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We compute the large-scale anisotropy of the cosmic background radiation due to the gravitation-

al field of clumped ~atter in open, closed, and flat Friedmann universes. Formulas are derived for
the mean-square angular fluctuation of the cosmic background radiation in terms of the two-point

correlation function of matter. The results depend importantly on whether or not the matter pertur-

bations locally satisfy the integral constraints which express local conservation of energy and

momentum, and we discuss these two possibilities. We examine the behavior as spatial curvature

goes to zero.

I. INTRODUCTION

The cosmic background radiation (CBR) from the
primeval fireball should be slightly anisotropic from a
number of causes. The strong clumping of matter on the
scale of galaxies and clusters of galaxies implies a degree
of inhomogeneity in the early Universe, which may show

up as angular anisotropy of the CBR on angular scales of
seconds to minutes of arc. The spectrum of spatial inho-
mogeneity has an unknown dependence on spatial scale;
theoretical considerations in the inflationary universe'
suggest that the spectrum ought to be scale-free
(Harrison-Zeldovich spectrum), and this possibility i's
currently popular, but other possibilities also exist.
Indeed, if matter perturbations are created locally by
causal processes acting on scales much smaller than the
present observable Universe, the spectrum of inhomo-
geneity must fall much more steeply than a Harrison-
Zel'dovich spectrum on the largest presently observable
scales.

If the spectrum of matter inhomogeneity falls more
steeply than a Harrison-Zel'dovich spectrum, then small-
scale matter perturbations still cause long-range fluctua-
tions in the gravitational potential and, consequently,
gravitational red-shifts. The large-scale angular anisotro-
py of the CBR may be dominated by these red-shifts as
discussed by Sachs and %olfe, and Peebles. " As a par-
ticular case, if the matter fluctuations are created out of
an initially homogeneous universe by physical processes
which act only on small scales —for instance, as in the

model of galaxy formation by explosive events due to Os-
triker and Cowie —then the local matter perturbations
will conserve mass and momentum. As a consequence,
gravitational fields will have vanishing monopole moment
and vanishing dipole moment; in this case the matter per-
turbations must obey certain "constraints" ' and the
large-scale anisotropy of the CBR will be much weaker.

For inflationary-universe models, the constraints do not
apply to matter perturbations created by quantum fluctua-
tions during the inflationary area, because the horizon was
much bigger during the inflationary era than now (as
measured in eomoving coordinates). However, even in
inflationary-universe models, the spectrum of matter per-
turbations could be strongly enhanced at small distance
scales by nonlinear effects at late times —such as in the
Ostriker-Cowie model —over and above the underlying
Harrison-Zel'dovich spectrum. If so, the matter distribu-
tion observed now on scales out to tens of Mpc will ap-
proximately obey the constraints.

In this paper we will discuss the prediction for the
large-scale anisotropy of the CBR caused by the gravita-
tional red-shift due to matter inhomogeneity, in closed,
open, and spatially fiat Friedmann universes
(k =+1,—1,0). The distribution of clumped matter is
conveniently measured by the two-point correlation func-
tion g(r) of galaxies as a function of spatial separation r;
this has been well measured out to -20 Mpc. Similarly
the possible anisotropy of the CBR can be specified as the
rms temperature difference ((5T& —5Ti))'~ of the fluc-
tuation 5T in the temperature T of the CBR as a function
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of 8, the angle between celestial directions 1 and 2 on the
sky. We give explicit formulas for ((5Ti —5T2})'~ in
terms of g(r) T. he actual magnitude of the angular fluc-
tuations in T is very dependent on whether or not g(r) de-
scribes a distribution of matter which locally obeys con-
straints. An approximate expression of the results for
open and spatially flat universes, for g(r) not subject to
constraints, were previously given by Peebles. *

two-point matter correlation. For the k=O Friedmann
universe, our main result for this relation is

((T,—T, )') H, ' 8 H,
J3sm — J4

T c C

T

Ho g+ 2 J5 Sln
48c

A. Constraints on matter perturbations

(2)

First let us explain briefly the physics of the con-
straints. In special relativity there are ten conserved
quantities corresponding to the symmetries of Minkowski
spacetime: namely, four components of the energy-
momentum vector and six components of the angular
momentum tensor. Consequently, arbitrary stress-energy
perturbations are forbidden. For example, if the energy
density perturbation 5p vanishes initially, and then is per-
turbed by a local process which obeys causality, then the
conservation laws tell us that at a later time

f d'x 5p=o, (1)
Gb,

f d xx5p=0,
Gbtg

where the integration is over a large enough spatial
volume Gb;&.

In general relativity, energy-momentum of matter is not
conserved. In certain special spacetimes, however, conser-
vation laws still hold; one of us has studied these conser-
vation laws. ' In the particular case of the k=O Fried-
mann model, Eqs. (1) and (2) still hold, even though they
no longer follow from any explicit symmetry of space-
time. [For example, Eq. (1) is a law of conservation of en-
ergy, even though spacetime is certainly not static. ) Simi-
lar laws hold in the k =+1 Friedmann models, as we dis-
cuss in Sec. II.

What does this mean for cosmological observations' ?
The laws (1), (2} (or their counterparts for k =+1) can be
rephrased in terms of the two-point mass correlation func-
tion g(r)=(5pi5p2)/p, where r is the distance between
points 1 and 2. For example, for a random distribution of
such localized perturbations in a k=O model, g must
satisfy'

f drr g(r)=0, (3)

f drr g(r)=0. (4)
big

These restrictions on g imply that the consequent fluctua-
tions in the CBR at large angular scales are smaller in am-
plitude.

J~= fp r

Here 8 is the angle between directions 1 and 2 in the sky
and Ho is the Hubble constant. Equation (5) is valid for
8& 8g, where g(r) is assumed to vanish beyond some dis-
tance

2L g
—=(4c /Ho)sin(8g/2) .

The leading term at large 8 is the term proportional to Ji,
which gives roughly b, T(8) 0:8'/, as pointed out by Pee-
bles. 3 But when perturbations are created by local, causal
processes in a noninflationary universe, the constraints (3)
and (4) imply that Ji ——J& ——0 and the leading term is that
in J4, which gives ET(8) ~const. These constraints also
must be satisfied in inflationary' universes for local,
causal processes which operate after the end of inflation,
for instance, phase transitions at nuclear density, or explo-
sive events. However, for processes which happen before
or during inflation, the integrals in (1) and (2) or (3) and
(4) run over a region of integration Gb;s much larger than
the present horizon, and so they do not directly constrain
the amplitude of fluctuations in the CBR.

We also derive results corresponding to (5} for k =+1
Friedmann models in Sec. V. Finally, in Sec. VI we ob-
tain expressions for the multipole moments of the CBR,
and discuss the limit of the nearly fiat Universe.

