for the entropy of a black hole (or black-
hole —de Sitter spacetime) with a shell will be treated. As
discussed above, the principal motivation for this investi-
gation was to search for an additional contribution to the
entropy which can be identified as the gravitational entro-

py of the shell. Let us first consider a charged black hole
surrounded by a shell in equihbrium with a heat bath in a
finite volume V of asymptotically flat spacetime (A=O).
If T„ is the temperature of the heat bath (which is as-
sumed to be dominated by massless radiation with radia-
tion constant a), the total energy of the system is approxi-
mately

is the temperature of a charged black hole without a shell.
If we use these relations and the fact that
dM/dM'=A ', where A is as given in Eq. (2.2), we find
that

dS= —— dM' .1

T Tp
(5 &)

S =m(ri +r2 ) . (5.9)

If we differentiate Eq. (3.11) with respect to M with Q,
Q', and A held fixed and use the expression Eq. (3.19}for
x2, we find

dM' = —r2&2dr 2 .

Similarly from Eqs. (3.12) and (3.18) we have

(5.10)

Thus dS=O if T =T, ; otherwise dS &0 because if
T„&T, then dM'&0 (energy flows into the black hole),
and if T„~T, then dM'gO. This is exactly the result
which is to be expected if S is indeed the correct total en-
tropy. The entropy change is zero for a reversible
transformation such as a transfer of energy between two
systems at equal temperature, and otherwise the entropy
increases.

A similar result applies in the case of black-hole —de
Sitter spacetimes containing a shell. Assume that the to-
tal entropy is one-quarter of the sum of the areas of the
black hole and cosmological horizons (i.e., ignore any
matter entropy between the horizons):
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dM =A K)r)dr)

Using these relations and Eq. (5.9) we find that

dM' .
2

(5.12)

Thus again in this case dS =0 only if Ti ——T2 and dS & 0
otherwise. The black-hole —de Sitter spacetime with a
shell behaves in the same way as does the black hole sur-
rounded by a shell in contact with a heat bath, where the
role of the heat bath is now played by the cosmological
horizon.

Finally we note that attempts to violate this second law

by the "box-lowering" techniques of Bekenstein, s and Un-
ruh and Wald" will also fail in the presence of a shell.
The latter authors found that buoyancy effects caused by
the Hawking radiation ~ould save the second law provid-
ing the general relation dM =TdS remains true. In the
presence of the shell we have

dM=A dM=ATodS, (5.13}

where 1$ =1 (4mM~). Using (3.20} we conclude

as required by Unruh and %aid.

(5.14)

VI. CONCLUSIONS

In both of the situations analyzed above, the second law
takes precisely the form that one would expect with the
entropy given by Eqs. (5.2) and (5.9), where the only grav-
itational contribution to the entropy is one-quarter of the
area of all event horizons. If there were any additional
contributions to the entropy which depend upon M', then
we would not have dS=O when T& ——T2. Then the
transfer of heat between two bodies at equal temperature
would either violate the second law (if dS ~ 0) or be an ir-
reversible process (if dS ~0). Either outcome would con-
flict with conventional notions of thermodynamics. Con-
sequently, our results must be interpreted as evidence
against a gravitational entropy which is not associated
with an event horizon.

The foregoing is also consistent with very simple argu-
ments showing that there is no gravitational entropy asso-
ciated with any cold spherical shells not inside an event
horizon. No matter what the radius (if 8 &M') or what
the motion of such a shell is, its gravitational field is
spherically symmetric and therefore carries off no irrever-

sible gravitational radiation if conservative forces in the
shell are permitted to expand the shell to radial infinity.
Thus, as long as one ignores dissipative effects in any
matter present or nonequilibrium fiuxes of matter into or
out of horizons, the motion of a spherical shell is reversi-
ble. Assuming that the shell and its gravitational field
have zero entropy at radial infinity, with purely conserva-
tive forces they will have zero entropy at all other radii,
no matter what the shell motion, as long as it does not
enter an event horizon. One could design a shell which is
capable of raising and lowering itself in the gravitational
field of a black hole by changing its internal stresses
without the assistance of any external agent. The black
hole and shell then form a truly isolated system which is
capable of reversibly changing itself from a configuration
in which the shell radius is arbitrarily large to one in
which the shell is located anywhere outside of the event
horizon.

By considering an infinite set of concentric nondissipa-
tive shells, possibly with conservative radial forces be-
tween them, one can extend this argument easily to see
that no spherical gravitational field other than a black
hole has any entropy. The argument also applies to non-
spherical stationary fields without horizons if one imag-
ines allowing the matter source to spread out very slowly
and adiabatically with the appropriate conservative forces
to make the gravitational field become arbitrarily weak
(and hence presumably have zero entropy) in a reversible
way. One might object that matter realistically could not
be expected to have precisely the appropriate conservative
forces in all cases, but as long as these imagined forces do
not violate the laws of gravity and thermodynamics, they
are sufficient for these arguments about gravitational en-
tropy.

These conclusions are the same as those Gibbons and
Hawking found for stationary configurations with
perfect-fiuid sources: a definite classical gravitational
field without horizons has no entropy. Because of the
wide variety of spherical and/or stationary metrics, for
which this fact is easily seen to be true by the arguments
above, there would appear to be great difficulty in con-
structing any functional of the Weyl tensor (or indeed vir-
tually any other measure of the curvature) that would give
the nonzero gravitational entropy of black holes and yet
zero for the large class of metrics known to have no gravi-
tational entropy.
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