II. CONSTRAINTS
ON STIMSS-ENERGY PERTURBATIONS,

AND SMALL-CURVATURE LIMIT

We will study linear perturbations off an exact
Friedmann-Robertson-Walker (FRW} spacetime with
metric g~o~„„given by

ds'= —dtz+A i(t)dcr2=22(g)( dpi +do ), —(7)

where,

S(dX +sin XdQ ), S ~0 or k =+1,
do = dX +X2dQ2,

i
S

i
= a) or k =0,

~

S
~
(dX +sinh X dQ }, S ~0 or k = —1,

B. Summary of the main resets

Matter perturbations cause a large-scale anisotropy in
the temperature T of the CBR, due to gravitational red-
shift. Sections III and IV discuss this effect and give a
gauge-invariant derivation of it; the hmit of small spatial
curvature ( k=0 liinit) is treated.

Section V derives the relation between the mean-square
anisotropy of the CBR at large angular scales and g, the

dt=A dq;
here dQ =d8 +sin 8dg and units are used such that
c =1=6. The scale factor A(rt) is normalized to unity
at the present time:

Ao—=A (go) = 1,
where go denotes the present time in the coordinate sys-
tem (7), corresponding to proper time to. The "squared
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radius of curvature" S plays the role of the more familiar
k; k=0 ~orrespo~ds to

I
S

I

= oo, and otherwise
k =sgnS; S has dimensions (length) in physical units as
measured at to. The relation between Qo and S is

c 1S=
~O2 1 —Qo

'

where Qo=—po/p, „,—=(present density)/(density necessary
to close the Universe). We expect physical quantities to
have smooth limits as

~

S
~

~oo, since the geometry
changes smoothly, as can be seen from the alternate form
of the spatial metric:

sphere S ).
The constraint vectors for finite S(k =+1) are

1 dA
V =r—+S— DV

3t A dt

where DJ is the covariant derivative in the spatial metric
d(T . For S&0, F is any one of four second-order spheri-
cal harmonics on S (see Sec. VI and Appendix A}:

P

cosX, sinXY) (Q), S &0,
F=Q2™=I,XY)~(Q),

~

S
~

= oo, (12)

coshX, sinhXY) (Q), S &0,

ds = dt —+A (t) z +r dQ
1 r /S—

The choice (7) of coordinates is a convenient one in which
to study small deviations from the spatially flat model, by
power series in 1/S.

The perfect-fiuid stress-energy tensor T(o)„"is given by

T(o)p =(p+p) U(o) U(o)y+pg(o)p ~v

Here p is the background density and U(o) ——(}/Bt is the
unperturbed fiuid four-velocity.

We review briefly integral constraints on stress-energy
perturbations in FRW spacetimes (for discussion about
general spacetimes, see Ref. 7). Consider perturbations
off the background

gpv g(o)pv+hpv~ Tp T(o)p +5'
where (h&„,5T& ) are solutions to the linearized Einstein
equations. Let 6 be a spatial volume in the standard
coordinates, Eq. (7), with boundary BG and timelike nor-

mal n. These exist constraint four-vector fields V such
that 5T"„must obey a generalized Gauss's law:

f du V"5T qn = f da(B' (9)

for all h„„and h„„. The boundary term B' is linear in

h„„, and vanishes if h„„ is zero on BG. So, for example,
suppose 5T"„is local (has compact support} and vanishes
at some initial time. Then causality implies that the
boundary term is zero if 6 is taken large enough.

The FR%' spacetimes each have ten integral constraint
vectors, in the standard coordinates (7). Six of these are
just the spatial Kilhng vectors. The other four, which
will be useful in studying density perturbations, are not
Killing vectors. For

~

S
~

= oo FRW spacetimes
( k =0-—flat spatial sections) these are

where m = —1,0, +1 in (12).
The F satisfy the differential equation

I' =0,3

S

where 6=—D;D'.
When @=0 we can always choose a gauge which is syn-

chronous and comoving with the irrotational part of the
flow (5U'~;=0) (Ref. 10). Substituting the constraining
vectors (ll) into the integral condition (9) gives, for a
closed universe (S & 0),

fd„5 gzlm () (14)

Equation (14} is also true for the open universe (S &0) if
5p is a local causal source.

Below we will look at first-order curvature effects for
slightly open or closed universes. Let 5p be a local source
which vanishes beyond some length scale L:

5p(x)—:0 for Xv'i S
~

&L .

Let 1 =Xv'
~

S ~; l is the geodetic distance to the origin.
Then neglecting terms of 0 (l /S ), Eq. (14) becomes

5 If d !5p 1 —— =0 (all S),
6 S

f d'l5plY, (Q)=0.

In the limit as
~

S
~

~ oo these do reduce to the k =0 con-
straints for local sources. It makes sense that one must
consider local sources to take a large-

~

S
~

limit since we
have not included the boundary terms.

In Secs. V and VI we will apply the constraints to the
computation of the anisotropy in the microwave back-
ground.

(} A; (}
V(o) = — x

at
(10)

Bx

For example, let 5p be a local causal source in a Aat, pres-
sureless, FRW universe. Then the integral constraints
reduce to the special-relativistic statements (1) and (2) that
the monopole and dipole moments of 5p vanish.

In the closed FRW universe the boundary term is al-
ways zero if 6 is the entire t=const surface (a three-

III. GAUGE-INVARIANT EXPRESSION FOR 5T/T

Perturbations in the metric and matter will cause fluc-
tuations 1n thc obscrvcd temperature. This can bc com-
puted as follows. A photon is emitted at E =(qE,xE) and
received at O=(go, xo). We will assume that the ob-
served microwave-background photons were emitted from
the last scattering surface when hydrogen recombined.
We will make the approximation that recombination hap-
pened at a single temperature T„,=4000 K, which is a
red-shift z„,=1.5& 10 .

One contribution to 5T is from fluctuations in the pho-
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ton field on the last scattering surface, and another contri-
bution is the Doppler shift due to the peculiar velocities of
the source and observer. " ' A third contribution to 5T
is the Sachs-Wolfe effect: the photon four-momentum is
perturbed as it propagates on the perturbed null geo-
desic. z i "'s The derivative of the general gauge-
invariant expression for 5T is very simple (see also Ref.
16}. We follow the approach of Sachs and Wolfe.

Let k = k(0)+5k be the four-momentum of the pho-
ton and u = u(0)+5u be the four-velocity of a local ob-
server. in the FR% background

k(0) =
A

—n

where n is a spatial unit vector,

1=n n=n'nj(r, j(x)

and

1
u~o)==A aq

(17)

Here cr,J. g;J/A —[cf. Eq. (7)]. The normalization of
four-velocity implies that 5u =0.

Then the red-shift of photons emitted at recombination

5T(x,g„,)
A ('pygmy(x) )=A ('g(p)peg) 1 + T

(20)

5To 1 5pr 5Tsw" (x,r)„,)—
0 P

5TD,p

T
(21)

Of course it remains to compute these quantities in

terms of given initial data. Sachs and Wolfe computed
5Tsw for a flat FRW universe. One of us has previously
worked out the extension for arbitrary background
geometries (Ref. 6; see also Refs. 15 and 16}. The result,
valid for any gauge, is

A (h& &k(o)~k(0)

Let p& be the photon density. Then

5 T/T(x, ri,~)= ,' 5p—r/p(x, r),~),
which is equal to 5pb, ~,„/3p for adiabatic perturbations.
Substituting in (18) gives the final expression for 1+ z.
Since the red-shift is an observable this is gauge invariant.
We write the result in terms of the temperature perturba-
tion at the observer 5To, where T(0)o+5To
= T, /(1+z):

1s

Tr~1+z=
(k u)o

A (rto) 5Tsw 5TDop

A (ri,~) T
(18)

—2hop, ak(o) k(0) )(0)dw, (22)

where h„„—:k„,/A . The integrand is to be evaluated on

the zeroth-order path. In the coordinate system (7) this
path, parametrized by m, is

'9='Qo — &= =oi /2

where 4=do' 0&w
(23)

5Tsw'" =A'5k'(0) —A'5k'(E),
T

5 TD(&p ~ 5QJ 5QJ=nj (E)—nj (0);
(19}

(X)=g(0) +bg(x),
where T(o)(r)) is the temperature in the unperturbed
universe,

T(0)(n) }

T(0)(nz}

A (ri2)

A(i)))
'

and g~o~, is the time at which recombination would occur
in an unperturbed universe, T(0)(ri(0),~)=T,~. Combin-
ing these gives

here T0 is the temperature at the observer.
In the physical, perturbed universe, the surface T =T,

is not a surface of constant ri. Rather ri„, is a function of
x defined by

T, =T(x,ri„,(x)),
and this gives a further correction term in (18). Let

T( x, ri) =T(0)(g }+5T(x,ri)
and

Next we write down solutions for h&„and 5p. We as-
sume that p=0 (as in Refs. 2, 6, and 15). The solution of
the Einstein equations for A (ri} is then

(1—costi)/(1 —cosrio ), S & 0,
~S~=~,

(cosh' —1)/(coshrlo —1), S ~0,
and one can always choose a gauge which is synchronous
and comoving with the scalar part of the velocity field. '
In this gauge the integral constraints take the simple form
(14).

Further, we shall only include scalar modes in Ii;J (as in
Refs. 6, 11, 12, and 16). This is a good approximation at
late times; physically, the vector and tensor modes are
red-shifted away. Since 5TD,~ is due only to rotational
modes in our gauge we will neglect this term. (The
Doppler term due to the peculiar velocities of the source
and observer will show up as part of 5Tsw. ) On large an-
gular scales, 5Tsw dominates 5pr(x, i)~). Therefore, we
have 5To/To- 5Tsw/T. —

Lifshitz and Khalatnikov' computed the evolution of
perturbations in FRW spacetimes in terms of an eigen-
function decompositions. With the above choice of gauge
then p=o solutions can be written in terms of a gravita-
tional potential f(ri)4(x):
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p = ——,f(g) d+ —4(x),3

p
' S

Here f=df/dg. The growing mode solutions for f
are 10' 17

d- 1
h J=f DDi+ —5l

dq
' ' 5

where

2

3 sing(g —sing )

(1—cosg )

f(g)= bg, IS I
=Do,

3 sinhg(sinhg —g)
(coshg —1)

(25)

A 1+—f=0.
A S (24) where in each case the constant b is chosen so that f is

normalized by f(go ) = 1. The large-
I
S

I
limit is

'9 1 7
5 2qo 6

2

+ 'I ~ ~ (26)

——f div f + f 4. —
0 S (27)

It is straightforward to transform 5T/T and 5p/p into
the gauge-invariant variables of Bardeen. ' I.et vo' (g)
denote the nlmth harmonics of the gauge-invariant veloci-
ty perturbation. (The harmonics Q" are discussed in Sec.
VI and Appendix A.) Then

v,"(g)——,f4(x)=g Q"(x)=V, ,
n —1

and we see the 5To depends only on the velocity V, and

V, .
For ease in discussion we will divide 5To into parts.

Let

where goo=2/Ho ——the present time in a flat universe;
and qo is the deceleration parameter, given by qo=Qo/2
or (2qo —1)Ho ——1/S. Therefore, the expression for
5T/Tis

5 To
(fn VC +f—4 )o

0 2

f7@. In some other gauge they would have appeared in
the n'5u; term.

Perhaps the most interesting point is that the integrand
in 5Tv„h for the growing mode goes to zero as

I
S

I
~ co,

recovering Sachs and Wolfe's expression. Therefore in a
flat universe, 5To depends only on f4 and f74 at the
source and observer.

On the other hand, in a spatially curved universe, the
metric fluctuations along the entire path of the photon
contribute to 5To. Comparing the magnitude of 5'„h to
the potential term,

I 5Tv.u I
goo'

I 5' t I

=4I2qo —1I .

The only observed anisotropy in the microwave is a di-
pole moment, which is generally attributed to Earth' s
peculiar velocity (Ref. 19),

I
v

I
(310+40 km/sec. This

could be thought of as 5TD» o, but one must remember
that Earth's peculiar velocity at the present time is a non-
linear effect.

IV. SOLUTIONS FOR 4
5 TD», o = —,

' fn V4(0),
T

~ bloop, E

T
= ——fn |)'4(E}

(28}

The temperature 5T~, is proportional to the gravita-
tional potential 4 of the growing mode. In this section
we find the solutions for 4, and derive simple approxi-
mate expressions for the 4 due to a local source 5p. Split
5p into its space-dependent and time-dependent factors:

= ——,
' f4(E),

fdu —f—+ f ~'—
2 5

1 25 (go —iv)fdiv, @+0(S ') .S 3 900

The potential term at the observer is the same for all
directions in the sky and has been dropped. The first two
terms have been called "Doppler" because they depend on

5p (x,g)=f(g)P(x) .
p

Then from (24)

(29)

b, +—4(x) = —2P(x) .3

S (30)

We will find the Green's function G(x,x'} such that the
solution to (30) is

4(x)= 2fdv'6 (x,x')—P (x') .
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In flat space there is a simple multipole expansion for
4(x) if the source is local, which is valid at points x out-
side the source. In Ref. 4 this expansion was calculated
for a k=O FRW universe. For k=O the integral con-
straints imply that the monopole and dipole moments of
5p vanish. This means that the magnitude of 4 and
hence 5T~t is reduced by a factor of order e ~&1, where
e is the multipole expansion parameter. If the Universe
has been FRW since the big bang, then e -(I+zz)
where z~ is the red-shift when the Universe became
matter dominated.

In this section we will sm that the same is true for a lo-
cal source in a "slightly" open or closed FR%' universe,
and compute the first-order effects of the curvature. Ct is
calculated by finding the Green's function 6 for (30), ex-

panding 6 in a far-field and small-curvature limit and
imposing the integral constraints.

this constraint is impossible because of the four zero
modes Q

' . Appendix C discusses this point in more de-

tail. It is also possible to write 6 as an infinite sum of
eigenfunctions (Appendix 8).

B. Far-field, large-radius-of-curvature expansion

Given any source P(x), Eqs. (32)—(35) give the exact
solution for 4. However, we can learn some useful infor-
mation about 4 by constructing a far-field, large-radius-
of-curvature expansion.

Assume that P(x) is a local source at y, with length
scale I.. I.et l„„bethe geodesic distance between x and y,

T

v Stt/, S &0,
l,r —— 1, /S

/
=oo, (39)

v' —Sa, S (0,
A. Exact expressions for the Green's function

We give 6 for the three-space S (S&0), for projective
three-space P (S&0), for flat three-space E (

~
S

~

= oo ),
and for the pseudosphere or hyperbolic space H (S gO).
P is the three-sphere with antipodal points identified—
this changes the boundary conditions. Care must be used
for S, since in this case the operator has four zero modes
Q2'; cf. (12) and (13}. Details are contained in Appendix
C. Expressed in the coordinate system (X,8,$) of Eq. (7),
the Green's functions are

where g is defined in (36}, I in (37), and a in (38). Expand
du'6(x, x') in powers of l'/&

(
S

)
and 1/&

~

S ~, i.e., ra-
dius of curvature large compared to length scales of in-
terest. Next expand in powers of e=l'/1 (usual far field
approximation). Then the integral constraints, expanded
for local sources (16), are used. The leading terms for 4
are

=1 I2
tp(x, y)= —,Fz (Q)Q2 1+

I3

S: Gs(x, x')=— 1 ' cos2$
V S4m sing

1
cosg

(32)
where

1'
2

1' 1+ ' 3/2 '
i

3/2 (40)

H: GH(xx')=— 1

v' —S4~
cosh2cx

P: Gp(x, x') =-g 1 cos2ttlt

S4m sing

1E: Gh(xx') =—
4~1

'

(33)
Q2 = —, Jd zP(z)z F2

L
e& —.

I
The first nonzero curvature correction is of order

where

cos1(=cosXcosX'+sinXsinX'cosy (S &0),

1 =12+12 211'cosy (
i
S

i

—= oo ),
cosha =coshX coshX'

—sinhX sinhX'cosy (S & 0),

(36)

(37)

and where y is in turn given by

cosy =cos8 cos8'+ sin8 sin8'cos(P —P') .

In the foregoing equations, x has coordinates (X,8,t)It), and
x' has (X',O', P), in the coordinates of (7).

The Green's functions (34) and (35) for flat and open
universes solve (30) for any source P. However, the
Green's functions (32) and (33) for closed universes solve
(30) only for sources P which satisfy the constraints (14)
(with 5p=P). Finding a Green's function not subject to

The functional dependence on angle 0 of this term is ex-
actly the same as the fiat-space term, a result of using the
integral constraints. The curvature term of order S
vanishes by the constraints.

When
~

S
~

~oo in Eq. (40) we recover the k=O ex-
pression for 4, valid for local sources. The important
feature of this expression is that 4 starts at the quadru-
pole term. For S large but finite the effect of the con-
straints is the same—the magnitude of the gravitational
potential due to local sources is suppressed:

-e (1+2
~
2qo —1

(

'/ ), (41)
without

and @&~1 whenever the multipole expansion is valid.
Here 5T„;,hie is the angular fluctuation of the CBR
caused by sources obeying the constraints, while 5T„;,h,„,
is that caused by sources which do not obey the con-
straints. If the Universe has been FRW since the big
bang,
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E'=(L/l)'&(1+z ) '&10 '.
The first difference between S and P enters at the

next order, and is equal to

Q/(Sii 3ir ), Q= 2—fd zzzP .

However, this term is independent of position and so only
contributes an unobservable monopole moment to 5T.
That is, the difference between a P and an Si universe is
unobservable to order l /S &(2qo —I) .

We can compare the magnitudes of different terms in

5TO (28). If 5p is a local source, then (26) and (40) imply

I 5TD.p,E I 1
(42)

V'1+zE

On the other hand, if 5)o is an extended source with wave
number n/v'

I
S

I
(see Sec. VI),

I 5TDop, E I Il
43

(,5Tj5T, )
(8)=

T2

of the CBR, because v blows up in general as

I
S

I
~ oo, while r remains finite. The formal relation be-

tween the two is

r(8) =2~„(8)—2~„(0) .

The problem as
I
S

I
~oo is that r (0), the variance of

5T averaged over all possible observers in a universe,
blows up in the k=0 Friedmann universe if perturbations
are not local, because the long-range gravitational poten-
tial itself blows up in first-order perturbation theory.

Through Eq. (27), r is related to the long-range gravita-
tional potential 4. Neglecting the Doppler terms [cf. Ref.
2 and Eq. (42}]we have

5T WR'W+X

V. AUTOCORRELATION OF 51
ON LARGE ANGULAR SCALES

We now want to calculate the mean-square fluctuation

~(8) =-
T2

(44)

of the CBR, where 8 is the angle between points 1 and 2
on the sky. It is better to work with ~ rather than the
closely related two-point correlation function

This is greater than one for scales which have entered
their horizon.

As for the other terms in (28), 5T~,h and the first-order
curvature correction to 5T~, are both 0(1 /

I
S

I
).

W(w}= —~f5(n —nE}—~f —2Sf (45)

and where the integral runs along the null geodesic
(i)(w), x(w)) from the observation event (iso, xo) (with
i)o —=rljj} to the emission event (qE,xE). Here f (g) is the
growing mode solution (25) in an open universe, normal-
ized as f(rljj)=1.

In turn 4 is related to P, the density perturbation of
matter at i}jj, through Eq. (31):

5T = —2 f dw W(t) fdu„G(x, y)P(y) .

We then have for two points 1 and 2 on the sky separated
by an angle 8:

W W 8 W 8 W 4X) —@X2 4X) —4X2

=4 f dw f d Ww( )Ww( )wf de fduy [G(xi,y) —G(xz, y)][G(xj,y') —G(xz, y')]([P(y)P(y')])

=4 f dw f dw'W(w) W(w') fdu fduy [G(xj,y) G(xi, y)—][G(xj,y') G(x2, y')—]g(lay'), (46)

where we have used Eq. (29) evaluated at i)0 to obtain g in
the last line, and l~ is the spatial geodetic distance be-
tween points y and y' in the time-independent metric do
of (7), as defined in Eq. (39) above. The points xj(w) and
xj(w') run along a null geodesic in direction 1, while the
xz(w) and xz(w') run along a null geodesic in direction 2,
starting at 0 and running toward the past. In Eq. (46),
g(l} is the normalized two-point correlation function of
matter at qo,

»~')=&5l Pl'v &/l'

I

expressed in terms of spatial distance l today; g is as-
sumed translation invariant and isotropic.

A. Flat universe ( I
S

I
= ~)

First, we will proceed with the k=0 case of (46). Then
the integrals in dw reduce to the end-point contribution

fE@/2= Ho 4/'4 at i)E— —
and five of the six integrals in y and z can readily be
done.
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4
sin —.

Ho 2
(49)

For example, assume that g(/) vanishes for / &2Lg. Then
on large angular scales, 8 & 8g, where sin(8~/2) —=HoL g/2,
Eq. (47) for r(8) takes the form (5).

If the perturbation 5p obeys the integral constraint
equations (1) and (2) [or (14)] without boundary term 6 7 as
it must if the cause of perturbations is a local, causal pro-
cess in a noninflationary universe, then' g must satisfy
Eqs. (3) and (4) and consequently J3 =—0=J5. In this case
the large-angle behavior of r is r ccconst rather than
roughly r'~ 8cc~t(cf. Ref. 3):

((T,—T, )'} H, '
T2 4 J4 t9&8g . (50)

The reason that r(8) is constant is that r„„(8)is zero at
large angle:

(sT, sT, & =0, 8&8g . (51)
T2

We obtain a formula which gives for the flat Fried-
mann universe the relation between the two-point correla-
tion function g(/) of matter in spatial distance / at the
present time, and the mean square fluctuation r(8}of the
CSR at angle 8 on the sky:

r(8) = ,'Ho—"f /' d/'g(/')X(/, /'), (47)

where the kernel X(/, /') is

/ —/'+/'/3/, /'&/,
/'/3/', /'&/,

Equation (54) is hard to integrate directly, but we can ob-
tain an explicit expression for C by differentiating (54)
successively to get rid of the integrals and Green's func-
tions on the right, so as to get a fourth-order differential
equation in C, which can then be solved.

Let L„=—(6„+3/S) be the linear operator which ap-
pears in (30). Operating on (54) with L„and using (30)
and (31) gets rid of one Green's function and one spatial
integral:

L„C(x,x') =4fdu„G(x', y')g(/„„) . (55)

Now C is invariant under motions of hyperbolic space;
i.e., if c}F is any motion (isometry) of hyperbolic space,
then

C(x,x') =C(9tx,SFx') .

In particular, C(x,x') is symmetric in its arguments; this
fact can be easily seen from the definition (54) of C, but it
also follows by taking 9F to be a particular motion which
interchanges x and x'. It is less obvious that L„C(x,x') is
also symmetric. Again, let 9F be a motion of hyperbolic
space which interchanges x and x'. Then

L„C(x,x') =L~„C(9Fx,9Px')

=L„C(x',x);
we have used the fact that the operator L is also invariant
under motions. Thus L„C(x,x') is symmetric. In fact,
C(x,x') and L„C(x,x') are functions only of / . Using
the symmetry of (55),

L„C(x,x') =4fdU„G(x, y')g(/„z )

and operating on this again with I.„, the second Green's
function and the second integral are also eliminated:

The value of r is simply the sum of the variances in each
beam here. Furthermore, the magnitude of 5T is
suppressed for sources which obey the constraints (3) and
(4):

L„L„C(x,x') =4// ) .

In one-dimensional form this equation becomes

(56)

1/2
rwith constmints( 8 ) 1

„';,' „(8) (1+ )'
(52)

2
2

1 a = 2—4 (sinhaC) =4S g(a) .
sinha

(57)

B. Open universe (S~O}

Turning to the case k = —1, (46) becomes

r(8) =2 f dw f dw'W(w) W(w')[C(xtx't) —C(xtxz)],

(53)

where C is a convolution of Green's functions with the
two-point correlation of matter:

C(x,x')= 4f du& f—dvz G(x, y)G(x', y')g(/~ ) . (54)

C(a) =4S f smh a'da'HH(a, a')g(a'), (58)

where the Green's function H~ on hyperbolic space is de-
f1ned by

Here a is related to the geodetic distance l~ between x
and x' by / ~ =

~

S
~

'~ a [cf. (38) and (39)]. Equation (57)
can readily be solved for C by constructing the Green's
function HH(a, a') for the fourth-order operator on the
left. Then the solution is

H~(a, a') = ~

—2cx

, [(2a+ 1}sinh2a' —2a' cosh2a'], a' & a,
16sinha sinha'

—2a

, [(2a'+ 1}sinh2a —2a cosh2a], a' & a .
16sinha sinha

(59)
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[HH(a, a ) is symmetric in its arguments because the fourth-order operator in (57) is self-adjoint. ]
Then Eq. (53) gives the formula for the relation between r and g in open Friedmann universes:

E OO

r(8) =SS f dw f dw'W(w) W(w') f sinh a'da'[HH(aii, a') —HH(aii, a')]g(a'), (60)

0= f sinh a da coshag(a) (61)

which becomes (3) in the flat limit S—+ —ao. Apparently
(4), which also holds in the fiat limit, has no generaliza-

where
~

S
~

' aii=—I „and
~

S
~

' ai2 =—I, . The

points x,(w) and xi(w') run along a null geodesic in direc-
tion 1, while the xi(w) and xz(w') run along a null geo-
desic in direction 2, starting at 0 and running toward the
past; cf. (23). W is defined in Eq. (45). Equation (60) is
somewhat more complicated than Eq. (47) for flat
universes in that it involves a twofold integration, but it is
still conveniently usable.

When 5p obeys the integral constraints (14) without
boundary term in an open universe, then g must satisfy

tion to k&0 models. (Of course one could choose a
gauge, consistent with a synchronous gauge, such that
fdu5p=0; in this gauge g would satisfy fdu(=0.
However, we emphasize that the integral constraints and
the consequent restrictions on g that we have discussed
here are gauge invariant. )

In the open universe, ~(8) is more complicated that in
the spatially fiat universe, partly because of the integra-
tions over the null geodetic path. For nearly fiat open
universes, however, we can ignore the integrations, which
are O(r /

~

S
~

), and keep only the end-point contribution
at g = rlE in (45).

We further assume that g(a)—:0 for a) a~, for some
radius a~. Then on sufficiently large angular scales,
8) 8~, (60) reduces to

Si 2 ~r . . . 2a'e
r(8) = f sinh a'da'g(a')

4 0 sinha'
(2a+ 1)e cosha' e a'cosh2a'

+
sinha sinha sinha'

(62)

Here a is defined using (3S) from 8 by sinh(a/2) =sinhrlosin(8/2). If the sources are causal and hence satisfy the con-
straints (61), the first term in the integral vanishes. To take the large

~

S
~

limit, let a= I/
~

S
~

'~ and a'=I'/
~

S
~

'

We assume g(a') has a limit g(I'). Then

Ho', ). . . I'
~(8)= f I' dl'g(l') I —I'+ +0

S (63)

which reduces to (5) as
~

S
~

~ oo.
Unless g satisfies the constraints, (5Ti ) and (5T,5Tz ) individually diverge as

~

S
~

~ ao. Their difference (63) has
a finite limit for any source. As mentioned above, this is the reason for using r(8) rather than r„(8)

C. Closed universe (SpO)

L„G(x,x') =5(x,x') —5' (x,x')

as shown in Appendix C, Eq. (CS).
Equation (46) still implies Eqs. (53) and (54). Operating once on (54) with L, yields

L„C(x,x') =4fdu„G(x', y g(lx~)4 fdu~ f, du~5ii(x y)G(x y)$(I~, )

and a second operation with L„annihilates the second integral and gives, using as before the symmetry of the first term,

L„L„C(x,x') =4/(1 ~ ) 4fdu„5~'(—x,y')g(1„„) . (64)

Operating still a third time with I.„finally gets nd of all the integrals:

The case k = + 1 may be handled substantially the same way as the case k = —1. We present the calculation for spa-
tial topology Si; the result for P then follows. The four zero modes of the operator L cause some complications, be-
cause the Green's function G of (32) now obeys

L„L„L„C(x,x') =4L„)(1 ~ ) .

In one-dimensional form this equation becoines

(65)

1 82
2 +4 (singC) =4S . +4 [sin+'(P)],slil sing
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(67)

where S'~ g= l ~ [cf. (36) and (39)]. The Green's function of the operator on the left in (64}can be constructed; starting
from the homogeneous solutions to (66) simplifies the work. We then obtain the expression for C as

&(P)=4S J sin g'dg'Hq(P, P'}g(P'),

1
2(m —p)p'cos2$ cos2$' —(m —p)cos2$ sin2$'+ g' si n2$ cos2$'

Hg(f, f') = .
+ f +(K—Q) — — sln2$ stn2$&2 2 3

8 3

1
2(m —P')fcos2$ cos2$' —(n.—g')cos2$'sin2$+ P sin2$' cos2$16'stn sin

7T2f + (m g') ———— sin2$ sin2$'
8 3

Here Hq has been constructed to be orthogonal to the zero modes on both its arguments.
We therefore obtain a formula for the relation between r and g in closed Friedmann universes:

E E 1r
r(8)=8S2 J dw I dho'W(u) W(w') I sin2$'dg'[Hq(g», f') —Hs(g&2, $')]g(f'), (68)

where S'~ f»=l „and S'~2/~2=1, . Other notation
X)X) X)X2

is as in (60).
The perturbation 5p must always satisfy the integral

constraints (14) in a closed S Friedmann model. It fol-
lows ' that g must satisfy

0= sin cos (69)

Again, the generalization of (4) seems to be lacking.
Formula (68) applies also to the closed Friedmann

model with topology P . For present purposes, the P
model can be regarded as a special case of the $3 model in
which 5p is even under the antipodal map; that is, 5p has
the same value at any point x as at the antipodal point to
x. Then g is also even, g(n. —P)=g(P), and Eq. (68) ap-
plies directly. Only the even parts of Hs contribute to the
integral. There are no integral constraints in P; (69)
vanishes identically because cosg is odd while g(g) is even
under the antipodal map P~+tt

The result (68) for closed universes goes over smoothly
to (5}as S~ ao.

D. Numerical results

g'( I)=J31 5(l), (70}

We have evaluated the main results (47), (60), and (68)
numerically for some particular examples. Following Pee-
bles, ' we assumed that g vanishes on large-distance
scales. As discussed in Sec. I, this assumption is invalid
in pure inflationary models of the Universe, in which the
matter perturbation spectrum is a Harrison-Zel'dovich
spectrum. Results for such a spectrum will be substan-
tially different. 3 This assumption may be approximately
valid even in inflationary models if nonlinear processes
have strongly enhanced the spectrum at small scales.

Then g can be represented by a three-chmensional 5
function at the origin 1=0:

where J3 is used as a normalization constant; cf. (6).
Then J& ——J5 ——0, and we assume that J3&0. For
Qo ——1( ~S

~

= 00) we then have

1/2

r' 2(8)=(J3HO'c )' ' sin—
2

The observational value of J3 is not very well determined,
but if it does not vanish, (J3HO /c )' -2&(10 is a
reasonable guess. "

For open universes, we evaluated (60) for a number of
values of Qo in the range 0.01 & Qo & 1, and for
0.01&sin(8/2) &1. The results for r'~2(8) are displayed
in Figs. 1 and 2. There are two main regimes apparent in
these results. First, as Qo decreases over the range
1&Qo) 0.5, r'~ (8) decreases very rapidly at the largest 8;
see Fig. 1. This decrease is due to the change of the long-
range gravitational point potential 4 from 40:1/l at
Qo ——1 to 4 a: exp( —l/

~

S
~

'~ )/l for Qo & 1. This change
means that the gravitational potential at the horizon size
LH 2c/Ho is @~ex——p[ —2(1—Qo)' ], a very rapidly de-
creasing function of Qo near Qo= l.

The second regime begins at Q0-0.5 and continues as
Q0~0; see Fig. 2. Here, ~'/ (8) becomes flat at large 8,
due to the fact that the long-range gravitational potential
has died away entirely, and the two beams are completely
uncorrelated. At these large 8, ~„(8)=0 and r(8) is
merely the sum of the variances in each beam. At small
8, r'~ (8) increases gradually as Qo decreases; this is due
to the fact that g is measured at to, while the red-shift de-
pends on g for t all the way back to t@ Because pertur. ba-
tions grow more slowly as the Universe becomes more
open, and eventually freeze in amplitude, a given ampli-
tude of perturbation today implies a larger and larger am-
plitude in the past, the more open the Universe is. There-
fore f was larger at early times in an open universe. Simi-
lar results were calculated by Peebles using a different
method; our results agree with his.
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Wilson computed the temperature fluctuations of the
CBR in an open universe with Qo=0.1, for various as-
sumptions about the spectrum of matter fluctuations, and
found similar results. In particular he pointed out that
the two beams are uncorrelated at large angles.

For closed universes, we can choose either S or P to-
pology. For topology S, we are forbidden to use (70) as a
model for g, because it does not satisfy the constraint (69).
A point mass perturbation is forbidden to exist in a spher-
ical universe, just as a single point charge is. Instead we
adopt g ~ 5, as in Appendix C, Eq. (C8):

1—
CQ

Cg

Q

PJ

00=
X

l I I I I I

g(l)=J3 I 5(l) ——cos
8 I

(71)

which satisfies (69). The question of whether this is the
appropriate choice depends on the physics of the early
Universe, and is beyond the scope of this paper. In P
there are no constraints and we used (70); the 5 function
at the origin also implies a 5 function at the antipode in
P3.

We evaluated 'r~ (28) for values of Qz in the range
1&Qo&3; the results are displayed in Fig. 3 for S, and
Fig. 4 for P . The magnitude of ~'~ (8) is larger as Qo in-
creases from 1; this is because the magnitude of the long-
range gravitational potential becomes greater. There is a
strong dip apparent near 8=180' [sin(8/2)=1] as Qo be-
comes large; this is because we are almost "seeing around
the Universe, " and the two beams are viewing regions of
the recombination surface which are physically close to
each other. In the S Universe two beams separated by
8=180 on the sky view the same point is Qz ——ao, i.e., if
the Universe has just ceased its expansion and is about to
re:ollapse; therefore as Qc~oe, the end-point contribu-
tion in the integrals along the null rays of (68) vanishes.

0.1 '

0,01 O. 1 1
sin(8/2)

FIG. 2. Angular Auctuations of the CBR for open universes.
Same as Fig. 1, except that the range of Qp is 0.01 & Qp& 1.0, as
labeled.

In the Pi universe these two beams view the same point if
Qo ——2. Indeed the notch at 8=180' in Fig. 4 is strong at
Qz ——2; it would be infinitely strong if it were not for the
contribution from all along the null ray. The magnitude
of r'~~(8) is greater in P than in S because the gravita-
tional potential is stronger, because it is concentrated in
half the spatial volume.

VI. MULTIPOLE MOMENTS OF 5T BY AN
EIGENFUNCTION EXPANSION

AND LARGE-S LIMIT

%hen studying perturbations in a k=0 FR& universe
it is often useful to work in Fourier space. In this section
we discuss the corresponding eigenfunctions formalism
for the k =+1 cases, for example, the relation between
the power spectrum and the transform of g. We will com-
pute the expectation value of the multipole moments of
5T, and take the large-S limit.

0.1
0.0 i O. i 1

sin(8/2)
FIG. 1. Angular fluctuations of the CBR for open Fried-

mann universes. Plotted is rms fractional temperature Auctua-
tion r'~~(e}=((T&—T2)~)'~~/T as a function of angle 8 be-
tween beams 1 and 2. Separate curves correspond to various
values of the cosmological density parameter Qp, 0.5 & Qp & 1.0,
as labeled. The two-point correlation function g' of matter is as-
sumed to vanish on large scales, and to possess a nonzero mo-
ment J3, as in Eq. (70). See Sec. VD.

0.1
O.01 0.1 1

sin(8/8)
FIG. 3. Angular fluctuations of the CBR for closed Fried-

mann uaiverses with spherical topology S . Notation is same as
for Fig. 1; the range of Qp is 1.0&Op&3.0, as labeled. The
two-point correlation function g is as in Eq. (71).
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Q
nim

4(x)=g (n&2 for S &0) . (75)
(n2 —4k)/IS I

The absence of the n =2 mode is noted in Refs. 10 and 18.
In flat space the power spectrum

I Pk I
is the Fourier

transform of the correlation function g:

g(xi, x2)=(P(xi)P(xg)) . (76)

There is a similar statement which is true on S . As-
sume that g depends only on the geodesic distance be-
tween the two points. This means that g depends only on
the angle g between the points, (36), and can be expanded
in the 1=0 harmonics. Let

0.1
0.01 0.1 1

sin(8/2)
FIG. 4. Angular fluctuations of the CBR for closed Fried-

mann universes with projective-space topology I' . Notation is
same as for Fig. l; the range of Qo is 1.0&GO&3.0, as labeled.
The two-point correlation function g is as in Eq. (70).

A. Eigenfunction expansion and the power spectrum

The eigenfunctions' '2' are solutions to the Helmholtz
equation on S3 or 83:

(72)

The solutions are the spherical (pseudospherical) harmon-
icsonS (H ):

Q"' (x)=I'i (Q)ll„i(X),

n =1,2, 3, . . . , 1=0, . . . , n —1 for S &0,
n a continuous variable for S &0 .

The Yi are the usual spherical harmonics on S . Some
relevant properties of the Q" are summarized in Appendix
8.

P(x)=pc„i Q"™. (73)

(When n is a continuous variable, g„means J dn).
When S&0, the functions F which appear in the integral
constraints are just the n=2 spherical harmonics. There-
fore the constraints are equivalent to

04)=ge. Iiso(4) (77)

Using the angle addition theorem for S3, we find (see Ap-
pendix C)

&ci c~iw)=e 5N 5+5~ (78)

For example, in a Harrison-Zel'dovich spectrum the
amphtude of ( I

Sp"/p
I

)'~ at horizon crossing for the
scale n is equal to eH independent of n. Comparing to
Ref. 16 one fmds

e„=[4m&H /f (nii)]' (79)

f(nH) denotes f evaluated at the horizon crossing time
for the scale n.

(80)

Now, 5TD ~ o contributes only to the dipole moment a io,
so let a~0 ——a~oop+Q~grsv~

'
1 /2

u».,--,'f(n,')
I

V'C (0)
I 3

Of course this dipole term includes only linear effects.
For example, the nonlinear dynamics of Earth moving in
the Galaxy are not included. Taking the expectation
values of 5TO gives

B. Multipole moments of 5T

Observations of the microwave anisotropy are reported
in terms of multipole moments of 5T. Substitute the ex-
pansion (75) for 4 into Eq. (27) for 5TO and let

c2i =0 (S &0) . (74)

Note that there is no analogous statement for the nega-
tively curved case (S~O). The constraint functions for
S~O [Eq. (12)] are unbounded eigenfunctions of 5,
whereas the Q" are bounded.

In terms of the eigenfunction expansions, the integral
constraints are equivalent to the statement that (30) can be
solved for 4 if and only if the source satisfies (74). This
is a familiar statement about the existence of solutions to
inhomogeneous equations I.@=swhen the linear operator
L has zero eigenmodes.

The solution to (24) is

where

&.i(~n) = (fII'i+f II.i) I
E—

(Ici I
)=e„ for s&0.

1 =2,3,4, . . . , (81)
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C. Large-S limit

In taking a large-S limit, we must specify what is bring
held constant. Suppose 5p is the sum or randomly scat-
tered local perturbations. We will consider a sequence of
spheres with increasing radius such that the number den-

sity of local perturbations remains constant. This means
that the norm of the eigenfunctions V 'f du

~ Q ~

is in-

dependent of S. As
~

S
~

~ co, n /
~

S
~
~q, a continu-

ous variable.
The eigenfunctions are solutions to the usual flat-space

Helmholtz equation:

+2Q q2Q

Qi (q)=iiI'i (qr»
(82)

where the ji are spherical Bessel functions.
From Appendix B, Il„i(r/v'~S

~
) ji(qr), which im-

plies

8„i Bi(q) =—2 9E'ii(q~n)+i i(q~n)
90 IO

(83}

fdq

where E(q) are the coefficients for the expansion of g in
spherical Bessel functions. For details sm Appendix B.
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the University of California at Santa Barbara.

APPENDIX A: SPHERICAL HARMONICS
ON THE THREE-SPHERE, AND LIMIT AS

~
S

~
~oo

In this section we review some properties of the eigen-
functions of the Helmholtz equation on S and H,

n2 —k
(Al)

and take the limit of the eigenfunctions as
~

S
~

~ ao.
The case S~O is treated first. The solutions for S~O

Q"™(x)=II„I(X)~,«),
n =1,2, 3, . . . , l =0, 1, . . . , n —1,

where

sin'Xd '+ '(cosn X )

M„id (cosX )'+ '

' 1/2

P„',&2 '(cosX),7r=~nI
2s1Eg

M„i ——[(n' —1) (n —I2)]' 2 .

(A2)

The Fi~ are the usual spherical harmonics of S and
the I'I are the Legendre polynomials. We choose the nor-
malization

2 ~ 2 fly
dx s).n XH„IH„ I

——

Pl

The IIi„satisfy the equation

(A3)

Li(cosX, sinX)IIi„= + . — II&„
d 2cosX I (I + 1)
dX»nX sin X

= —(n —1)IIln (A4)

For 1=0

11 (X}
sinnX
Pl Sl~ (A5)

In Appendix C, the Green's function was found for the
linear operator L =(D;D'+3/S) on S . The Green's
function can also be written as a sum of eigenfunctions di-
vided by their eigenvalues. However, I. has four zero
eigenmodes, the Q2™.These modes must be deleted from
the sum for G, and

(A6)

Clearly fdu GQ2™=0; i.e., G H W; cf. Eq. (C7) below.

The solutions for S &0 are' '

G(x,x')= —— g Q"' (x)Q"' (x')
(n 4)/S—
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Q"™(x)=Pq((X)&j(0), q &0.
The P„~ can be obtained' from the II„~

Pqg(X) =H;» ((tX ) .

(A7)

(AS)

Substitute the expansion (Bl) for g and the explicit
forms of the Q

"™(see Appendix A) into (82). Then use
the angle addition theorem for the three-sphere ' (note
that a different normalization is used here than in Ref.
21):

This can be checked by substituting g~iX and nein in
(A4), which yields

n —1 l

g 11„,(X,)II„,(X,) Y, (n, ) Y,
' (n, )=11„,(y) .

I=On= —1

L((coshX, sinhX)II;„((iX) = (—n +1)II;„(, (A9)
(83)

2 " . 2 5(q —q')
dx slnh XPq(Ps ( —— (A10)

which is the equation that defines P„~(X).
Therefore (A2) is true with n~iq T.he normalization

becomes

Using this theorem in the expansion for g, and the
orthogonality properties of the eigenfunctions (see Appen-
dix A), it follows that

(84)

For l=0
s111gg

(A 1 1)
q sinhX

Lastly, consider the limit of the eigenfunctions as

~

S
~

~co. Then n /~S (
~k, a continuous variable.

Equation (Al) becomes the fiat-space Helmholtz equation
with eigenfunctions Q~ (k)=Y~ j~(kr), where '~(kr) are
the spherical Bessel functions. Indeed, II„O(r/ S) and

P,o(X)=

P„o(r/V S)~sink—r/kr =jo(kr) .

The normalization integrals (A3) and (10) also have the
correct limit.

As an example take the continuum limit of the eigen-
function expansion of P (x) [Eq. (81)]:

LGp(X)=0, 0&X&m./2,
—1Gp(X)~ as X~o,S 4mX

(C 1)

APPENDIX C: THE GREEN'S FUNCTION
FOR h, +3/S

Let L =6+3/S. We wish to find G(x,x') such that
the solution to (30) is given by (31). First consider Sy 0.

(i) Projective three-space (P ). P is a three-sphere
with antipodal points identified. The closed P cosmolog-
ical model can be regarded as an 5 model in which all
physical quantities are symmetric under inversion.

If the source point is at the origin, then the Green's
function Gp is a function of X only. Gp must satisfy

P(x)= g F( (Q) g (v S c„( )Ii„(

g F~ Jdq C~ (q)J'~(qr) as S Oo,

where

Gp(X) =Gp(nX), in. —version symmetry .

Noting that

=1 a'
LGp(X) = +4 (GpsinX),

slnX

the solution is easily found to be

(C3)

(C4)

C~ (q)=limvS c„&

q' J~'r—~i~i i(qr)P(r) . (A12)

cos2+Gp(X)= ~ (C5)

For an arbitrary source paint x', 7 is replaced by the an-
gle P between x and x'

APPENDIX 8: RELATION
OF THE PO%'ER SPECTRUM

TO THE CORRELATION FUNCTION ON S
(,)

—1 cos2$
v S 4m. sing

(C6)

Let

P( ) yc Qnln

g(x), x2) =g(P) =pe„Il„o(Q), (81)

where cosg is defined in (36).
(ii) Three-sphere (S ). The operator L has four zero

eigenmodes. These are the functions Q
' [Eq. (16)]

which appear in the integral constraints. Therefore, (30)
can be solved if and only if the source P satisfies

where 1( is the angle on the three-sphere between x& and
x2 (36). Note that the geodesic distance between x, and
x2 is ESP. We wish to compute

2

~ c i curer ~ = ~ J~Ui~U2Q(*, )Q(~, ) Nxi»z) .

Jdu PQ2™=0.

If P satisfies (C7) we will say P HM .
In particular, the three-dimensional 5 function 6(x,x')

on S does not belong to W and (30) cannot be solved for
it as source. Indeed, denoting the complete set of eigen-
functions of L by Q"
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5(x,x')= —g Q"' (x)Q" (x')2

nlm

=5 (x,x')+5ii(x, x'),

where 5~~ is precisely the sum over the n=2 eigenfunc-
tions, the zero modes:

5~~(x, x') = cosg,2

LLGs(&)=0, 0(&(~
—1Gg~ as X~O,S 4m+

G, e&' .

The solution for general source point x' is

(,)
—1

1 + cos2lP
~S 4n n sing

l
cos1(

(C9)

(C10)

where P is given by (36). However, the equation

LGs(x, x')=5(x,x') —5 (x,x')=5 (x,x') (CS)

can be solved. Gs is still not specified completely, since if
Gs is a solution, so is Gs+H, where H is any (continu-
ous) solution of the homogeneous equation. H will be
fixed by requiring that Gs GP' .

The domain of Gs also fixes different boundary condi-
tions. On S we want a function that has a singularity at
1=0 and nowhere else. This cannot be constructed just
from the homogeneous solutions to (30), cosX and
cos2X/sinX. However, we can find Gs which satisfies
(CS) on S as follows. Operate on (CS) with L to annihi-
late the 5~' on the right. Then Gs must satisfy

1
GH(x, x') =-

4~v' —S
cosh 2a —2 cosha
sinha

where a is defined in (3S).

f is defined in (36).
Note that the last term in Gs is cosg, which is a solu-

tion to the homogeneous equation. So for any sE5
fdu s cos1(t=0. Therefore if one substitutes Gs into (31)
to solve for 4, the cosg term can just as well be omitted
from Gs.

Gs can also be expressed as an infinite sum of eigen-
functions (see Appendix A).

(iii) Hyperbolic space (or pseudosphere, H ) The.
Green's function on H was given by D'Eath as
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